

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Amended

FCC/ISED Test Report

Prepared for: Inovonics

Address: 397 S. Taylor Ave.

Louisville, CO, 80027, USA

Product: EN5060

Test Report No: R20200409-20-01B

Approved by:

Nic S. Johnson, NCE

Technical Manager

INARTE Certified EMC Engineer #EMC-003337-NE

DATE: 17 July 2020

Total Pages: 40

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Prepared for: Inovonics

REVISION PAGE

Rev. No.	Date	Description
0	15 July 2020	Original – NJohnson
		Prepared by KVepuri/CFarrington/FLane
Α	17 July 2020	Updated to include conducted power values calculated from EIRP
		and antenna gain.
		Includes NCEE Labs report R20200409-20-01 and its amendment in fullNJ
A	27 August 2020	Deleted Note 4 on page 15 because it was irrelevant. Page 16, test procedures, item (a) was updated to include highest frequency measured. Added EUT firmware to Section 2.1.
		Includes NCEE Labs report R20200409-20-01 and its amendment in fullNJ

Lincoln, NE 68521 Page 2 of 40

Report Number:

R20200409-20-01

Rev

В

Prepared for:

Inovonics

CONTENTS

Revi	ision Pa	ge	2
1.0	Sun	nmary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	5
3.0	Lab	oratory and General Test Description	6
	3.1	Laboratory description	6
	3.2	Test personnel	6
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	ults	9
	4.1	Output Power	11
	4.2	Power Spectral Density	12
	4.3	Bandwidth	13
	4.4	Duty Cycle	14
	4.5	Radiated emissions	15
	4.6	Band edges	20
	4.7	Conducted AC Mains Emissions	21
Арр	endix A	: Sample Calculation	24
Арр	endix B	- Measurement Uncertainty	26
Арр	endix C	– Graphs and Tables	27
RFP	ORT F	JD.	40

Report Number:	R20200409-20-01	Rev	В
Prepared for:	Inovonics		

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section (Please see the checked box below for the rule part used):

FCC Part 15.247 ⊠

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

APPLIED STANDARDS AND REGULATIONS						
Standard Section	Test Type	Result				
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass				
FCC Part 15.247(b)(3) RSS-247 Issue 2 Section 5.2	Peak output power	Pass				
FCC Part 15.247(a)(2) RSS-247 Issue 2 Section 5.2	Bandwidth	Pass				
FCC Part 15.209 RSS-Gen Issue 4, Section 7.1	Receiver Radiated Emissions	Pass				
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 4, Section 8.9	Transmitter Radiated Emissions	Pass				
FCC Part 15.247(e) RSS-247 Issue 2 Section 5.2	Power Spectral Density	Pass				
FCC Part 15.209, 15.247(d) RSS-247 Issue 2 Section 11.13	Band Edge Measurement	Pass				
FCC Part 15.207 RSS-Gen Issue 4, Section 7.1	Conducted Emissions	Pass				

See Section 4 for details on the test methods used for each test.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 4 of 40

Report Number: R20200409-20-01		Rev	В
Prepared for:	Inovonics		

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	EN5060
EUT Received	30 June 2020
EUT Tested	30 June 2020- 1 July 2020
Serial No.	4 (84: 2E:14: C6: 6D: 43 1E 3A A0)
Operating Band	2400 – 2483.5 MHz
Device Type	☑ GMSK ☐ GFSK ☐ BT BR ☐ BT EDR 2MB ☐ BT EDR 3MB ☐ 802.11x
Voltage	120 VAC / 60 Hz
EUT F/W	190-00031-01

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For Bluetooth Transmissions:

Channel	Frequency
Low	2402 MHz
Mid	2440 MHz
High	2480 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

