

8618 Commerce Court Burnaby, BC V5A 4N6, Canada PH: 1 604.420.7760 FAX: 1 604.420.7730 EMAIL: BBALSTON@DALIWIRELESS.COM

INDUSTRY CANADA RSS-131/133 AND FCC PARTS 2, 24, 27 TEST REPORT

Dali Wireless, Inc.
8618 Commerce Court, Burnaby, British Columbia, V5A 4N6, Canada
HCOT43DPAN2
10323A-T43DPAN2
t43-DPA-N2N
1.9-2.1 GHz Dual-Band Outdoor Distributed Remote Unit
February 23 rd , 2012
March 3 rd to April 13 th , 2012
Bruce Balston
Daryl Meerkerk
T43-DPA-N2N.1.0
Compliant

This document contains information proprietary to Dali Wireless, Inc., to its subsidiaries, or to a third party to which Dali Wireless, Inc. may have a legal obligation to protect such information from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information contained herein for other than the specific purpose for which it was disclosed is expressly prohibited, except as Dali Wireless, Inc. may otherwise agree to in writing.

Revision History

Revision	Date	Reason For Change	Reviewed By	Author(s)
0.1	Dec 23, 2011	Initial release		B. Balston
0.2	Dec 23, 2011	Reformatted and added notes.		D. Meerkerk
0.3	Dec.24, 2011	Address typo.		B. Balston
0.4	Mar.31, 2012	Creation template for 8 mod-s		A. Moldavanov
0.5	Apr.8, 2012	Creation template for 10 mod-s		A. Moldavanov
0.6	Apr.10, 2012	Created template for appendix		A. Moldavanov
0.7	Apr.12, 2012	Created template for title		A. Moldavanov
0.8	Apr.13, 2012	Data tables are splitted		A. Moldavanov
0.9	Apr.16, 2012	Template for Part 2 added		A. Moldavanov
0.10	May 3, 2012	Pre-final Edition		A. Moldavanov
1.0	May 3, 2012	Initial Release		A. Moldavanov
1.1	May 25, 2012	Merging of PCS & AWS reports		A. Moldavanov

Table of Contents

Revi	sion Des	cription	2
Tabl	e of Con	lenis d Abbuminations	3 1
Acra	onyms an	<i>a Abbreviations</i>	4
1.0	OV	ERVIEW	5
	1.1	Scope	5
	1.2	Attestation Statement	5
	1.3	Report Summary	5
	1.4	Test Environment	6
	1.5	Test Setup	6
	1.6	Device Under Test Information	6
	1.7	Measurement Uncertainty	7
	1.8	Equipment List	8
	1.9	Test Procedure	8
	1.10	Operational Description	11
	1.11	Measurement Configuration	12
	Table 1	. PCS DL Measurement Matrix	12
	Table 2	DL Modulation Waveforms	12
2.0	OU	FPUT POWER	14
	21	Mathadalam	14
	$\frac{2.1}{2.2}$	Melhouology	14
	2.2	Desults Figures A1 A8	14 11
2.0	2.5		14
3.0			19
	3.1	Methodology	19
	3.2	Results - Figures B1 - B8	19
4.0	CO	NDUCTED SPURIOUS EMISSIONS	23
	41	Methodology	23
	42	Interpretation	24
	4.3	Results – Figures C1 – C3.	24
5.0	BAI	ND EDGE	28
	5 1	Mathadalam	28
	5.2	Degulta Figures D1 D6	20
	J.2		29
6.0	FIE	LD STRENGTH OF SPURIOUS RADIATION	36
	6.1	Methodology	36
	6.2	Interpretation	36
	6.3	Results – Figure E1-2	36
7.0	FRI	EQUENCY STABILITY	40
	71	Methodology	40
	7.1	Results	4 0 <u>4</u> 0
	1.2	AC 50005	τυ

ACRONYMS AND ABBREVIATIONS

ACLR	Adjacent Channel Leakage Ratio
ACPR	Adjacent Channel Power Ratio
BTS	Base Transceiver Station
CDMA	Code Division Multiple Access
CW	Continuous Wave
dB	deciBel (logarithmic ratio)
dBc	deciBels related to the RF carrier amplitude
dBm	deciBels related to 1 Mw
DL	Downlink
EDGE	Enhanced Data rates for Global (GSM) Evolution
EIRP	Effective Isotropic Radiated Power
E-UTRA	Enhanced UMTS Terrestrial Radio Access
FH	Frequency High (Top edge of band)
FL	Frequency Low (Bottom edge of band)
FM	Frequency Mid (Center of band)
GSM	Groupe Spéciale Mobile, Global System for Mobile communications
IF	Intermediate Frequency
IMD	Inter-Modulation Distortion
kHz	kilo Hertz
LTE	Long Term Evolution
MHz	Mega Hertz
NF	Noise Figure
PCS	Personal Communications Service
RF	Radio Frequency
RX	Receiver
TX	Transmit
UL	Uplink
UMTS	Universal Mobile Telecommunications System
WCDMA	Wideband Code Division Multiple Access
1xEVDO	CDMA Evolution Data Optimized

