Test Report No.	BC400278g-1	Issue Date:	July 13, 2004
Model / Serial No.	FA206C / proto #1		
Product Type	Intentional Transmitter		
Client	Inovonics Wireless Corp.		
Manufacturer	Inovonics Wireless Corp.		
License holder	Inovonics Wireless Corp.		
Address	315 CTC Blvd		
	Louisville, CO 80027		
Test Criteria Applied Test Result	FCC CFR47 Part 15.24	17	
Test Project Number References	BC400278-1	Title 47 CFR 1 DEVICES	5: RADIO FREQUENCY
Total Pages Including Appendices:	34		
Total pulsage	F	Polet Cremer	le
Reviewed By:		Approved By :	

INTERNATIONAL APPROVALS LABORATORIES (IAL) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. IAL have no liability for any deductions, inferences or generalizations drawn by the client or others from IAL issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval of IAL. This report shall not be used by the client to claim product endorsement by NVLAP (No. 200624-0) or any agency of the US government.

International Approval Laboratories and its professional staff hold government and professional organization certifications and are members of IEEE, NVLAP, and VCCI.

INL INTERNATIONAL APPROVALS LABORATORIES

DIRECTORY

Documentation	Page(s)
Test report	1 - 34
Directory	2
Test Regulations	3
General Remarks	4-5
Test-setup Photographs	6-10
Appendix A	
Test Data Sheets and Test Equipment Used	11-26
Appendix B	
Test Plan/Constructional Data Form	27-29
Appendix C	
Measurement Protocol/Test Procedures	30-34

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150 kHz - 30 MHz is calculated to be $\pm 2.30 \text{dB}$ and for Radiated Emissions is calculated to be $\pm 3.60 \text{dB}$ in the frequency range of 30 MHz - 200 MHz and $\pm 3.38 \text{dB}$ in the frequency range of 200 MHz - 1000 MHz.

EUT Received Date: 1-June-2004

Testing Start Date: 1-June-2004

Testing End Date: 6-July-2004

The tests were performed according to following regulations:

- 1. FCC CFR47 Part 15.205
- 2. FCC CFR47 Part 15.207
- 3. FCC CFR47 Part 15.209
- 4. FCC CFR47 Part 15.247
- 5. ICES-003

Emission Test Results:

Conducted Emissions, Powerline (15.207) -	Not Applicable			
Test Result				
Minimum limit margin	NA dB	at	NA MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks: Battery operated device.				
Radiated Emissions (15.209) - PASS				
Test Result				
Minimum limit margin	13.5_dB	at	204.18 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
Radiated Emissions (15.205)/(15.247)(c) -	PASS			
Test Result				
Minimum limit margin	0.78 dB	at	4564.53 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
Peak Output Power (15.247) (b)(1) - PAS	SS			
Test Result				
Minimum limit margin	31.18_dB	at	919.39 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at International Approvals Laboratories, LLC.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was verified per Part 15.31 to find worst case emissions.

The actual test distance for the FCC Part 15.209 testing was conducted at 10m for the fact that the device was being tested to EN55022 Class B from 30 MHz to 1000 MHz (meets/exceeds the FCC Part 15.209 & 109B limits) The data is automatically extrapolated back to the FCC 3m limits and measurements are corrected to better show the compliance to FCC requirements and reduce confusion. A correction factor of 10.54dB is used in cases of 30MHz and up for a difference between 10m and 3m measurement distances. All measurements that are lesser than 30MHz where applicable are accompanied with the fall of measurements and calculations to support the interpolation.

Modifications required to pass:

Test Specification Deviations: Additions to or Exclusions from

This test report is in-part, International Approvals Laboratories, LLC was asked to test only the field strength of the fundamental and harmonics as well as the unintentional radiated and conducted emissions when applicable.

Fax: 303 449 6160

Voice: 303 786 7999

Required Information In Accordance to FCC CFR 47 Part 2.1033:

Rule Part 11, 15 & 18 Devices	Other Rule Part Devices	Description	Comments
2.1033(b)(1)	2.1033(c)(1)	Manu. Contact	See Page 1 of this report
2.1033(b)(2)	2.1033(c)(2)	FCC Identifier	- Coo i ago i oi ano iopon
2.1033(b)(3)	2.1033(c)(3)	Users Manual to include Operating, installation	Attached as Exhibit
	2.1033(c)(4)	Emissions Designator per 2.	
	2.1033(c)(5)	Frequency Range	Not Applicable to Part 15 Devcies
	2.1033(c)(6)	Power range and controls	Not Applicable to Part 15 Devcies
	2.1033(c)(7)	Maximum power ouput rating	Not Applicable to Part 15 Devcies
	2.1033(c)(8)	DC Voltage and Current suplying final RF stages	Not Applicable to Part 15 Devcies
2.1033(b)(3)	2.1033(c)(9)	Tune –up procedure	Please refer to the users manual for applicability
2.1033(b)(4&5)	2.1033(c)(10)	Complete Circuit Diagrams and circuit operation description	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(11)	Photographs/drawings of the identification label & its location on the device	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(12)	Photographs of the external and internal surfaces, and construction	Attached as Exhibit
	2.1033(c)(13)	Digital Modulation	Not Applicable
2.1033(b)(6)	2.1033(c)(14)	Report of Measurement Data Required by 2.1046 – 2.1057	See Data Below (This report consists of the testing required under Part 15.231)
2.1033(b)(8)		Description of publicly available support equipment used during test	Refer to Exhibit B of this report (Client Test Plan)
2.1033(b)(9)		Statement of Autorization to Part 15.37 of CFR47	The equipment herein is being authorized in accordance to 15.37 of the CFR47 Rules.
2.1033(b)(10)		Direct Sequence Spread Spectrum Devices (DSSS)	Exhibit of compliance to 15.247(e)
2.1033(b)(10)		Frequency Hopping Devices	Exhibit of compliance to 15.247(a)(1)
2.1033(b)(11)		Scanning receiver construction	Exhibit stating compliance to construction in accordance to 15.121.
15.31	15.31	Transmitter Supply Voltage	Testing herein was completed in accordance to FCC CFR47 Part 15.31

Exhibits Including (where applicable):

i. Oscis Mandai	1.	Users	Manual
-----------------	----	-------	--------

- 2. Operation Description
- 3. Block Diagram
- 4. Report of Measurement
- 5. External & Internal Photographs
- 6. Schematic

Parts List

- 8. Tuning Procedure (if applicable)
- 9. Test Setup Photograph
- 10. Label Drawings and or Photograpghs
- 11. Description of Support Equipment (where Applicable)

Required Information in Accordance to Industry Canada Regulations (In addition to the above):

Information Required	Description	Comments
Modulation Type	(i.e. ASK, NON, FSK, DSSS, FHSS, etc.)	
Emissions Designator	Per TRC-49	
In Country Representative	Contact Information	
99% Bandwidth Measurement	Per RSS-210	