Page 5 of 40

Report Number:	R20200409-20-01	Rev	В
Prepared for:	Inovonics		

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01
FCC Accredited Test Site Designation No: US1060
Industry Canada Test Site Registration No: 4294A-1
NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of 35 \pm 4% Temperature of 22 \pm 3° Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL TITLE		ROLE
1	Nic Johnson Technical Manager		Review/editing
2	2 Karthik Vepuri Test Engineer		Testing and report
3 Caleb Farrington Test Engineer		Test Engineer	Testing and report
4	4 Fox Lane Test Engineer		Testing and report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 6 of 40

Report Number: R20200409-20-01 Rev B

Prepared for: | Inovonics

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer	N9038A	MY59050109	April 23, 2019	April 23, 2021
Keysight EXA Signal Analyzer	N9010A	MY56070862	December 14, 2018	December 14, 2020
SunAR RF Motion	JB1	A091418	March 6, 2020	March 6, 2021
EMCO Horn Antenna	3115	6415	March 16, 2020	March 16, 2022
EMCO Horn Antenna	3116	2576	March 9, 2020	March 9, 2022
Rohde & Schwarz LISN	ESH3-Z5	836679/010	July 25, 2019	July 25, 2020
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	April 14, 2020	April 14, 2022
Agilent Preamplifier*	87405A	3950M00669	April 14, 2020	April 14, 2022
Trilithic High Pass Filter*	6HC330	23042	April 14, 2020	April 14, 2022
MiniCircuits High Pass Filter*	VHF-1320+	15542	April 14, 2020	April 14, 2022
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 14, 2020	April 14, 2022
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	April 14, 2020	April 14, 2022
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	April 14, 2020	April 14, 2022
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	April 14, 2020	April 14, 2022
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	April 14, 2020	April 14, 2022
N connector bulkhead (control room)*	PE9128	NCEEBH2	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA

^{*}Internal Characterization

Notes: All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 7 of 40

ncee. Report Number		R20200409-20-01	Rev	В
labs	Prepared for:	Inovonics		

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

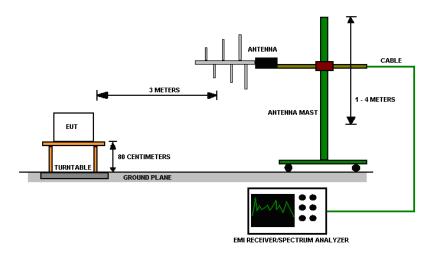


Figure 2 - Radiated Emissions Test Setup

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Report Number: R20200409-20-01 Rev B

Prepared for:

Inovonics

4.0 RESULTS

	DTS Radio Measurements- Summary Table						
CHANNEL	Transmitter	Occupied Bandwidth (kHz)	6 dB Bandwidth (kHz)	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	PSD (dBm)	RESULT
Low	BLE	1050.600000	678.20	6.733	4.713	-8.317	PASS
Mid	BLE	1052.900000	699.00	9.398	8.706	-5.590	PASS
High	BLE	1053.800000	695.90	8.572	7.198	-6.274	PASS
Occupied Bandy	Occupied Bandwidth = N/A; 6 dB Bandwidth Limit = 500 kHz				Limit = 30 dBm;	PSD Limit = 8 d	Bm

Unrestricted Band-Edge

CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBm)	Relative Fundamental (dBm)	Delta (dB)	Min Delta (dB)	Result
Low	BLE	2400.000000	-87.86	-36.93	50.93	20.00	PASS
High	BLE	2483.500000	-90.02	-35.05	54.97	20.00	PASS

Restricted Band-Edge

CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result
Low	BLE	2388.000000	49.80	Peak	73.98	24.18	PASS
High	BLE	2483.500000	65.89	Peak	73.98	8.09	PASS
Low	BLE	2388.000000	29.80	Average	53.98	24.18	PASS
High	BLE	2483.500000	45.89	Average	53.98	8.09	PASS

^{*}Limits from FCC Part 15.209. Duty cycle correction from section 4.4 was applied to peak level to determine average level.