1.0 <u>Overview</u>

1.1 Scope

The purpose of this document is to present test results in the context of a full qualification test report for FCC Part 2, 24, 27 as applicable to the equipment under test. The scope of this document is limited to the tests listed below in the downlink mode.

1.2 Attestation Statement

The device under test does fulfill the general approval requirements as identified in this test report.

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report. All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025:2005 requirements.

I attest that the necessary measurements were made, under my supervision, at DALI WIRELESS, INC. located at 8618 Commerce Court, Burnaby, British Columbia, V5A 4N6, Canada.

Authorized Signatory:

Signature: Bruce Balston Function: Test Engineer Date: May 7, 2012

1.3	Report	Summarv
1.0	itopoit	Gammary

Disclaimer	The test results relate only to the items tested.
Report Purpose	To demonstrate the DUT compliance with FCC Parts 2, 24, 27 and Industry Canada RS-131, 133 requirements for a dual band digital repeater.

	VIRELES S
Applicable Rule Parts	FCC CFR 47 Parts 2, 24, 27; RSS-131, 133
Test Procedures	ANSI/TIA-603-C: 2004

1.4 **Test Environment**

Test Facilities	Tests were performed by Dali Wireless Inc. located at 8618 Commerce Court, Burnaby, BC, V5A 4N6, Canada. Radiated spurious emission test was performed by QAI located at #16 - 211 Schoolhouse Street, Coquitlam, BC, V3K 4X9, Canada.
Test Conditions	Temperature: 25° C Relative Humidity: 60% Atmospheric Pressure: 98.1 kPa

1.5 Test Setup

Deviation to the rules	There was no deviation from the test standards.
Modification to the DUT	No modification was made to the DUT.
Test Exercise	The DUT was placed in continuous transmit mode of operation.

1.6 **Device Under Test Information**

Manufactured by	Dali Wireless Inc.
DUT Description	1.9-2.1 GHz Dual-Band Bi-directional Distributed Antenna System/Repeater.

FCC ID	HCOT43DPAN2
IC Label	10323A-T43DPAN2
Model Name	t43-DPA-N2N
Operating Frequency	Downlink 1930 – 1995 MHz. Downlink 2110 – 2155 MHz.
Emission Designators	F9W, F9X, DXW, D7W, GXW, G7W
Modulations	WCDMA, CDMA2000, LTE5M
User Power Range and Control	There are NO user power controls
Test Item	Production
DC Voltage and Current into final amplifier	Powered 115 or 230 VAC
Type of Equipment	Fixed

1.7 Measurement Uncertainty

Radio Frequency	±1 ppm
Total RF Power: Conducted	±1 dB
RF Power Density: Conducted	±2.75 dB
Spurious Emissions: Conducted	±3 dB

All Emissions: Radiated	±3.5 dB
Temperature	±1ºC
Humidity	±5 %
DC and Low Frequency Voltages	±3 %

1.8 Equipment List

Description	Manufacturer	Model	Serial Number	Cal Due Date
3 meter Semi- Anechoic Chamber	ETS Lindgren	S201	1030	N/R
Turntable	ETS Lindgren	2165	00043677	N/R
Mast	ETS Lindgren	2165	00077487	N/R
Antenna	Sunol Sciences	JB3	A120106	06-Jul-2013
EMI Receiver	Rohde & Schwarz	ESU40	100011	29-Mar-2013
Spectrum Analyzer	Agilent	MXA-N9020A	ATO 71849 MY50140401	CAL 10-26-2013
Power Meter	Agilent	U2000A	MY52010031	CAL 12-1- 2012
Signal Generator	Agilent	MXG-N5182A	MY50140401	CAL 7-19-2012

1.9 Test Procedure

General

The t43 remote, is connected to the tHost in a manner consistent with a typical installation. A digital modulation signal generator is connected to the TX_IN port of the appropriate band of the tHost and spectrum analyzer is connected to the appropriate downlink antenna output through an attenuator, nominally 40 dB for the band under consideration.