Project File: BC400278 Page 5 of 34

Fax: 303 449 6160

Voice: 303 786 7999

Test-setup photo(s): Conducted Emissions

Not Applicable

Test-setup photo(s): Radiated Intentional Emissions

Test-setup photo(s): Radiated Intentional Emissions

Test-setup photo(s): Radiated Unintentional Emissions

Test-setup photo(s): Radiated Unintentional Emissions

Appendix A
Test Data Sheets
and
Test Equipment Used

15.209 Test Data

Test F	Report #:	BC400278 Run 01	Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table s ee below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	Proto#1	_		-		
Manu	facturer:	Inovonics			Leve	el Key	
EUT De	scription:	Intentional transmitters			Pk – Peak	Nb – N	larrow Band
Notes:	Models t	ested: ES1265, FA206C, FA repea	ater, EN6040,		Qp – QuasiPeak	Bb – E	Broad Band
-	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
Bicon Anteni	na, Vertical					
0 degrees						
59.30	24.1 Qp	0.8 / 9.1 / 28.3	5.7	V / 1.0 / 0.0	-34.3	N/A
118.60	25.4 Qp	1.1 / 11.9 / 28.2	10.2	V / 1.0 / 0.0	-33.3	N/A
177.90	30.4 Qp	1.4 / 12.9 / 27.7	16.9	V / 1.0 / 0.0	-26.6	N/A
30.00	20.0 Qp	0.6 / 13.5 / 28.4	5.7	V / 1.0 / 0.0	-34.3	N/A
40.00	29.6 Qp	0.7 / 12.3 / 28.4	14.2	V / 1.0 / 0.0	-25.8	N/A
46.00	29.6 Qp	0.8 / 11.3 / 28.4	13.3	V / 1.0 / 0.0	-26.7	N/A
50.00	24.5 Qp	0.8 / 10.7 / 28.4	7.6	V / 1.0 / 0.0	-32.4	N/A
110.00	28.7 Qp	1.0 / 11.0 / 28.2	12.6	V / 1.0 / 0.0	-30.9	N/A
164.00	29.8 Qp	1.3 / 12.6 / 27.8	15.9	V / 1.0 / 0.0	-27.6	N/A
178.00	25.6 Qp	1.4 / 12.9 / 27.7	12.1	V / 1.0 / 0.0	-31.4	N/A
	•					
90 degrees						
40.00	27.0 Qp	0.7 / 12.3 / 28.4	11.7	V / 1.0 / 90.0	-28.3	N/A
177.90	30.5 Qp	1.4 / 12.9 / 27.7	17.0	V / 1.0 / 90.0	-26.5	N/A
		7				
180 degrees	/-					
40.00	26.4 Qp	0.7 / 12.3 / 28.4	11.0	V / 1.0 / 180.0	-29.0	N/A
164.00	28.4 Qp	1.3 / 12.6 / 27.8	14.5	V / 1.0 / 180.0	-29.0	N/A
178.00	25.3 Qp	1.4 / 12.9 / 27.7	11.8	V / 1.0 / 180.0	-31.7	N/A
070 -1						
270 degrees		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100			N1/A
111.33	26.8 Qp	1.1 / 11.2 / 28.1	10.9	V / 1.0 / 270.0	-32.6	N/A
166.96	23.9 Qp	1.3 / 12.6 / 27.8	10.0	V / 1.0 / 270.0	-33.5	N/A
177.91	26.9 Qp	1.4 / 12.9 / 27.7	13.4	V / 1.0 / 270.0	-30.1	N/A
193.56	24.4 Qp	1.4 / 13.8 / 27.6	12.0	V / 1.0 / 270.0	-31.5	N/A
No emissions	s within 20 dB	of the limit, vertical, from 30-2	200 MHz			
Changing to	Horizontal					
0 degrees						

Test R	Report #:	BC400278 Run 01	Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	Proto#1	_		_		_
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – Na	arrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ter, EN6040,		Qp – QuasiPeak	Bb – Bro	oad Band
_	EN5000,	ES1262, DS350, DS100			Av - Average		
_							

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
30.00	17.2 Qp	0.6 / 13.5 / 28.4	2.9	H/2.0/0.0	-37.1	N/A
110.00	25.0 Qp	1.0 / 11.0 / 28.2	8.9	H/2.0/0.0	-34.6	N/A
177.90	27.0 Qp	1.4 / 12.9 / 27.7	13.5	H/2.0/0.0	-30.0	N/A
99.94	32.7 Qp	1.0 / 9.7 / 28.2	15.2	H/2.0/0.0	-28.3	N/A
96.50	35.2 Qp	1.0 / 9.1 / 28.2	17.1	H/2.0/0.0	-26.4	N/A
102.33	32.8 Qp	1.0 / 10.0 / 28.2	15.7	H/2.0/0.0	-27.8	N/A
102.88	30.2 Qp	1.0 / 10.1 / 28.2	13.2	H/2.0/0.0	-30.3	N/A
90 degrees						
96.50	35.3 Qp	1.0 / 9.1 / 28.2	17.2	H / 2.0 / 90.0	-26.3	N/A
102.33	34.3 Qp	1.0 / 10.0 / 28.2	17.2	H / 2.0 / 90.0	-26.3	N/A
102.88	33.3 Qp	1.0 / 10.1 / 28.2	16.2	H/2.0/90.0	-27.3	N/A
111.33	25.6 Qp	1.1 / 11.2 / 28.1	9.7	H/2.0/90.0	-33.8	N/A
166.96	30.4 Qp	1.3 / 12.6 / 27.8	16.5	H / 2.0 / 90.0	-27.0	N/A
177.90	39.5 Qp	1.4 / 12.9 / 27.7	26.0	H/2.0/90.0	-17.5	N/A
		· /				
180 degrees						
96.50	37.5 Qp	1.0 / 9.1 / 28.2	19.4	H / 2.0 / 180.0	-24.1	N/A
102.88	32.9 Qp	1.0 / 10.1 / 28.2	15.8	H / 2.0 / 180.0	-27.7	N/A
270 degrees						
_, c acg.ccc						
96.50	39.1 Qp	1.0 / 9.1 / 28.2	21.0	H / 2.0 / 270.0	-22.5	N/A
96.50 177.90	39.1 Qp 34.9 Qp	1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7	21.0 21.4	H/2.0/270.0 H/2.0/270.0	-22.5 -22.1	N/A N/A
177.90	34.9 Qp					
177.90	34.9 Qp	1.4 / 12.9 / 27.7				
177.90 Maximized et 177.90	34.9 Qp missions, Hori 40.0 Qp	1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.4	H/2.0/270.0	-22.1	N/A
Maximized en 177.90 Log Periodic	34.9 Qp	1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.4	H/2.0/270.0	-22.1	N/A
Maximized et 177.90 Log Periodic 0 degrees	34.9 Qp missions, Hori 40.0 Qp Antenna, Hori	1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.4	H/2.0/270.0 H/2.1/89.0	-22.1 -17.0	N/A N/A
Maximized en 177.90 Log Periodic	34.9 Qp missions, Hori 40.0 Qp	1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.4	H/2.0/270.0	-22.1	N/A

Test F	Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	Proto#1	_		-		
Manu	facturer:	Inovonics			Leve	el Key	
EUT De	scription:	Intentional transmitters			Pk – Peak	Nb – N	larrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	Qp – QuasiPeak	Bb – Broad Band			
-	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
415.11	28.1 Qp	2.2 / 15.4 / 28.1	17.5	H/2.1/0.0	-28.5	N/A
474.41	24.2 Qp	2.3 / 17.1 / 28.5	15.1	H / 2.1 / 0.0	-30.9	N/A
200.19	38.6 Qp	1.5 / 11.3 / 27.6	23.8	H/2.1/0.0	-19.7	N/A
201.50	39.3 Qp	1.5 / 11.3 / 27.6	24.5	H/2.1/0.0	-19.0	N/A
202.84	39.9 Qp	1.5 / 11.3 / 27.6	25.1	H/2.1/0.0	-18.4	N/A
204.18	40.2 Qp	1.5 / 11.3 / 27.6	25.4	H/2.1/0.0	-18.1	N/A
206.53	41.2 Qp	1.5 / 11.2 / 27.6	26.4	H/2.1/0.0	-17.1	N/A
208.92	41.1 Qp	1.5 / 11.2 / 27.5	26.2	H/2.1/0.0	-17.3	N/A
210.25	41.1 Qp	1.5 / 11.1 / 27.5	26.2	H/2.1/0.0	-17.3	N/A
211.82	41.0 Qp	1.5 / 11.1 / 27.5	26.1	H / 2.1 / 0.0	-17.4	N/A
214.46	39.4 Qp	1.5 / 11.0 / 27.5	24.4	H/2.1/0.0	-19.1	N/A
216.84	38.0 Qp	1.5 / 10.9 / 27.5	22.9	H/2.1/0.0	-23.1	N/A
209.47	40.7 Qp	1.5 / 11.1 / 27.5	25.8	H/2.1/0.0	-17.7	N/A
317.74	27.6 Qp	2.0 / 14.9 / 27.2	17.3	H/2.1/0.0	-28.7	N/A
367.24	29.0 Qp	2.1 / 14.4 / 27.7	17.8	H/2.1/0.0	-28.2	N/A
90 degrees						
202.84	42.5 Qp	1.5 / 11.3 / 27.6	27.7	H / 2.1 / 90.0	-15.8	N/A
204.18	42.9 Qp	1.5 / 11.3 / 27.6	28.0	H / 2.1 / 90.0	-15.5	N/A
209.47	42.9 Qp	1.5 / 11.1 / 27.5	28.0	H/2.1/90.0	-15.5	N/A
237.21	40.6 Qp	1.6 / 11.2 / 27.4	26.0	H / 2.1 / 90.0	-20.0	N/A
355.81	31.3 Qp	2.1 / 14.3 / 27.6	20.1	H / 2.1 / 90.0	-25.9	N/A
972.72	35.9 Qp	2.2 / 23.0 / 28.0	33.2	H / 2.1 / 90.0	-20.8	N/A
972.93	35.9 Qp	2.2 / 23.0 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
976.63	35.9 Qp	2.2 / 22.9 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
987.99	37.4 Qp	2.2 / 23.1 / 27.7	35.0	H / 2.1 / 90.0	-19.0	N/A
180 degrees						
216.84	37.6 Qp	1.5 / 10.9 / 27.5	22.5	H / 2.1 / 180.0	-23.5	N/A
355.81	29.1 Qp	2.1 / 14.3 / 27.6	17.9	H / 2.1 / 180.0	-28.1	N/A
972.72	34.8 Qp	2.2 / 23.0 / 28.0	32.0	H / 2.1 / 180.0	-22.0	N/A
976.63	32.8 Qp	2.2 / 22.9 / 28.0	29.9	H / 2.1 / 180.0	-24.1	N/A
987.99	34.1 Qp	2.2 / 23.1 / 27.7	31.8	H / 2.1 / 180.0	-22.2	N/A
	1		1	1		