Conducted output power (dBm) = EIRP – antenna gain

PSD (dBm) = EIRPSD - antenna gain

Antenna gain = 3.5 dBi

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 9 of 40

Report Number:	eport Number: R20200409-20-01			
Prepared for:	Inovonics			

Corrections and Raw Values for EIRP										
Channel	A F (dB) Cable		Uncorrected PEAK OUTPUT POWER (dBm)	Uncorrected PSD (dBm)						
Low	28.39	5.96	-35.887	-50.937						
Mid	28.32	5.90	-33.092	-48.08						
High	28.39	5.98	-34.068	-48.914						

EIRP (dBm) at 3 m test distance = Uncorrected Level (dBm) - 95.23 +107+Antenna Factor+ Cable

Report Number:	R20200409-20-01	Rev	В
Prenared for:	Inovonics		

4.1 OUTPUT POWER

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum allowed peak output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the table under Section 4.0

Page 11 of 40

Report Number:	R20200409-20-01	Rev	В
Prepared for:	Inovonics		

4.2 POWER SPECTRAL DENSITY

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 4. All the Power Spectral Density (PSD) plots can be found in the Appendix C.
- 5. All the measurements were found to be compliant.
- 6. The measurements are reported on the graph.

Page 12 of 40

Report Number:	R20200409-20-01	Rev	В
Prepared for:	Inovonics		

4.3 BANDWIDTH

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.

Lincoln, NE 68521 Page 13 of 40

4.4 DUTY CYCLE

Duty Cycle Correction									
Test Channel	ON Time (ms)	Period (ms)	Correction (dB)	Maximum Usable Correction (dB)					
High	3.20	100	-29.90	-20.00					

^{*}Note that manufacturer has declared this to be the highest possible duty cycle in normal operation. Measurements were made when the radio was advertising and the worst-case values were reported.

See Annex C for Plots.

Prepared for: | Inovonics

4.5 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

Test procedures:

- a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1 GHz up to 25 GHz, to include the 10th harmonic.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

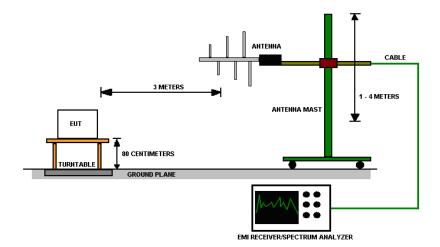


Figure 3 - Radiated Emissions Test Setup

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

Page 17 of 40

Test results:

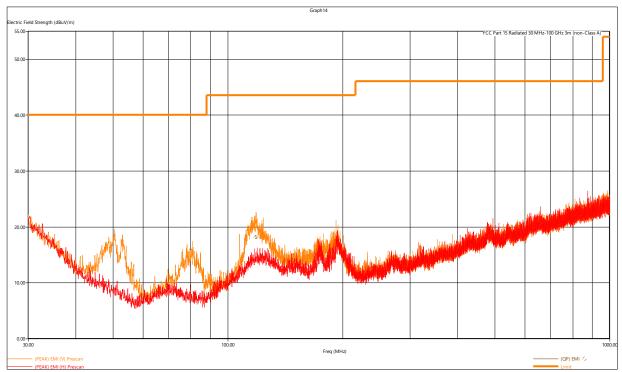


Figure 4 - Radiated Emissions Plot, Receive

*Measured with a preamp to lower the noise floor

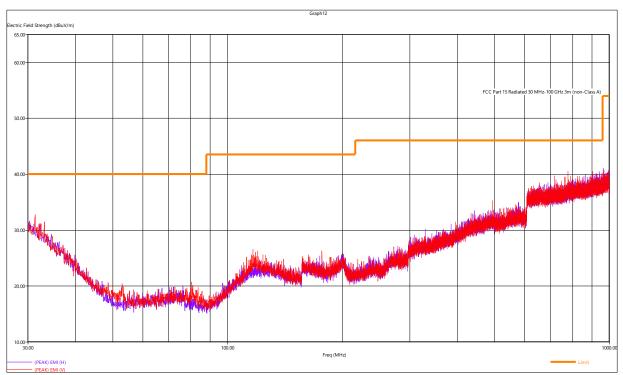


Figure 5 - Radiated Emissions Plot, Low Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Quasi-Peak Measurements, GMSK										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation		
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
118.59696	18.21	43.52	25.31	108	199	V	Re	eceive		

The EUT was maximized in all 3 orthogonal axis. If the measurements were found to be 10 dB below the limit they were not reported.