The PCS (1930-1995 MHz) and AWS (2110-2155 MHz) band was investigated. Measurements were performed at eight modulation types for the mid, lowest and highest frequency for declared bandwidths. The modulation types are described in detail in Table 1.

Modulation	#	Notation	Frequency (MHz)
	Carriers		
WCDMA	1	DL1C-	1932.4, 1962.5, 1992.6
		WCDMA	
WCDMA	2	DL2C-	1934.9, 1962.5, 1990.1
		WCDMA	
WCDMA	3	DL3C-	1937.4, 1962.5, 1982.6
		WCDMA	
WCDMA	4	DL4C-	1939.9, 1962.5, 1985.1
		WCDMA	
CDMA2000	1	F1C-C2K	1931.25, 1962.5, 1988.75
CDMA2000	2	F2C-C2K	1932.50, 1962.5, 1987.50
CDMA2000	3	F3C-C2K	1933.75, 1962.5, 1986.25
LTE5M	1	LTE5M	1932.6, 1962.5, 1987.5

Modulation types, frequencies and appropriate notations.

RF Power Output

.

RF power is measured by connecting a 50-ohm, resistive wattmeter to the RF output connector. With a nominal voltage and the amplifier properly adjusted the RF output is measured.

Band-Edges Compliance

RF power is measured by connecting a 50-ohm, resistive wattmeter to the RF output. The required measurement resolution bandwidth (RBW) is 1% of the emission bandwidth. Measurements were made at an RBW sufficient to show detail at edge of band. Therefore data presented must be corrected to the measurement bandwidth using the formula below. The data calculated according to the formula below should be added to the reading in the graph for the modulation under consideration.

Corr(dB) = 20*log (measRBW / actualRBW)

Band-Edges Test Setup Diagram

Spurious Emissions at Antenna Terminals

The procedure used was ANSI/TIA-603-C: 2004. The spectrum was scanned from 9 kHz to at least the tenth harmonic of the fundamental using a spectrum analyzer. Data on the following page shows the level of conducted spurious responses. For digital modulation, the carrier is modulated to its maximum extent. The measurements were made in accordance with standard ANSI/TIA-603-C: 2004. The maximum output power was set for each test.

Conducted Spurious Test Setup Diagram

Radiated Spurious Emissions

The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. All digital modulation signals were used to perform this test. This test was conducted per ANSI/TIA-603-C: 2004 using the substitution method.

Radiated Spurious Test Setup Diagram

Equipment placed 80 cm above ground on a rotating table platform.

Frequency Stability

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1055.

Frequency Stability Test Setup Diagram

1.10 Operational Description

The product under test is the Dali *t*43, covering PCS (1930-1995 MHz) and AWS (2110-2155 MHz) band with average output (downlink) power of 20W per band. The Dali *t*43TM is located close to the antenna, and hence helps reduce coaxial feed line RF losses, leading to increased system efficiency, reduced cooling requirements and small physical size. The product is connected to the *tHost*TM via a fiber optic link, and can be installed 15km to 40km away from the *tHost*TM. It contains two optical interfaces, supported by independent optical transceivers, enabling daisy-chain connection of multiple *t*43TMs to reduce total fiber deployment cost and enhance architecture flexibility.

The $t43^{\text{TM}}$ Monitoring & Control function can be performed locally using an Ethernet interface, or remotely via the $t\text{Host}^{\text{TM}}$ when M&C signals are communicated over the fiber optic link. The product remote unit enclosure is sealed to the environment. Heat generated by the electronic components is conducted to a rear heat sink and to the front lid. To increase efficiency of the heat sink, two external, long life, environmentally sealed fans are provided on

the top of the unit. Fans are controlled and monitored by remote unit main processor. In a case of fan failure alarm will be generated and reported through the GUI.

1.11 Measurement Configuration

Modulation	#	Notation	Frequency (MHz)
	Carriers		
WCDMA	1	DL1C-	1932.4, 1962.5, 1992.6
		WCDMA	
WCDMA	2	DL2C-	1934.9, 1962.5, 1990.1
		WCDMA	
WCDMA	3	DL3C-	1937.4, 1962.5, 1982.6
		WCDMA	
WCDMA	4	DL4C-	1939.9, 1962.5, 1985.1
		WCDMA	
CDMA2000	1	F1C-C2K	1931.25, 1962.5, 1988.75
CDMA2000	2	F2C-C2K	1932.50, 1962.5, 1987.50
CDMA2000	3	F3C-C2K	1933.75, 1962.5, 1986.25
LTE5M	1	LTE5M	1932.6, 1962.5, 1987.5