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test Method: FCC Part 15.209		FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT Model #:		8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	Proto#1	-		-		_
Manu	facturer:	Inovonics			Leve	el Key	
EUT De	scription:	Intentional transmitters			Pk – Peak	Nb – Na	arrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	Qp – QuasiPeak	Bb – Broad Band			
-	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
270 degrees						
200.19	40.5 Qp	1.5 / 11.3 / 27.6	25.6	H / 2.1 / 270.0	-17.9	N/A
201.50	40.2 Qp	1.5 / 11.3 / 27.6	25.4	H / 2.1 / 270.0	-18.1	N/A
206.53	41.7 Qp	1.5 / 11.2 / 27.6	26.9	H / 2.1 / 270.0	-16.6	N/A
210.25	39.3 Qp	1.5 / 11.1 / 27.5	24.4	H / 2.1 / 270.0	-19.1	N/A
216.84	38.7 Qp	1.5 / 10.9 / 27.5	23.6	H / 2.1 / 270.0	-22.4	N/A
972.72	29.4 Qp	2.2 / 23.0 / 28.0	26.6	H / 2.1 / 270.0	-27.4	N/A
Maximized e	missions, Hori	zontal, from 200-1,000 MHz		/		
204.18	44.9 Qp	1.5 / 11.3 / 27.6	30.0	H / 1.6 / 302.0	-13.5	N/A
	_					
Changing to	Vertical					
0 degrees		/		/		
210.25	34.0 Qp	1.5 / 11.1 / 27.5	19.1	V / 1.5 / 0.0	-24.4	N/A
237.21	35.2 Qp	1.6 / 11.2 / 27.4	20.7	V / 1.5 / 0.0	-25.3	N/A
355.81	30.5 Qp	2.1 / 14.3 / 27.6	19.3	V / 1.5 / 0.0	-26.7	N/A
972.72	33.8 Qp	2.2 / 23.0 / 28.0	31.0	V / 1.5 / 0.0	-23.0	N/A
972.93	33.6 Qp	2.2 / 23.0 / 28.0	30.8	V / 1.5 / 0.0	-23.2	N/A
976.63	33.3 Qp	2.2 / 22.9 / 28.0	30.5	V / 1.5 / 0.0	-23.5	N/A
221.63	41.5 Qp	1.6 / 10.8 / 27.5	26.4	V / 1.5 / 0.0	-19.6	N/A
296.50	27.2 Qp	1.9 / 13.5 / 27.2	15.4	V / 1.5 / 0.0	-30.6	N/A
					<u> </u>	
90 degrees						
221.63	41.2 Qp	1.6 / 10.8 / 27.5	26.1	V / 1.5 / 90.0	-19.9	N/A
296.51	31.4 Qp	1.9 / 13.5 / 27.2	19.7	V / 1.5 / 90.0	-26.3	N/A
355.81	34.5 Qp	2.1 / 14.3 / 27.6	23.3	V / 1.5 / 90.0	-22.7	N/A
972.72	34.2 Qp	2.2 / 23.0 / 28.0	31.4	V / 1.5 / 90.0	-22.6	N/A
987.99	36.5 Qp	2.2 / 23.1 / 27.7	34.1	V / 1.5 / 90.0	-19.9	N/A
180 degrees						
221.63	37.6 Qp	1.6 / 10.8 / 27.5	22.5	V / 1.5 / 180.0	-23.5	N/A

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	<u> </u>
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	8 eut's on the table see below EUT Power: DC Air Pressure: Proto#1 Inovonics Leve			_		
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – N	arrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ter, EN6040,		Qp – QuasiPeak	Bb – B	road Band
-	EN5000,	ES1262, DS350, DS100	Av - Average				
-							

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
355.81	30.9 Qp	2.1 / 14.3 / 27.6	19.7	V / 1.5 / 180.0	-26.3	N/A
972.72	36.8 Qp	2.2 / 23.0 / 28.0	34.0	V / 1.5 / 180.0	-20.0	N/A
976.63	35.7 Qp	2.2 / 22.9 / 28.0	32.8	V / 1.5 / 180.0	-21.2	N/A
270 degrees						
210.25	38.2 Qp	1.5 / 11.1 / 27.5	23.3	V / 1.5 / 270.0	-20.2	N/A
216.84	38.5 Qp	1.5 / 10.9 / 27.5	23.3	V / 1.5 / 270.0	-22.7	N/A
296.51	29.3 Qp	1.9 / 13.5 / 27.2	17.6	V / 1.5 / 270.0	-28.4	N/A
355.81	33.5 Qp	2.1 / 14.3 / 27.6	22.3	V / 1.5 / 270.0	-23.7	N/A
367.24	27.5 Qp	2.1 / 14.4 / 27.7	16.3	V / 1.5 / 270.0	-29.7	N/A
415.11	30.5 Qp	2.2 / 15.4 / 28.1	19.9	V / 1.5 / 270.0	-26.1	N/A
972.72	33.7 Qp	2.2 / 23.0 / 28.0	30.9	V / 1.5 / 270.0	-23.1	N/A
976.63	32.8 Qp	2.2 / 22.9 / 28.0	29.9	V / 1.5 / 270.0	-24.1	N/A
	the Horn Anter	nna, Vertical				
0 degrees						
The following	g reading is the	e noise floor taken for reference	e only			
4000.00	31.3 Av	5.7 / 33.0 / 37.6	32.4	V / 1.0 / 0.0	N/A	-21.6
the following 90 degrees no emissions	<u> </u>	noise floor taken for reference	e only			
180 degrees						
180 degrees no emissions 270 degrees	s detected					

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	B eut's on the table see below EUT Power: DC Air Pressure: 80 Proto#1 novonics Level Key Pk – Peak Nb – Na					
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – N	arrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	iter, EN6040,		Qp – QuasiPeak	Bb – B	road Band
_	EN5000,	ES1262, DS350, DS100	Av - Average				
-					-		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
changed to h	orizontal					
0 degrees						
no emissions	detected					
90 degrees						
no emissions	detected					
180 degrees						
no emissions	detected					
270 degrees						
no emissions	detected					
/-						
	5 Ghz Horizo					
	8208 AvAntel					
		missions detected				
following read	ding noise floo	r taken for reference only				
5000.00	31.1 Av	7.6 / 34.7 / 39.1	34.3	H / 1.0 / 0.0	N/A	-19.7
Full turn toble	rotation no o	missions detected				
ruii turn table	e rotation no e	missions detected				
Checking 5-1	0 GHz Horizo	ntal				
		missions detected				
Full turn table	o rotation no c					
	dina noise floo	r taken for reference only				
following read		r taken for reference only 8.7 / 37.6 / 36.4	39.3	H/1.0/0.0	N/A	-14.7
	ding noise floo 29.4 Av 27.3 Av	8.7 / 37.6 / 36.4 11.0 / 38.6 / 32.8	39.3 44.1	H/1.0/0.0 H/1.0/0.0	N/A N/A	-14.7 -9.9
following read 7500.00	29.4 Av	8.7 / 37.6 / 36.4				
7500.00 9500.00	29.4 Av 27.3 Av	8.7 / 37.6 / 36.4 11.0 / 38.6 / 32.8				
7500.00 9500.00 Checking 5-1	29.4 Av 27.3 Av	8.7 / 37.6 / 36.4 11.0 / 38.6 / 32.8				
7500.00 9500.00 Checking 5-1 Full turn table	29.4 Av 27.3 Av 0 GHz Verticae rotation no er	8.7 / 37.6 / 36.4 11.0 / 38.6 / 32.8				
7500.00 9500.00 Checking 5-1 Full turn table	29.4 Av 27.3 Av 0 GHz Verticae rotation no er	8.7 / 37.6 / 36.4 11.0 / 38.6 / 32.8 al missions detected				