	Peak Measurements, GMSK										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation			
MHz	dBµV/m	dBµV/m	dB	cm.	deg.						
2402.130000	104.73	NA	NA	185	311	V	Low	GMSK			
2440.140000	107.61	NA	NA	189	332	٧	Mid	GMSK			
2479.114000	106.75	NA	NA	150	356	٧	High	GMSK			
4959.598000	53.79	73.98	20.19	206	333	Н	High	GMSK			
7440.426000	51.26	73.98	22.72	207	281	Н	High	GMSK			
4804.756000	57.76	73.98	16.22	202	331	Н	Low	GMSK			
4880.328000	51.72	73.98	22.26	204	330	Н	Mid	GMSK			
7319.562000	51.03	73.98	22.95	217	5	Н	Mid	GMSK			

	Average Measurements, GMSK										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation			
MHz	dBµV/m	dBμV/m	dB	cm.	deg.						
2402.130000	84.73	NA	NA	185	311	V	Low	GMSK			
2440.140000	87.61	NA	NA	189	332	V	Mid	GMSK			
2479.114000	86.75	NA	NA	150	356	V	High	GMSK			
4959.598000	33.79	53.98	20.19	206	333	Н	High	GMSK			
7440.426000	31.26	53.98	22.72	207	281	Н	High	GMSK			
4804.756000	37.76	53.98	16.22	202	331	Н	Low	GMSK			
4880.328000	31.72	53.98	22.26	204	330	Н	Mid	GMSK			
7319.562000	31.03	53.98	22.95	217	5	Н	Mid	GMSK			

Lincoln, NE 68521

Report Number:	R20200409-20-01	Rev	В
Prenared for:	Inovonics		

4.6 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

For emissions outside of the allowed band of operation (2400.0MHz – 2480.0MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in the Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

Page 20 of 40

Report Number:	R20200409-20-01	Rev	В
Dropared for	Inquanics		

Prepared for: | Inovonics

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 40

 Report Number:
 R20200409-20-01
 Rev
 B

 Prepared for:
 Inovonics

Test Results:

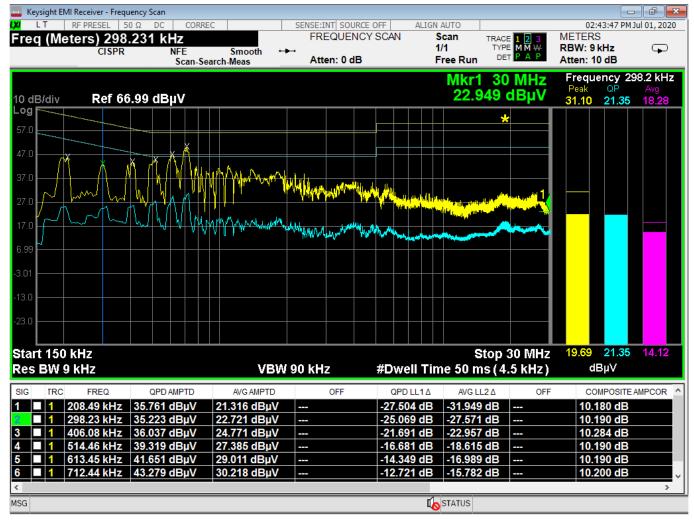


Figure 6 - Conducted Emissions Plot, Line

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 40

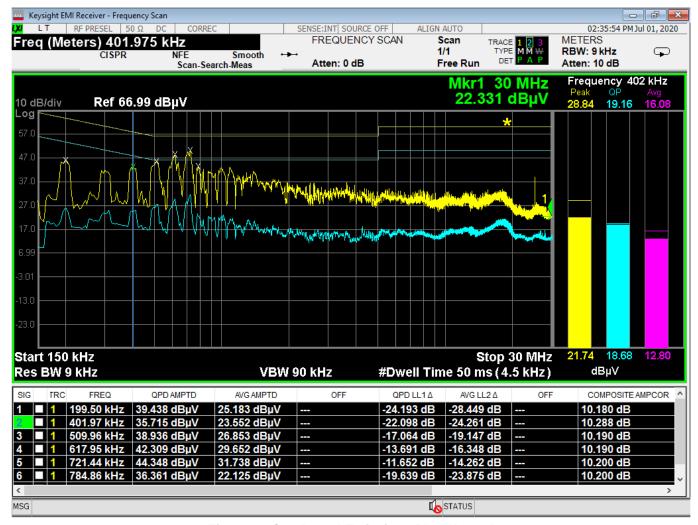


Figure 7 - Conducted Emissions Plot, Neutral

Page 23 of 40

Report Number:	R20200409-20-01	Rev	В

Prepared for: Inovonics

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 dB\mu V/m$$

The 48.1 dB_μV/m value can be mathematically converted to its corresponding level in μV/m.

Level in $\mu V/m = Common Antilogarithm [(48.1 dB<math>\mu V/m)/20$]= 254.1 $\mu V/m$

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 24 of 40

Report Number:	R20200409-20-01	Rev	В
Prepared for:	Inovonics	•	

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = $10^{Power} (dBm)/10 / 1000$

Voltage $(dB\mu V)$ = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

Lincoln, NE 68521 Page 25 of 40

Report Number:	R20200409-20-01	Rev	В
Prepared for:	Inovonics		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

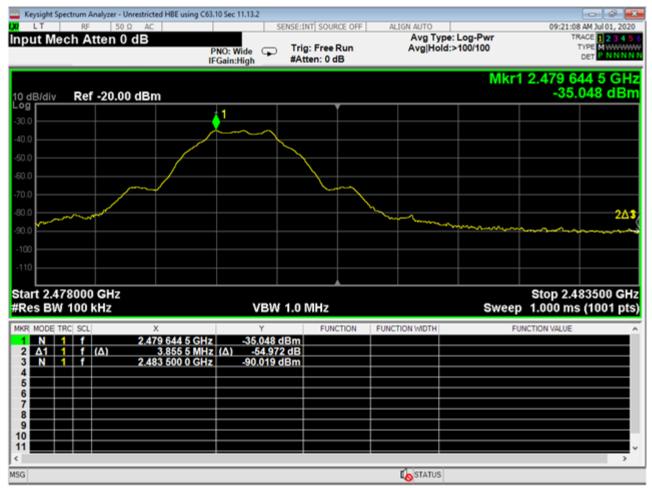
Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 40

Report Number: R20200409-20-01

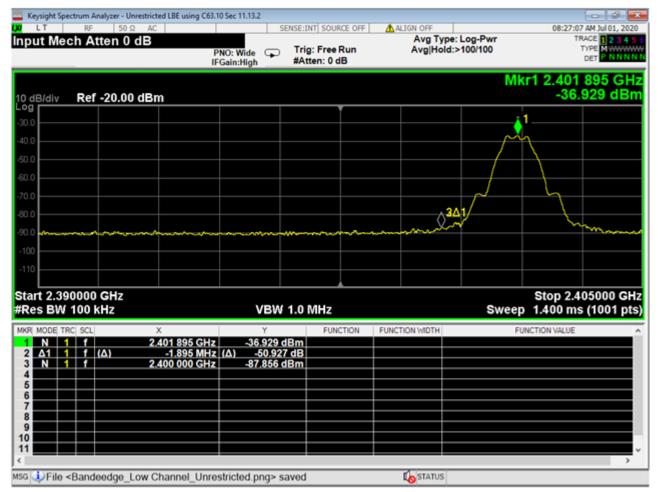

0-01

.