Table 1. PCS DL Measurement Matrix

Table 2. AWS DL Measurement Matrix

Modulation	# Carriers	Carrier	Frequency (MHz)
WCDMA	1	DL1C-	2112.4, 2132.5, 2152.6
		WCDMA	
WCDMA	2	DL2C-	2114.9, 2132.5, 2150.1
		WCDMA	
WCDMA	3	DL3C-	2117.9, 2132.5, 2147.6
		WCDMA	
WCDMA	4	DL4C-	2119.9, 2132.5, 2145.1
		WCDMA	
CDMA2000	1	F1C-C2K	2111.25 2132.5, 2153.75
CDMA2000	2		2111.30, 2132.5, 2152.50
CDMA2000	3	F3C-C2K	2112.50 2132.5, 2151.25
LTE5M	1	LTE5M	2112.6 2132.5, 2152.5

Table 3. DL Modulation Waveforms

Notation	Waveform	Bandwidth (MHz)
DL1C-WCDMA	3GPP TS25	
DL2C-WCDMA	Basic W-CDMA/HSPA DL Rel	5 10 15 20
DL3C-WCDMA	7	5, 10, 15, 20
DL4C-WCDMA	Test Model 1 + 64 DPCH	

		••••••••••••••••••••••••••••••••••••••
F1C-C2K	3GPP2	
F2C-C2K	CDMA2000 Forward	1.25, 2.5, 3.75
F3C-C2K	Forward 9 Channel	
	3GPP TS36	
LTE5M	Basic LTE FDD Downlink	5
	(2010-06)	5
	Full filled QPSK 5M (25RB)	

2.0 Output Power

2.1 Methodology

Measurements were performed at eight modulations (F1C-C2K, F2C-C2K, F3C-C2K, DL1C-WCDMA, DL2C-WCDMA, DL3C-WCDMA, DL4C-WCDMA, LTE5M for the mid, lowest and highest frequency within the PCS (1930-1995 MHz) and AWS (2100-2155 MHz) band.

. Worst-case data is shown in section 2.3. Figures A1-8 (PCS band) and A9-16 (AWS band).

A brief summary of applicable FCC specifications is listed in the table below.

2.2 Interpretation

Full results for output power measurements are shown in Table 3.

2.3 Results - Figures A1 - A16

The plots below are for reference purposes only. Actual measurements are made using U2000A power meter and shown in Table 3.

PCS band

Fig. A2 DL2C-WCDMA

Fig. A3. DL3C-WCDMA

10 KU IU 50.0 A	All GalerLow	Center Freq: 1.9525 Trig: Free Run #Atten: 22 dB	ALIGNAUTO Avg[Held: 500,500	09:30:51 am/or 27, 2012 Radio Std: W-CDMA Radio Device: 8TS	Frequency
10 dB/div Ref Offset 43.6	dB Bm				
7 00 77 0 77 0 77 0					Center Freq 1.962500000 GHz
47.0		41.9 dBe			CF Step
Center 1.963 GHz #Res BW 240 kHz		VBW 2.4 M	Hz	Span 20 MHz #Sweep 10 ms	2.000000 MHz Auto Men
Channel Power		Powe	r Spectral Den	sity	Freq Offset 0 Hz
43.92 dBn	1 / 15 MHz		32.16 dBm	/MHz	
			2		

Fig. A5. F1C-C2K

Fig. A7 F3C-C2K

Fig. A4. DL4C-WCDMA

Fig. A6. F2C-C2K

Fig. A8 LTE5M

AWS band

Fig. A9. DL1C-WCDMA

Fig. A10. DL2C-WCDMA

Figure A1 – A8 for PCS band, whereas A9 – A16 for AWS band. A1 - Output power for WCDMA modulation at 5MHz bandwidth, A2 - WCDMA modulation at 10MHz bandwidth, A3 - WCDMA modulation at 15MHz bandwidth, A4 - WCDMA modulation at 20MHz bandwidth, A5 – CDMA2000 modulation at 1.25MHz bandwidth, A6 - CDMA2000 modulation at 2.5MHz bandwidth, A7 - CDMA2000 modulation at 3.75MHz bandwidth, A8 – LTE5M modulation at 5MHz bandwidth;

A9 - Output power for WCDMA modulation at 5MHz bandwidth, A10 - WCDMA modulation at 10MHz bandwidth, A11 - WCDMA modulation at 15MHz bandwidth, A12 - WCDMA modulation at 20MHz bandwidth, A13 - CDMA2000 modulation at 1.25MHz bandwidth, A14 - CDMA2000 modulation at 2.5MHz bandwidth, A15 - CDMA2000 modulation at 3.75MHz bandwidth, A16 - LTE5M modulation at 5MHz bandwidth

Conclusion: As the table 3 indicates, the maximum power output value of 44.1 dBm was obtained with WCDMA modulation at 2122.5 MHz bandwidth of 5 MHz (AWS band).