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT I	Model #:	8 eut's on the table see below	Test Date: 02-Jul-2004 Relative Humidity: 40 I the table see below EUT Power: DC Air Pressure: 80 Level Key		80	kPa	
EUT	Serial #:	Proto#1	_		-		<u> </u>
Manuf	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk - Peak	Nb – N	larrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	Qp – QuasiPeak	Bb - Broad Band			
_	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
		****** M	easurem	ent Summar	у *****	
204.18	44.9 Qp	1.5 / 11.3 / 27.6	30.0	H / 1.6 / 302.0	-13.5	N/A
209.47	42.9 Qp	1.5 / 11.1 / 27.5	28.0	H / 2.1 / 90.0	-15.5	N/A
202.84	42.5 Qp	1.5 / 11.3 / 27.6	27.7	H / 2.1 / 90.0	-15.8	N/A
206.53	41.7 Qp	1.5 / 11.2 / 27.6	26.9	H / 2.1 / 270.0	-16.6	N/A
177.90	40.0 Qp	1.4 / 12.9 / 27.7	26.5	H / 2.1 / 89.0	-17.0	N/A
208.92	41.1 Qp	1.5 / 11.2 / 27.5	26.2	H/2.1/0.0	-17.3	N/A
210.25	41.1 Qp	1.5 / 11.1 / 27.5	26.2	H / 2.1 / 0.0	-17.3	N/A
211.82	41.0 Qp	1.5 / 11.1 / 27.5	26.1	H/2.1/0.0	-17.4	N/A
200.19	40.5 Qp	1.5 / 11.3 / 27.6	25.6	H / 2.1 / 270.0	-17.9	N/A
201.50	40.2 Qp	1.5 / 11.3 / 27.6	25.4	H / 2.1 / 270.0	-18.1	N/A
221.63	42.8 Qp	1.6 / 10.8 / 27.5	27.7	V / 1.4 / 72.0	-18.3	N/A
987.99	37.4 Qp	2.2 / 23.1 / 27.7	35.0	H / 2.1 / 90.0	-19.0	N/A
214.46	39.4 Qp	1.5 / 11.0 / 27.5	24.4	H/2.1/0.0	-19.1	N/A
237.21	40.6 Qp	1.6 / 11.2 / 27.4	26.0	H / 2.1 / 90.0	-20.0	N/A
972.72	36.8 Qp	2.2 / 23.0 / 28.0	34.0	V / 1.5 / 180.0	-20.0	N/A
972.93	35.9 Qp	2.2 / 23.0 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
976.63	35.9 Qp	2.2 / 22.9 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
216.84	38.7 Qp	1.5 / 10.9 / 27.5	23.6	H / 2.1 / 270.0	-22.4	N/A
96.50	39.1 Qp	1.0 / 9.1 / 28.2	21.0	H / 2.0 / 270.0	-22.5	N/A
355.81	34.5 Qp	2.1 / 14.3 / 27.6	23.3	V / 1.5 / 90.0	-22.7	N/A
40.00	29.6 Qp	0.7 / 12.3 / 28.4	14.2	V / 1.0 / 0.0	-25.8	N/A
415.11	30.5 Qp	2.2 / 15.4 / 28.1	19.9	V / 1.5 / 270.0	-26.1	N/A
296.51	27.9 Qp	1.9 / 17.3 / 27.2	19.8	H / 2.1 / 0.0	-26.2	N/A
102.33	34.3 Qp	1.0 / 10.0 / 28.2	17.2	H/2.0/90.0	-26.3	N/A
46.00	29.6 Qp	0.8 / 11.3 / 28.4	13.3	V / 1.0 / 0.0	-26.7	N/A

Project File: BC400278 Page 19 of 34 Voice: 303 786 7999 Fax: 303 449 6160

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	Relative Humidity: 40	
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	Proto#1	C Part 15.209 Test Date: 02-Jul-2004 Relative Hum ut's on the table see below EUT Power: DC Air Press entional transmitters Pk – Peak		-		_
Manu	facturer:	Inovonics			Leve	el Key	
EUT De	scription:	Intentional transmitters			Pk – Peak	Nb – Na	arrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	Qp – QuasiPeak	Bb - Broad Band			
-	EN5000,	: Inovonics		Av - Average			

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
166.96	30.4 Qp	1.3 / 12.6 / 27.8	16.5	H/2.0/90.0	-27.0	N/A
102.88	33.3 Qp	1.0 / 10.1 / 28.2	16.2	H/2.0/90.0	-27.3	N/A
164.00	29.8 Qp	1.3 / 12.6 / 27.8	15.9	V / 1.0 / 0.0	-27.6	N/A
367.24	29.0 Qp	2.1 / 14.4 / 27.7	17.8	H / 2.1 / 0.0	-28.2	N/A
99.94	32.7 Qp	1.0 / 9.7 / 28.2	15.2	H/2.0/0.0	-28.3	N/A
317.74	27.6 Qp	2.0 / 14.9 / 27.2	17.3	H/2.1/0.0	-28.7	N/A
110.00	28.7 Qp	1.0 / 11.0 / 28.2	12.6	V / 1.0 / 0.0	-30.9	N/A
474.41	24.2 Qp	2.3 / 17.1 / 28.5	15.1	H/2.1/0.0	-30.9	N/A
178.00	25.6 Qp	1.4 / 12.9 / 27.7	12.1	V / 1.0 / 0.0	-31.4	N/A
193.56	24.4 Qp	1.4 / 13.8 / 27.6	12.0	V / 1.0 / 270.0	-31.5	N/A
50.00	24.5 Qp	0.8 / 10.7 / 28.4	7.6	V / 1.0 / 0.0	-32.4	N/A
111.33	26.8 Qp	1.1 / 11.2 / 28.1	10.9	V / 1.0 / 270.0	-32.6	N/A
118.60	25.4 Qp	1.1 / 11.9 / 28.2	10.2	V / 1.0 / 0.0	-33.3	N/A
30.00	20.0 Qp	0.6 / 13.5 / 28.4	5.7	V / 1.0 / 0.0	-34.3	N/A
59.30	24.1 Qp	0.8 / 9.1 / 28.3	5.7	V / 1.0 / 0.0	-34.3	N/A
The following	are the record	ded noise floor points				
10000.0	26.9 Av	12.3 / 38.4 / 32.0	45.7	V / 1.0 / 0.0	N/A	-8.3
9500.00	27.3 Av	11.0 / 38.6 / 32.8	44.1	H / 1.0 / 0.0	N/A	-9.9
8000.00	29.6 Av	9.5 / 37.4 / 33.9	42.6	V / 1.0 / 0.0	N/A	-11.4
7500.00	29.4 Av	8.7 / 37.6 / 36.4	39.3	H / 1.0 / 0.0	N/A	-14.7
5000.00	31.1 Av	7.6 / 34.7 / 39.1	34.3	H / 1.0 / 0.0	N/A	-19.7
4000.00	31.3 Av	5.7 / 33.0 / 37.6	32.4	V / 1.0 / 0.0	N/A	-21.6

Test Area: Pinewood Site 1 (3m)

°С

22.6

Temperature:

Test Meth						_					
	thod: FC	C CFR47 Part 15.247/2	205 Test D	Date: 2-July-20	004	Relative Hum	nidity: 39	%			
EUT Mod	del #: FA:	206C	EUT Po	ower: Battery		Air Pres	sure: 80	kPa			
EUT Seria	ial #: Pro	to#1				 Page:					
Manufactu	urer: Ino	vonics Wireless Corp.					Level Key				
EUT Descript	otion:					Pk – Peak	Nb - N	larrow Band			
Notes:						– Qp – QuasiPe	ak Bb – E	Broad Band			
						Av - Average					
FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL PO	DL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA			
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
The following	g duty cycle	e was declared by the n	nanufacturer.								
Duty Cycle =	active / 10										
, ,				cordance to FC0	C CFR47 Part 15.	35 utilized to calcul	ate field stren	gth			
Averaging memissions.	nethod for	00ms. = 20%	alculation in acc					_			
Averaging memissions. The testing pecalculated as	nethod for performed in s follows:	n accordance to FCC C	alculation in acc	95 (restricted ban	ds of operation) a			_			
Averaging memissions. The testing pecalculated as	nethod for performed in s follows: ed Peak M	pulsed signals and connected accordance to FCC Connected a	alculation in acc CFR47 Part 15.20 cle Correction Far	5 (restricted ban	ds of operation) a	nd 15.247 emissions	and delta limit	ts were			
Averaging memissions. The testing pecalculated as Final Corrected the Final Cal	nethod for performed in s follows: ed Peak M llculated Er	pulsed signals and connected accordance to FCC Connected a	alculation in acc FR47 Part 15.20 cle Correction Fac ared to the Limits	5 (restricted ban ctor* = Final Calo in CFR47 Part	ds of operation) a culated Emission 5.209 and 15.247	nd 15.247 emissions	and delta limit	ts were			
Averaging memissions. The testing procalculated as Final Corrected the Final Cal	nethod for performed in s follows: ned Peak M loulated Er CF is calcul	pulsed signals and connected accordance to FCC Connected a	alculation in acc FR47 Part 15.20 cle Correction Fac ared to the Limits	5 (restricted ban ctor* = Final Calo in CFR47 Part	ds of operation) a culated Emission 5.209 and 15.247	nd 15.247 emissions	and delta limit	ts were			
Averaging memissions. The testing procalculated as Final Corrected the DTC Part 15.247	nethod for performed in s follows: ed Peak M llculated Er CF is calcul and 15.205	pulsed signals and connected as follows 20*log ₁ Respectively	alculation in acc CFR47 Part 15.20 cle Correction Fac ared to the Limits	5 (restricted ban ctor* = Final Calo in CFR47 Part	ds of operation) a culated Emission 5.209 and 15.247	nd 15.247 emissions	and delta limit	ts were			
Averaging memissions. The testing procalculated as Final Corrected the DTC Part 15.247 a EUT is flat on	nethod for performed in s follows: ed Peak M alculated Er CF is calculated in the table	pulsed signals and connected as follows 20*log ₁ Respectively	alculation in acc CFR47 Part 15.20 cle Correction Fac ared to the Limits	5 (restricted ban ctor* = Final Calo in CFR47 Part	ds of operation) a culated Emission 5.209 and 15.247	nd 15.247 emissions	and delta limit	ts were			
Averaging memissions. The testing procalculated as Final Corrected the DTC Part 15.247 a EUT is flat on Low channe	nethod for performed in s follows: ed Peak M alculated Er CF is calculated and 15.205 in the table	pulsed signals and connected as follows 20*log ₁ Respectively on its back.	alculation in acc CFR47 Part 15.20 cle Correction Fac ared to the Limits o(duty cycle in 10	of (restricted ban otor* = Final Calo on CFR47 Part 1 oms) "not to exc	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB"	nd 15.247 emissions 7 and the emission/li	and delta limit	alculated.			
Averaging memissions. The testing procedurated as Final Corrected the DTC Part 15.247 a EUT is flat on 200 channe	nethod for performed in s follows: ed Peak M llculated Er CF is calcul and 15.205 in the table el	poms. = 20% pulsed signals and computer of the computer of th	alculation in acc CFR47 Part 15.20 cle Correction Fac ared to the Limits o(duty cycle in 10	ctor* = Final Calc s in CFR47 Part 1 0mS) "not to exc	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB"	nd 15.247 emissions 7 and the emission/lii	and delta limit mit delta was c	alculated.			
Averaging memissions. The testing procedulated as Final Corrected the DTC Part 15.247 a EUT is flat on Low channe 907.36 907.36	nethod for performed in s follows: ed Peak M llculated Er CF is calcul and 15.205 in the table el 66.8 Pk 73.3 Pk	pulsed signals and connected as follows 20*log ₁ Respectively on its back.	alculation in acc CFR47 Part 15.20 cle Correction Fac ared to the Limits o(duty cycle in 10	of (restricted ban otor* = Final Calo on CFR47 Part 1 oms) "not to exc	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB"	nd 15.247 emissions 7 and the emission/li	and delta limit	alculated.			
Averaging memissions. The testing procedurated as Final Corrects the DTC Part 15.247 a EUT is flat on Low channe 907.36 907.36 Mid Channe	nethod for performed in s follows: ed Peak M alculated Er CF is calculated and 15.205 in the table el 66.8 Pk 73.3 Pk	poms. = 20% pulsed signals and computer of the computer of th	alculation in acc CFR47 Part 15.20 cle Correction Fac ared to the Limits o(duty cycle in 10	ctor* = Final Calc s in CFR47 Part 10mS) "not to exc 1/1.0 / 352.0 1/1.0 / 313.0	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB"	7 and the emission/lii	and delta limit mit delta was c	alculated. -41.5 -35.0			
Averaging memissions. The testing procedurated as Final Corrected the DTC Part 15.247 a EUT is flat on Low channe 907.36 907.36 Mid Channe 913.3	nethod for performed in s follows: ed Peak M llculated Er CF is calcul and 15.205 in the table el 66.8 Pk 73.3 Pk	poms. = 20% pulsed signals and computer of the computer of th	alculation in acc FR47 Part 15.20 cle Correction Far ared to the Limits o(duty cycle in 10	ctor* = Final Calc s in CFR47 Part 1 0mS) "not to exc	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB"	nd 15.247 emissions 7 and the emission/lii	and delta limit mit delta was c	-41.5 -35.0			
Averaging memissions. The testing procalculated as Final Corrected the DTC Part 15.247 a EUT is flat on Low channe 907.36 907.36 Mid Channe 913.3	nethod for performed in s follows: ed Peak M alculated Er CF is calculated and 15.205 in the table el 66.8 Pk 73.3 Pk el 73.8 Pk 67.0 Pk	poms. = 20% pulsed signals and c n accordance to FCC Consistency leasurement – Duty Cyclesision was then completed as follows 20*log1 Respectively on its back. 2.2/22.4/0.0 2.2/22.4/0.0	alculation in acc FR47 Part 15.20 cle Correction Far ared to the Limits o(duty cycle in 10	75 (restricted bancetor* = Final Calcetor)	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB" -13.98 -13.98	7 and the emission/lii 7 and 83.92	and delta limit mit delta was c 119 119	ts were			
Averaging memissions. The testing procalculated as Final Corrected the DTC Part 15.247 a EUT is flat on Low channe 907.36 907.36 Mid Channe 913.3 913.3 High Channe 919.39	nethod for performed in s follows: ed Peak M llculated Er CF is calcul and 15.205 in the table el 66.8 Pk 73.3 Pk el 73.8 Pk 67.0 Pk	poms. = 20% pulsed signals and c n accordance to FCC Consistency leasurement – Duty Cylimission was then complated as follows 20*log1 Respectively on its back. 2.2/22.4/0.0 2.2/22.4/0.0 2.2/22.8/0.0 2.2/22.8/0.0 2.2/22.8/0.0	alculation in acc FR47 Part 15.20 cle Correction Far ared to the Limits o(duty cycle in 10 91.4 V 97.9 H 98.8 H 91.9 V	75 (restricted bancetor* = Final Calcetor* = Fin	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB" -13.98 -13.98 -13.98 -13.98	7 and the emission/line 77.42 83.92 84.82 77.92 78.82	and delta limit mit delta was c 119 119 119 119 119	-41.5 -35.0 -34.1 -41.0			
Averaging memissions. The testing procalculated as Final Corrects the DTC Part 15.247 a EUT is flat on Low channe 907.36 907.36 Mid Channe 913.3 913.3 High Channe 919.39 919.39	nethod for erformed in s follows: ed Peak M ilculated Er CF is calculated and 15.205 in the table el 66.8 Pk 73.3 Pk el 73.8 Pk 67.0 Pk in el 67.8 Pk 75.2 Pk	poms. = 20% pulsed signals and compulsed signals and compulsed signals and compulsed surement – Duty Cycles in accordance to FCC Computer of the computer of	alculation in acc FR47 Part 15.20 cle Correction Far ared to the Limits o(duty cycle in 10 91.4 V 97.9 H 98.8 H 91.9 V	75 (restricted bancetor* = Final Calcetor* = Fin	ds of operation) a culated Emission 15.209 and 15.247 eed 20dB" -13.98 -13.98 -13.98	7 and the emission/line	and delta limit mit delta was c 119 119 119 119	-41.5 -35.0 -34.1 -41.0			