Rev B

Prepared for: | Inovonics

APPENDIX C - GRAPHS AND TABLES


Bandeedge High Channel Unrestricted

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

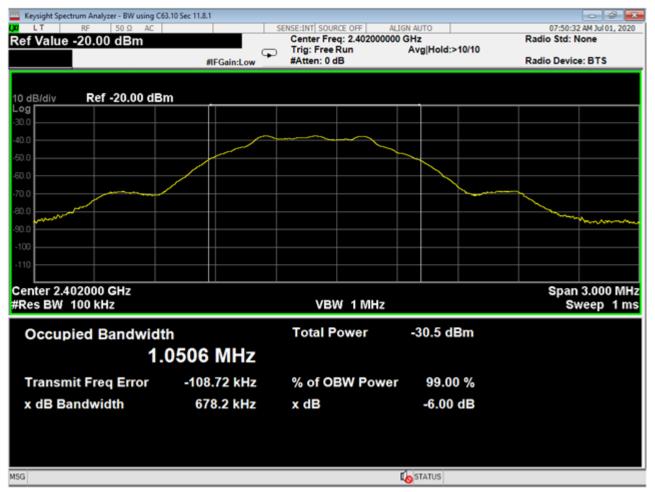
Page 27 of 40

Prepared for: | Inovonics

Bandeedge_Low Channel_Unrestricted

Page 28 of 40

Prepared for: | Inovonics

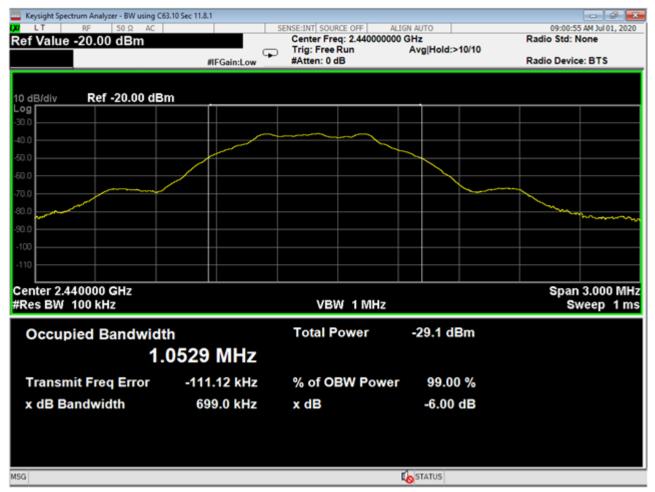

Bandwidth_High Channel

Page 29 of 40

Prepared for:

Inovonics

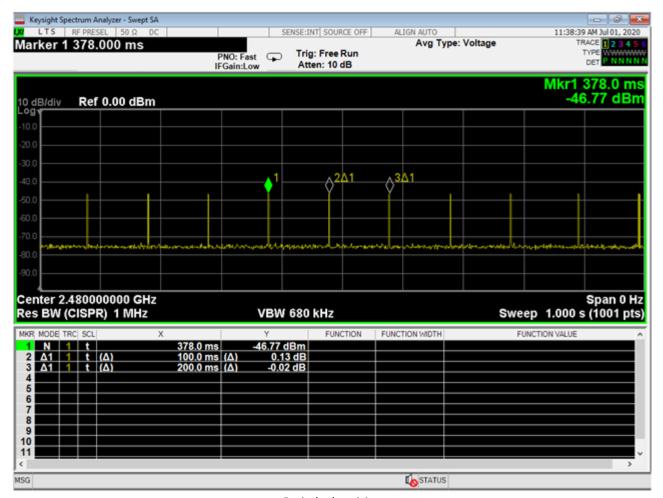
Bandwidth_Low Channel


Page 30 of 40

R20200409-20-01 Report Number: Rev В

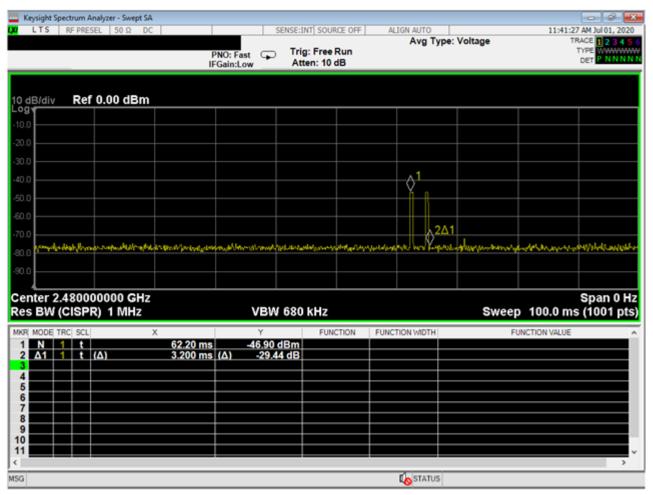
Prepared for:

Inovonics



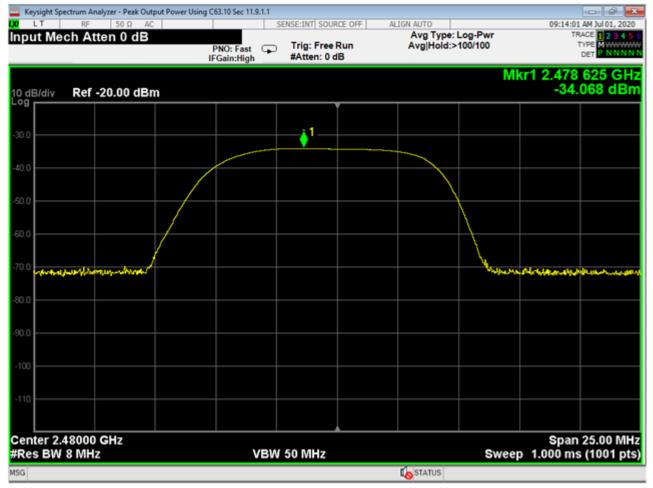
Bandwidth_Mid Channel

Page 31 of 40


Prepared for: Inovonics

Period advertising
*Duty cycle caluculation can be found in section 4.4

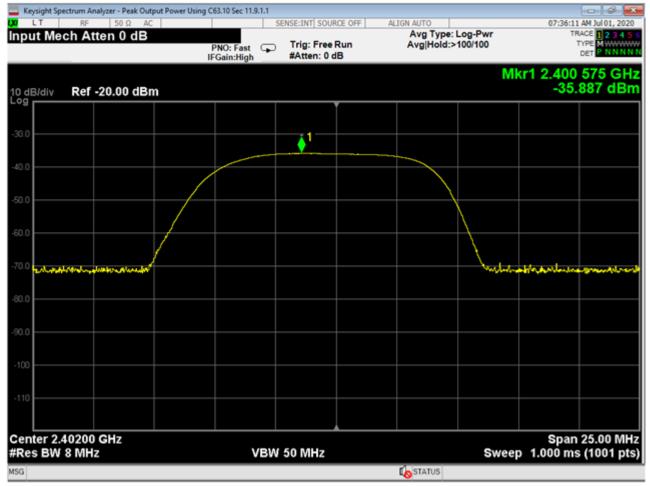
Prepared for: | Inovonics



On Time advertising *Duty cycle caluculation can be found in section 4.4

Page 33 of 40

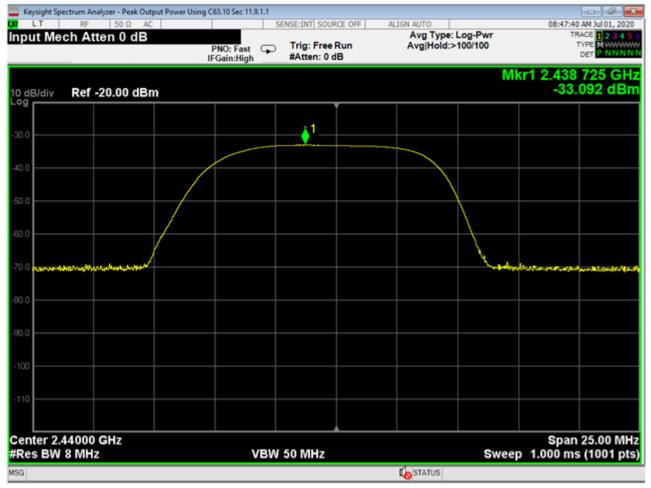
Prepared for: | Inovonics


Output Power_High Channel

Page 34 of 40

^{*}Uncorrected measurement, for corrections refer to summary table under section 4.0

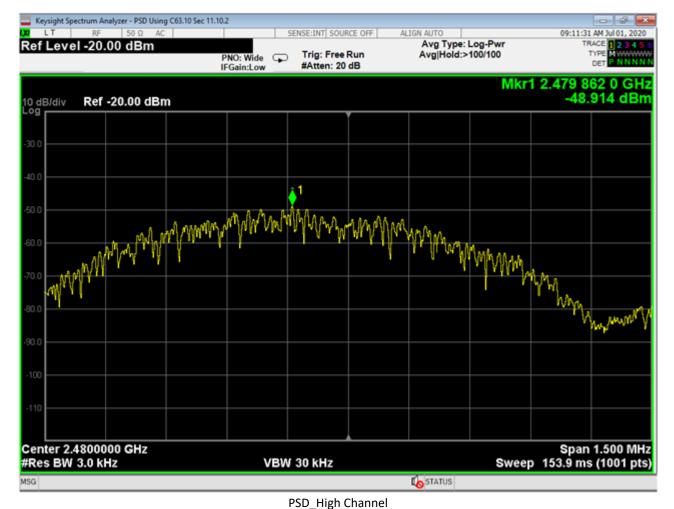
Prepared for: | Inovonics


Output Power_Low Channel

Page 35 of 40

^{*}Uncorrected measurement, for corrections refer to summary table under section 4.0

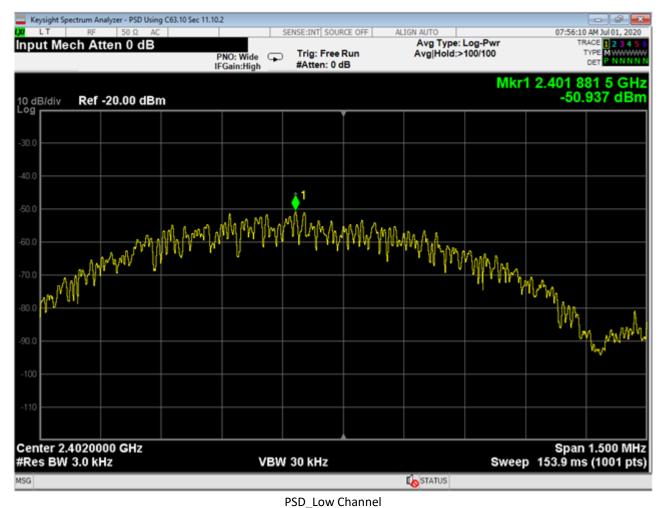
Prepared for: | Inovonics



Output Power_Mid Channel

*Uncorrected measurement, for corrections refer to summary table under section 4.0

Prepared for: | Inovonics



*Uncorrected measurement, for corrections refer to summary table under section 4.0

Page 37 of 40

Prepared for: | Inovonics

*Uncorrected measurement, for corrections refer to summary table under section 4.0

Prepared for: | Inovonics

*Uncorrected measurement, for corrections refer to summary table under section 4.0

Page 39 of 40

 Report Number:
 R20200409-20-01
 Rev
 B

 Prepared for:
 Inovonics

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 40 of 40