PUS band			
	DL1C-WCDMA mo	dulation	
Frequency, MHz	Output power, dBm	Bandwidth, MHz	Limit, dBm
1942.5	43.6		
1962.5	43.1	5	44.1
1982.5	43.1		
	DL2C-WCDMA mo	dulation	
1942.5	43.7		
1962.5	43.3	10	44.1
1982.5	43.2		
	DL3C-WCDMA mo	dulation	
1942.5	43.7		
1962.5	43.8	15	44.1
1982.5	43.6		
	DL4C-WCDMA mo	dulation	
1942.5	43.2		
1962.5	43.4	20	44.1
1982.5	43.5		
F1C-C2K modulation			
1942.5	43.8		
1962.5	43.9	1.25	44.1
1982.5	43.7		
	F2C-C2K modu	lation	
1942.5	43.8		
1962.5	43.9	2.5	44.1
1982.5	43.7		
	F3C-C2K modu	lation	
1942.5	43.8		
1962.5	43.9	3.75	44.1
1982.5	43.7		
	LTE5M modula	ation	
1942.5	43.8		
1962.5	43.9	5	44.1
1982.5	43.7		

DCS hand

	AWS t	band	
	DL1C-WCDMA mo	dulation	
Frequency, MHz	Output power, dBm	Bandwidth, MHz	Limit, dBm
2122.5	44.1		
2132.5	43.9	5	44.1
2142.5	43.7		
DL2C-WCDMA modulation			
2122.5	44.0		
2132.5	43.8	10	44.1
2142.5	43.6		
DL3C-WCDMA modulation			
2122.5	43.8	15	44.1

2132.5	43.8		
2142.5	43.7		
	DL4C-WCDMA mo	dulation	
2122.5	43.9		
2132.5	43.6	20	44.1
2142.5	43.8		
	F1C-C2K modu	lation	
2122.5	43.7		
2132.5	43.8	1.25	44.1
2142.5	43.6		
F2C-C2K modulation			
2122.5	43.7		
2132.5	43.7	2.5	44.1
2142.5	43.7		
F3C-C2K modulation			
2122.5	43.8		
2132.5	43.9	3.75	44.1
2142.5	43.8		
LTE5M modulation			
2122.5	43.9		
2132.5	43.9	5	44.1
2142.5	43.6		

 Table 3. Output power measurements.

3.0 Occupied Bandwidth

3.1 Methodology

Measurements were performed at eight modulations (F1C-C2K, F2C-C2K, F3C-C2K, DL1C-WCDMA, DL2C-WCDMA, DL3C-WCDMA, DL4C-WCDMA, LTE5M for the mid, lowest and highest frequency within the PCS (1930-1995 MHz) and AWS (2100-2155 MHz) band.

. Worst-case data is shown in the figures in sections 3.2 in Figures B1-8 (PCS band) and B9-16 (AWS band).

A brief summary of applicable FCC specifications is listed in the table below.

2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured

PCS band

The plots below are for reference purposes only. Full results for occupied bandwidth measurements are shown in Table 4.

3.2 Results - Figures B1 - B16

Fig. B2. DL2C-WCDMA

Fig. B4. DL4C-WCDMA

Fig. B7. F3C-C2K

Fig. B9. DL1C-WCDMA

Fig. B11. DL3C-WCDMA

Fig. B8. LTE5M

Fig. B10. DL2C-WCDMA

Fig. B12. DL4C-WCDMA

Figure B1 – occupied bandwidth for WCDMA modulation at 5MHz bandwidth, B2 - WCDMA modulation at 10MHz bandwidth, B3 - WCDMA modulation at 15MHz bandwidth, B4 - WCDMA modulation at 20MHz bandwidth, B5 – CDMA2000 modulation at 1.25MHz bandwidth, B6 - CDMA2000 modulation at 2.5MHz bandwidth, B7 - CDMA2000 modulation at 3.75MHz bandwidth, B8 – LTE5M modulation at 5MHz bandwidth. B10 - WCDMA modulation at 10MHz bandwidth, B11 - WCDMA modulation at 15MHz bandwidth, B12 - WCDMA modulation at 20MHz bandwidth, B13 – CDMA2000 modulation at 1.25MHz bandwidth, B14 - MCDMA modulation at 2.5MHz bandwidth, B15 - CDMA2000 modulation at 3.75MHz bandwidth, B16 – LTE5M modulation at 5MHz bandwidth, B15 - CDMA2000 modulation at 3.75MHz bandwidth, B16 – LTE5M modulation at 5MHz bandwidth, B15 - CDMA2000 modulation at 3.75MHz bandwidth, B16 – LTE5M modulation at 5MHz bandwidth

Conclusion: As the table 4 indicates, the maximum occupied bandwidth value of 18,893 MHz (PCS band) was obtained with WCDMA modulation (bandwidth of 20 MHz).