H / 1.0 / 183.0

V / 1.2 / 219.0

H / 1.0 / 184.0

H / 1.0 / 191.0

V / 1.1 / 261.0

Project File: BC400278 Page 22 of 34 Voice: 303 786 7999 Fax: 303 449 6160

<mark>119</mark>

119

<mark>119</mark>

119

119

119

-33.88

-32.58

-35.68

-36.58

-31.18

5541 Central Avenue, Suite 110 Boulder, Colorado 80301

<mark>-13.98</mark>

-13.98

<mark>-13.98</mark>

-13.98

86.42

83.32

82.42

2.2 / 22.4 / 0.0

2.2 / 22.4 / 0.0

2.2 / 22.8 / 0.0

2.2 / 22.8 / 0.0

2.2 / 22.7 / 0.0

99.1

100.4

97.3

96.4

101.8

Low Channel

Mid Channel

913.3

75.4 Pk

High Channel

919.39

913.3 72.3 Pk

74.5 Pk

71.5 Pk

76.9 Pk

907.37

Test Report #: BC400278

Test Re	Test Report #: BC400278		BC400278 Test Area: Pinewood Site 1 (3m)				d Site 1 (3m)	Tempera	ature: 22.6	°C
Test M	lethod:	FC	C CFR47 Part 15.247/2	205	Test Date:	2-July-20	004	Relative Hum	nidity: 39	%
EUT M	lodel #:	FA2	206C	E	UT Power:	Battery		- Air Pres	sure: 80	kPa
EUT S	erial #:	Pro	to#1		•			-		<u> </u>
Manufa	cturer:	Ino	vonics Wireless Corp.							
EUT Desc	ription:							-	Nb - 1	larrow Band
Notes:								- Qp – QuasiPe	eak Bh – F	Broad Band
								- '		
								Av – Average		
FREQ	LEVI	EL	CABLE / ANT / PREAMP	FINAL	POL / HO	31 / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBu	V)	(dB) (dB\m) (dB)	(dBuV)	(m)	(DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
T. (1)										
	•	•	was declared by the n	nanufacture	er.					
			0ms. = 20%							
emissions		u ioi	pulsed signals and c	aiculation	in accordar	ice to FCC	CFR4/ Part 15.3	os utilized to calcul	iate neid Stren	gm
The testing	perforn	ned ir	accordance to FCC C	FR47 Part	15.205 (rest	ricted ban	ds of operation) ar	nd 15.247 emissions	and delta limi	s were
calculated	as follo	ws:					. ,			
Final Corre	ected Pe	ak M	easurement – Duty Cy	cle Correcti	on Factor* =	Final Cald	culated Emission			
The Final (Calculate	ed En	nission was then compa	ared to the l	Limits in CF	R47 Part 1	15.209 and 15.247	and the emission/li	mit delta was c	alculated.
The D	TCF is	calcu	lated as follows 20*log	10(duty cycle	e in 100mS)	"not to ex	ceed 20dB"			
Part 15.24	7 and 15	5.205	Respectively							
		e tabl	e with the screw on the	e left side.						
Low Char										
907.35 907.34	70.5 69.9		2.2 / 22.4 / 0.0 2.2 / 22.4 / 0.0	95.1 94.5	V / 1.0 H / 1.0 /		-13.98 -13.98	81.12 80.52	119 119	-37.88 -38.48
Mid Chan		FK	2.2 / 22.4 / 0.0	94.5	<mark>П/ 1.0</mark> /	155.0	- 13.90	<mark>60.52</mark>	119	-30.40
913.28	69.3	Pk	2.2 / 22.8 / 0.0	94.3	H / 1.0 /	146.0	-13.98	80.32	119	-38.68
913.29	74.9		2.2 / 22.8 / 0.0	99.9	V / 1.2 /		-13.98	85.92	119	-33.08
High Cha	nnel									
<mark>919.37</mark>	75.8	Pk	2.2 / 22.7 / 0.0	<mark>100.7</mark>	V / 1.1 /	235.0	-13.98	<mark>86.72</mark>	<mark>119</mark>	-32.28
919.37	70.4		2.2 / 22.7 / 0.0	<mark>95.3</mark>	H / 1.5 /	<mark>157.0</mark>	<mark>-13.98</mark>	<mark>81.32</mark>	<mark>119</mark>	<mark>-37.68</mark>
Harmonic	s EUT	was	placed in its worst ca	ase positio	on.					
Low Char	nnel									
1814.01	69.2	Pk	3.1 / 28.3 / 37.2	<mark>63.3</mark>	V / 1.0 /	316.6	<mark>-13.98</mark>	<mark>49.32</mark>	<mark>99</mark>	<mark>-49.68</mark>
1814.02	64.0		3.1 / 28.3 / 37.2	<mark>58.1</mark>	H/2.0		<mark>-13.98</mark>	<mark>44.12</mark>	99	<mark>-54.88</mark>
2720.92	45.3		4.3 / 31.1 / 37.0	43.7	V / 1.4 /		-13.98	29.72	54	-24.28
2720.96	66.4		4.3 / 31.1 / 37.5	64.2	H / 1.5		-13.98	50.22	54	-3.78
3627.75	38.8 43.5		5.0 / 33.2 / 36.8 5.0 / 33.2 / 36.8	40.3	H / 1.1 /		-13.98	26.32	54	-27.68
3627.96 4534.77	60.9		6.7 / 33.6 / 37.6	45 63.5	V / 1.0 / H / 1.0 /		-13.98 -13.98	31.02 49.52	54 54	-22.98 -4.48
4534.77	60.6		6.7 / 33.6 / 37.6	63.2	V / 1.2		-13.98	49.32	54 54	-4.46 -4.78
5441.73	50.4		6.8 / 35.6 / 37.5	55.3	V / 1.4 /		-13.98	41.32	54	-12.68
5444.0				50.0	V / 1. T /		10.00	20.02	<u> </u>	12.00

Project File: BC400278 Page 23 of 34

-15.38

5541 Central Avenue, Suite 110 Voice: 303 786 7999 Fax: 303 449 6160 Boulder, Colorado 80301

BC400278	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
FCC CFR47 Part 15.247/205	Test Date:	2-July-2004	Relative Humidity:	39	%
FA206C	EUT Power:	Battery	Air Pressure:	80	kPa
Proto#1	•		-		_
Inovonics Wireless Corp.					
			Pk – Peak	Nb – Na	arrow Band
			Qp – QuasiPeak	Bb – Br	oad Band
		A	Av – Average		
	FCC CFR47 Part 15.247/205 FA206C Proto#1	FCC CFR47 Part 15.247/205 FA206C Proto#1 Test Date: EUT Power:	FCC CFR47 Part 15.247/205 Test Date: 2-July-2004 FA206C EUT Power: Battery Proto#1	FCC CFR47 Part 15.247/205 Test Date: 2-July-2004 Relative Humidity: Air Pressure: Proto#1 Inovonics Wireless Corp. Pk – Peak Qp – QuasiPeak	FCC CFR47 Part 15.247/205 Test Date: 2-July-2004 Relative Humidity: 39 Air Pressure: 80 Proto#1 Inovonics Wireless Corp. Pk – Peak Qp – QuasiPeak Bb – Bri

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

Duty Cycle = active / 100ms. = 20%

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. The DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