PCS band		
Modulation	Occupied Bandwidth, MHz	
DL1C-WCDMA	4.1721	
DL2C-WCDMA	9.0345	
DL3C-WCDMA	13.939	
DL4C-WCDMA	18.893	
F1C-C2K	1.2352	
F2C-C2K	2.4564	
F3C-C2K	3.6865	
LTE5M	4.4735	

	5 Juliu
Modulation	Occupied Bandwidth, MHz
DL1C-WCDMA	4.1715
DL2C-WCDMA	9.0473
DL3C-WCDMA	13.948
DL4C-WCDMA	18.846
F1C-C2K	1.2351
F2C-C2K	2.4558
F3C-C2K	3.6881
LTE5M	4.4733

AWS band

 Table 4. Occupied bandwidth measurements.

4.0 Conducted Spurious Emissions

4.1 Methodology

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1051.

The data is shown in the figures C1 - C3 (PCS band) and C4 - C6 (AWS band) in section 4.3.

For each plot lowest, mid, and highest frequency were used and data accumulated for each plot in a max hold/pause sequence. Data was collected for all eight modulations, worst-case is shown.

The required measurement resolution bandwidth (RBW) is 1MHz. Measurements were made at other RBW. For example, if 100kHz is used the data presented must be corrected to the measurement bandwidth using the formula

Corr(dB) = 10*log (measRBW / 100kHz)

In this case, a correction of 10.0dB must be added to each data point for comparison of the data presented with the limit displayed in the figure.

In the figures provided, both the peak detector (yellow trace) and average detector (blue trace) have been used. The "43+10*log P" limit (see below in green) is of -13dBm/1MHz and is shown in the figures Cx.

A brief summary of the applicable FCC specifications are listed in the table below.

2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show

the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in \$\$ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

27.53 Emission limits.

(h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}$ (P) dB.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The limit is = -13 dBm.

4.2 Interpretation

Peak trace is shown in yellow, average trace in blue. Green line is a limit of -13dBm, applies to the AVG trace.

4.3 Results – Figures C1 – C6

Agilent S	Agilent Spectrum Analyzer - NXA-SAPKS-CSELF-B										
LX/ RL	RF		C	SENSE:INT		ISE:INT	Aug Type	ALIGNAUTO	04:41:08 p	m Apr 30, 2012	Frequency
Start	-req 9.	000 KHZ	PNC	D: Fast ↔	Trig: Free	Run	Avg Hold:	15/15	TY		
			IFGa	in:Low	#Atten: 2 d	яв			Di		
		Ref Off	set 43	dB			Mkr	1 1.91	17 59	GHz	Autorune
10 dE	3/div	Ref 27	7.00 d	IBm				-33	.983	dBm	
208											Center Fred
17.0											962 504500 MHz
											002.004000 11112
7.00											
											Start Freq
-3.00											9.000 kHz
-13.0		-								13.00 dBm	Stop Fred
											1 925000000 GHz
-23.0					<u> </u>						
										1/	OF Otom
-33.0			Contractor March		يور والمريد والم	والطربة وحد والعروي	Berlin Ball- Bare	وروس وسألب واروه	tion Photo Da	And Address	192,499100 MHz
					In the second states	No. of Concession, Name	(Received and the second		and a state of the second		<u>Auto</u> Man
-43.0											
											Freg Offset
-33.0											0 Hz
-63.0											
_											
Star	t9kH		- \/B	1 1 0	D.ALI-26	-#6	woon	Stop	1.925	0 GHz	
- ALC	5 - 144				WIEIZ*	1/ 2	weep	2.00 S	1410101	r pisj	
MSG 😲	-ile <mxa< td=""><td>-SAPKS-CSI</td><td>ELF-B.sta</td><td>te> recalle</td><td>d</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></mxa<>	-SAPKS-CSI	ELF-B.sta	te> recalle	d			STATUS			

PCS band

Figure C1. Data for 9kHz – 2GHz is presented.

Figure C2. Data for 1GHz – 7GHz is presented. The high pass filter at 1M RBW installed.

Figure C3. Data for 2GHz – 22GHz is presented.

AWS band

Figure C4. Data for 9kHz – 2GHz is presented.

Figure C5. Data for 1GHz – 7GHz is presented. The high pass filter at 1M RBW installed.

Figure C6. Data for 1GHz – 22GHz is presented.

On the plots shown the low, middle and high channel are presented.

There were no emissions detected within 20 dB of limit.

The peak trace is also shown to illustrate the peak to average ratio of approximately 12dB.

Data was collected for all signals (average measurement) within 20dB of limit. No signals were found within 20dB of limit.

5.0 Band Edge

5.1 Methodology

Measurements were performed at three worst case modulations (WCDMA, CDMA2000, and LTE5M) for the lowest and highest frequency within the band.

Worst-case data is shown in the figures D1 - D6 (PCS band) and D7 - D12 (AWS band) in section 5.2.

27.53 Emission limits.

(h) For operations in the 1710-1755 MHz and 2110-2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}$ (P) dB.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The required measurement resolution bandwidth (RBW) is 1% of the emission bandwidth. Measurements were made at the RBW sufficient to show detail at edge of band. Therefore data presented must be corrected to the measurement bandwidth using the formula. The data in the following table must be added to the reading in the graph for the modulation under consideration.

PCS band

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	12	1.94
DL1C-WCDMA	24	42	-4.86
LTE5M	47	45	0.38

AWS band

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	12.5	1.58
DL1C-WCDMA	24	46.7	-5.78
LTE5M	47	49	-0.36

5.2 Results – Figures D1- D12

PCS band

Figure D1. Data for CDMA2000 modulation at low end is presented.

Figure D2. Data for WCDMA modulation at low end is presented.

Agilen	t Spectru	m Analyze	r - MXA	-SALIM-B	EL-D1_1930M-L1	TE5M						
LXI RI		RF	50 Ω	AC		SEN	VSE:INT	A	ALIGN AUTO	D3:28:37 pm	May 03, 2012	Select Marker
PAS	S				PNO: Fast ++ IFGain:Low	Trig: Free #Atten: 22	Run dB	Avg Hol	d: 200/200	TYPE	A WA WA W A A Sp S N	
10 dE	3/div	Ref Offs Ref 43	et 43.8 .00 d	∃dB Bm				Ba	Mkr1 1. and Pow	932 600 er 43.64	0 GHz 4 dBm	Marker 1
33.0	Trace	1 Pass						1				Marker 2
23.0												Marker 3
13.0 3.00												
-7.00												Marker 4
-17.0						and the second second				a light an air an	l	Marker 5
-37.0					- and a second sec							Marker 6
-47.0												Moro
Cent #Res	ter 1.9 s BW 4	3000 G 17 kHz	Hz		VBW	47 kHz*			#Sweep	Span 25 100 ms (2	.00 MHz 001 pts)	1 of 2
MSG 🤇	File <	T43V11-I	BE-BU	ISAN S	ALIM-BEL-D1	_1930M-LTI	E5M LTEP	DD-A	🚺 STATUS			

Figure D3. Data for LTE modulation at low end is presented.

Figure D4. Data for CDMA2000 modulation at high end is presented.

Agilen	Agilent Spectrum Analyzer - MXA-SALIM-BEH-C1_1995M-WCDMA												
l XI RI	L	RF 5	OΩ AC			SE	NSE:INT	A	ALIGN AUTO	11:08:23 a	n May 03, 2012	М	eas Setup
Ave	rage/	Hold Nur	nber 50	DNO.		Tria: Fre	e Run	Avg Type AvalHold:	: Pwr(RMS) 50/50	I IRAC TYP	7 1 2 3 4 5 6 7 A WA WA W		
PAS	S			PNU: IFGai	:⊧ast ⊶⊷ n:Low	#Atten: 2	2 dB			DI	AASpSN	A	verage/Hold
								Ν	Akr1 1 9	92 600	00 GHz		Number
10 di	⊃/diu	Ref Offset	43.8 dB					Ba	nd Pow	/er 43.6	66 dBm		50
Log		Kei 43.0	o abiii										
	Trace	Pass										A	/erage Type
33.0													Power►
												Auto	Man
23.0													
					/	Ì							
13.0				/									Limits
1.010													
3.00													
3.00													N dB Points
7.00												On	-3.01 dB Off
-7.00													<u></u>
													hNoise Opt
-17.U							b.,						Fast Tuning ▶
												Auto	Man
-27.0	and the second	a hiper mariter a large		<u> </u>			a a start a st						
													ADC Dither
-37.0									and the second s				On▶
										and the second second		<u>Auto</u>	Man
-47.0													
													More
Con	tor 1.0	0500 CH	,							Snap 2	5 00 MHz		1 of 2
#Re	s BW 0	9300 GH/ 24 kH7			VBW 2	24 kH7*			#Sweep	389 ms (4001 pts)		1012
NCO O		du in Cingle	press Dest	o rt to	initiate a				П стати		1001 pt3)		
MSG	Alrea	ay in Single	, press Rest	artto	o initiate a	i new swee	ep or seque	ice	STATUS				

Figure D5. Data for WCDMA modulation at high end is presented.