Part 15.247	7 and <mark>15.205</mark>	Respectively						
6348.78	45.0 Pk	8.3 / 36.5 / 37.5	<mark>52.3</mark>	H / 1.1 / 28.0	-13.98	<mark>38.32</mark>	99	-60.68
6348.82	39.9 Pk	8.3 / 36.5 / 37.5	<mark>47.2</mark>	V / 1.2 / 34.0	-13.98	<mark>33.22</mark>	99	<mark>-65.78</mark>
7255.67	40.0 Pk	8.2 / 37.5 / 38.4	47.3	H / 1.1 / 15.0	-13.98	33.32	54	-20.68
7255.92	38.1 Pk	8.2 / 37.5 / 38.4	45.4	V / 1.3 / 19.0	-13.98	31.42	54	-22.58
8162.01	43.1 Pk	8.4 / 38.1 / 42.5	47.1	H / 1.1 / 335.0	-13.98	33.12	54	-20.88
8165.36	62.7 Pk	8.4 / 38.1 / 45.3	63.8	V / 1.2 / 354.0	-13.98	49.82	54	-4.18
9069.46	37.1 Pk	8.6 / 39.8 / 44.0	41.5	H / 1.0 / 324.0	-13.98	27.52	54	-26.48
9073.46	51.1 Pk	8.6 / 39.8 / 46.9	52.6	V / 1.7 / 280.0	-13.98	38.62	54	-15.38
Mid Chan	nel							
1825.84	68.8 Pk	3.1 / 28.3 / 37.2	<mark>63</mark>	V / 1.0 / 307.9	-13.98	49.02	99	-49.98
1825.89	62.9 Pk	3.1 / 28.3 / 37.2	<mark>57.1</mark>	H / 2.0 / 33.3	-13.98	<mark>43.12</mark>	99	<mark>-55.88</mark>
2738.55	54.4 Pk	4.3 / 31.1 / 37.0	52.8	H / 1.2 / 0.0	-13.98	38.82	54	-15.18
2738.67	46.7 Pk	4.3 / 31.1 / 37.0	45.1	V / 1.1 / 331.0	-13.98	31.12	54	-22.88
3651.59	40.3 Pk	5.1 / 33.3 / 36.8	41.9	H / 1.0 / 310.0	-13.98	27.92	54	-26.08
3651.62	41.7 Pk	5.1 / 33.3 / 36.8	43.3	V / 1.2 / 355.0	-13.98	29.32	54	-24.68
4564.53	64.3 Pk	6.7 / 33.7 / 37.5	67.2	V / 1.1 / 346.0	-13.98	53.22	54	-0.78
4564.54	64.2 Pk	6.7 / 33.7 / 37.5	67.1	H / 1.2 / 0.0	-13.98	53.12	<mark>54</mark>	-0.88
5477.23	54.3 Pk	6.7 / 35.7 / 37.7	59	V / 1.2 / 238.0	<mark>-13.98</mark>	<mark>45.02</mark>	99	<mark>-53.98</mark>
5477.3	45.8 Pk	6.7 / 35.7 / 37.7	50.5	H / 1.2 / 273.0	<mark>-13.98</mark>	<mark>36.52</mark>	99	<mark>-62.48</mark>
6390.04	37.2 Pk	8.3 / 36.4 / 37.5	<mark>44.5</mark>	V / 1.3 / 0.0	<mark>-13.98</mark>	<mark>30.52</mark>	99	<mark>-68.48</mark>
<mark>6390.28</mark>	44.2 Pk	8.3 / 36.4 / 37.5	<mark>51.5</mark>	H / 1.3 / 315.0	<mark>-13.98</mark>	<mark>37.52</mark>	<mark>99</mark>	<mark>-61.48</mark>
7302.97	39.9 Pk	8.2 / 37.6 / 38.1	47.6	H / 1.1 / 15.0	-13.98	33.62	<mark>54</mark>	-20.38
7302.99	37.3 Pk	8.2 / 37.6 / 38.1	45	V / 1.1 / 292.0	-13.98	31.02	54	-22.98

5541 Central Avenue, Suite 110

Boulder, Colorado 80301

Project File: BC400278 Page 24 of 34

Voice: 303 786 7999 Fax: 303 449 6160

Test Report #:	BC400278	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	2-July-2004	Relative Humidity:	39	%
EUT Model #:	FA206C	EUT Power:	Battery	Air Pressure:	80	kPa
EUT Serial #:	Proto#1	_		_		_
Manufacturer:	Inovonics Wireless Corp.					
EUT Description:					Nb – Na	arrow Band
Notes:				Qp – QuasiPeak	Bb – Br	oad Band
			A	Av – Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

Duty Cycle = active / 100ms. = 20%

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. The DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

Part 15.24	<mark>7</mark> and <mark>15.205</mark>	Respectively						
8215.74	46.3 Pk	8.4 / 38.2 / 42.4	5 0.5	H / 1.4 / 322.0	-13.98	36.52	54	-17.48
8219.4	64.9 Pk	8.4 / 38.2 / 45.3	66.2	V / 1.6 / 1.0	-13.98	52.22	54	-1.78
9128.51	39.3 Pk	8.7 / 39.6 / 44.2	43.5	H / 1.3 / 335.0	-13.98	29.52	<mark>54</mark>	-24.48
9132.6	51.2 Pk	8.7 / 39.6 / 47.1	52.5	V / 1.6 / 281.0	-13.98	38.52	54	-15.48
High Cha	nnel							
1838.07	68.0 Pk	3.1 / 28.4 / 37.2	<mark>62.3</mark>	V / 1.0 / 309.4	<mark>-13.98</mark>	<mark>48.32</mark>	99	<mark>-50.68</mark>
<mark>1838.09</mark>	63.5 Pk	3.1 / 28.4 / 37.2	<mark>57.8</mark>	H / 2.0 / 18.4	<mark>-13.98</mark>	<mark>43.82</mark>	99	<mark>-55.18</mark>
2756.88	47.2 Pk	4.3 / 31.2 / 37.0	45.7	H / 1.4 / 13.0	-13.98	31.72	54	-22.28
2756.98	46.6 Pk	4.3 / 31.2 / 37.0	45.1	V / 1.2 / 1.0	-13.98	31.12	54	-22.88
3675.84	39.9 Pk	5.1 / 33.4 / 36.8	41.6	H / 1.3 / 298.0	-13.98	27.62	54	-26.38
3675.86	38.6 Pk	5.1 / 33.4 / 36.8	40.3	V / 1.2 / 346.0	-13.98	26.32	54	-27.68
4564.54	64.2 Pk	6.7 / 33.7 / 37.5	67.1	H / 1.2 / 0.0	-13.98	53.12	54	-0.88
4594.63	63.2 Pk	6.8 / 33.7 / 37.4	66.3	V / 1.1 / 1.0	-13.98	<mark>52.32</mark>	<mark>54</mark>	-1.68
5513.68	50.3 Pk	6.7 / 35.7 / 37.7	<mark>55</mark>	V / 1.0 / 340.0	<mark>-13.98</mark>	<mark>41.02</mark>	<mark>99</mark>	<mark>-57.98</mark>
5513.92	54.6 Qp	6.7 / 35.7 / 37.7	<mark>59.3</mark>	H / 1.1 / 304.0	<mark>-13.98</mark>	<mark>45.32</mark>	<mark>99</mark>	<mark>-53.68</mark>
6432.41	42.5 Pk	8.4 / 36.4 / 37.5	<mark>49.8</mark>	H / 1.2 / 16.0	<mark>-13.98</mark>	<mark>35.82</mark>	<mark>99</mark>	<mark>-63.18</mark>
6432.55	38.0 Pk	8.4 / 36.4 / 37.5	<mark>45.3</mark>	V / 1.1 / 0.0	<mark>-13.98</mark>	<mark>31.32</mark>	<mark>99</mark>	<mark>-67.68</mark>
7351.35	38.2 Pk	8.2 / 37.7 / 37.8	46.2	H / 1.1 / 30.0	-13.98	32.22	<mark>54</mark>	-21.78
7351.53	35.7 Pk	8.2 / 37.7 / 37.8	43.7	V / 1.2 / 330.0	- 13.98	29.72	54	-24.28
8270.72	47.4 Pk	8.4 / 38.3 / 42.3	51.8	H / 1.3 / 314.0	-13.98	37.82	<mark>54</mark>	-16.18
8274.18	63.7 Pk	8.4 / 38.4 / 45.2	65.2	V / 1.0 / 286.0	- 13.98	51.22	<mark>54</mark>	-2.78
9189.35	38.9 Pk	8.8 / 39.4 / 44.3	42.9	H / 1.3 / 318.0	-13.98	28.92	<mark>54</mark>	-25.08
9193.43	51.5 Pk	8.8 / 39.4 / 47.2	52.5	V / 1.6 / 22.0	-13.98	38.52	54	-15.48

5541 Central Avenue, Suite 110

Boulder, Colorado 80301

Project File: BC400278 Page 25 of 34

Voice: 303 786 7999 Fax: 303 449 6160

Project Report

Begin Date: End Date: 7/2/20047/2/2004

Technician Karen Parker Project: BC400278

Capital Asset	IDManufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
6	Hewlett-Packard	8594E	3223A00145	Spectrum Analyzer	R Radiated Emissions	For Cal	1/16/2004	1/16/2005
138	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	10/3/2003	10/3/2004
171	Hewlett-Packard	85662A	1928A01169	Spectrum Analyzer - Display Section	R Radiated Emissions	For Cal	1/21/2004	1/21/2005
172	Hewlett-Packard	8566B	2430A00759	Spectrum Analyzer	R Radiated Emissions	For Cal	1/21/2004	1/21/2005
187	EMCO	3115	9205-3886	Horn Antenna 1-18GHz	R Radiated Emissions	For Cal	10/6/2003	10/6/2004
202	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
203	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
213	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	6/5/2004	6/5/2005
217	EMCO	3146	9203-3376	Log Periodic Antenna	R Radiated Emissions	For Cal	10/3/2003	10/3/2004
248	Hewlett-Packard	8447F	3113A05545	9 kHz- 1.3GHz Pre Amp	R Radiated Emissions	For Ver	6/22/2004	6/22/2005

Voice: 303 786 7999

Fax: 303 449 6160

Appendix B
Test Plan
and
Constructional Data Form
To be supplied by the customer

315 CTC Boulevard, Louisville, CO 80027 ph. 303.939.9336 fx. 303.939.8977 www.inovonicswireless.com

July 13, 2004

Todd Seeley IA Labs 5451 Central Ave. Boulder, CO 80301

Dear Todd,

Pursuant to section 15.247 of the FCC rules Inovonics transmitters are limited to 0.25 Watts maximum transmitted power. These devices contain integrated antennas and it is therefore impossible to measure the transmitted power in a conducted manner without significantly modifying the devices.

At the test lab the field strength is measured using an antenna located 3 meters from the device under test. The rules do not explicitly state the field strength at 3 meters corresponding to 0.25 Watts, so it must be calculated as follows:

The test facility measures the transmitted field strength, E, having units of Volts/meter, or the logarithmic equivalent. The transmitted power density as measured by the antenna is then $\frac{E^2}{\eta}$, where η is the intrinsic impedance of free space.

Assuming isotropic radiation from the product, the Effective Isotropic Radiated Power (EIRP) is found by multiplying the above power density by the area of a sphere having a radius of 3 meters.

$$P_{HRP} = \frac{E^2}{\eta} 4\pi R^2 \qquad (1)$$

Solving for E.

$$E = \frac{1}{2R} \left(\frac{\eta P_{EBRP}}{\pi} \right)^{\frac{N}{2}}$$
 (2)

Project File: BC400278 Page 28 of 34 Voice: 303 786 7999 Fax: 303 449 6160 Given that $P_{\text{EIRP}}=0.25$ Watts (FCC limit), R=3 meters, and $\eta=377$ Ohms, $E=0.913~V/m=119.2~dB <math display="inline">\mu V/m.$

Remember the above assumption of isotropic radiation- all real antennas have non-isotropic radiation patterns. Using the 119.2 dB μ V/m limit guarantees that the total RF power transmitted by the device is below the 0.25 Watt limit.

Also, according the part 15.35 we are allowed a relaxation of the general radiation limits found in 15.209 while using a peak detector, as applied to the harmonics of the fundamental. Inovonics EchoStream security transmitters have a transmission pulse duration of 20 ms, which corresponds to a duty cycle of 0.2 per 15.35(c). This duty cycle allows for a 14 dB relaxation of the general radiation limits from 54 dB $\mu\text{V/m}$ (500 $\mu\text{V/m}$, per 15.209(a)) to 68 dB $\mu\text{V/m}$ for peak measurements.

Sincerely,

Steven Dunbar RF Engineer

> Project File: BC400278 Page 29 of 34 Voice: 303 786 7999 Fax: 303 449 6160

Appendix C	
Management Protocol	
Measurement Protocol And	
Test Procedures	

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB\mu V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse \log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

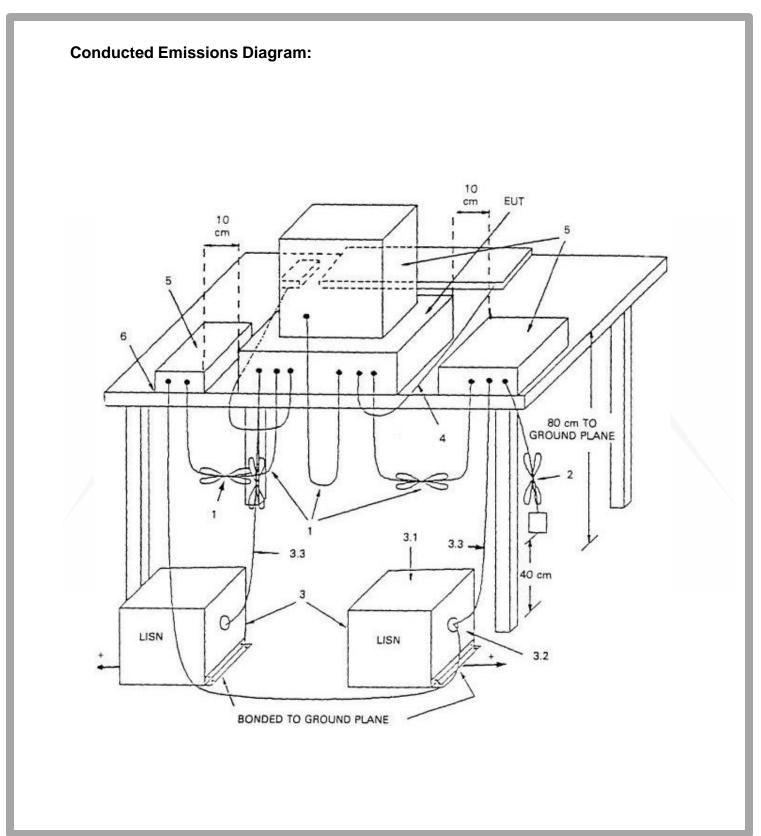
Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB mV:

Measured Level	+	Transducer & Cable Loss factor	_	Corrected Reading	Specification Limit	_	Corrected Reading	=	Delta Specification
(dBμV)		(dB)		(dBµV/m)	(dBµV/m)	1	(dBμV/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

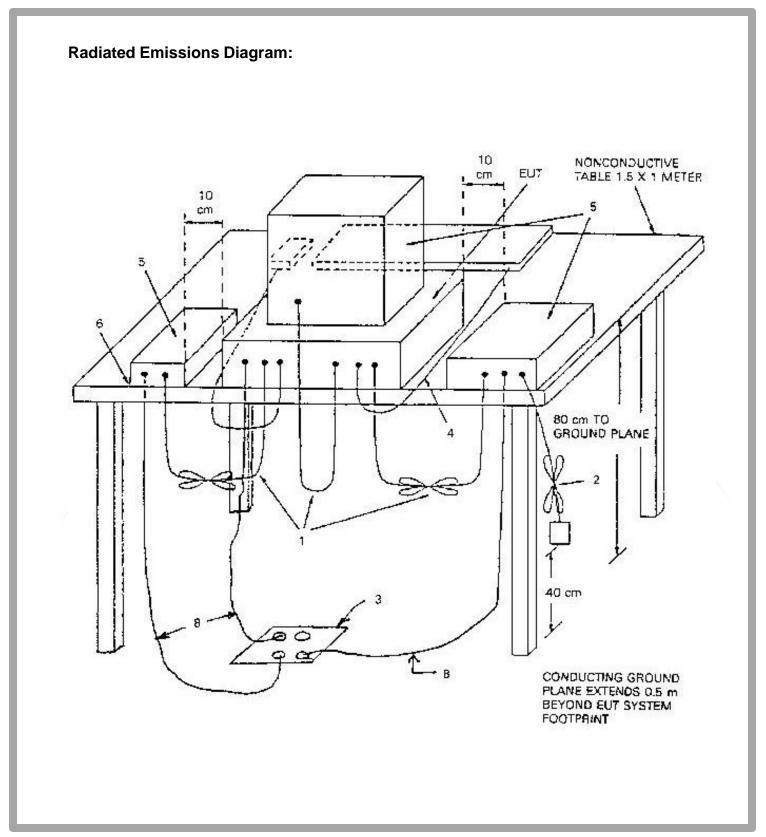
DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."


Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with 50 Ω /50 μ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.


Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.