Figure D6. Data for LTE modulation at high end is presented.

AWS band

Figure D7. Data for CDMA2000 modulation at low end is presented.

Figure D8. Data for WCDMA modulation at low end is presented.

Figure D9. Data for LTE modulation at low end is presented.

Figure D10. Data for CDMA2000 modulation at high end is presented.

Figure D11. Data for WCDMA modulation at high end is presented.

Figure D6. Data for LTE modulation at high end is presented.

PCS band

Low end

Modulation	Freq (MHz)	Reading (dBm)	Correction factor dBm	Limit (dBm)	Margin (dB)	Result
CDMA2000	1930	-25.2	1.58	-13	10.62	PASS
WCDMA	1930	-20.7	-5.78	-13	13.48	PASS
LTE5M	1930	-19.0	-0.36	-13	6.36	PASS

High end

Modulation	Freq (MHz)	Reading (dBm)	Correction factor dBm	Limit (dBm)	Margin (dB)	Result
CDMA2000	1990	-24.9	1.58	-13	10.32	PASS
WCDMA	1995	-18.8	-5.78	-13	11.58	PASS
LTE5M	1995	-21.1	-0.36	-13	8.46	PASS

AWS band

Low end

Modulation	Freq (MHz)	Reading (dBm)	Correction factor dBm	Limit (dBm)	Margin (dB)	Result
CDMA2000	2110	-25.4	1.94	-13	10.46	PASS
WCDMA	2110	-24.2	-4.86	-13	16.06	PASS
LTE5M	2110	-23.4	0.38	-13	10.02	PASS

<u>High end</u>

Modulation	Freq (MHz)	Reading (dBm)	Correction factor dBm	Limit (dBm)	Margin (dB)	Result
CDMA2000	2110	-23.8	1.94	-13	8.86	PASS
WCDMA	2110	-19.4	-4.86	-13	11.26	PASS
LTE5M	2110	-18.2	0.38	-13	4.82	PASS

6.0 Field Strength of Spurious Radiation

6.1 Methodology

Measurements were performed at eight modulations (F1C-C2K, F2C-C2K, F3C-C2K, DL1C-WCDMA, DL2C-WCDMA, DL3C-WCDMA, DL4C-WCDMA, LTE5M for the mid, lowest and highest frequency within the band.

Worst-case data is shown in the figures E1 - E2 (PCS band) and E3 - E4 (AWS band) in section 6.3.

A brief summary of the applicable FCC specifications are listed in the table below.

27.53 Emission limits.

(h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}(P) dB$.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Thus the required attenuation = 43+10*Log (P) dB and the limit = -13dBm ERP for average detector.

6.2 Interpretation

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1053. Substitution method as prescribed under ANSI/TIA-603-C section 2.2.12 and 22.17 is not required for all signal margin exceeds 20 dB.

6.3 Results – Figure E1 - E4

Figure E1. Data for radiated spurious emission 1 – 18 GHz is presented.

Figure E2 Data for radiated spurious emission 30MHz – 1GHz is presented.

AWS band

Figure E3. Data for radiated spurious emission 1 – 18 GHz is presented.

Figure E4. Data for radiated spurious emission 30MHz – 1GHz is presented.

The plots are for reference purposes only. Actual measurements are shown in Table 5 and 6.

PCS band

|--|

Frequency (GHz)	Average (dBµV/m)	Meas. Time (ms)	Band width (kHz)	Antenna height (cm)	Ро	I Turntable position (deg)	Corrected Rdg (dBm)	Margin (dB)	Limit (dBm)
5.74822	63.0	1000.	1000.	100	н	278.0	-34.6	21.4	-13

Table 5.a.	Spurious	emissions	measurements	in	1-18	GHz.
------------	----------	-----------	--------------	----	------	------

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	BW (kHz)	Antenna height (cm)	Pol	Turntable position (deg)	Corr. (dB)	Adj Rdg (dBmj)	Margin (dB)	Limit (dBm)
183.000	29.2	1000.00	120.000	190.0	Н	30.0	12.4	-57.7	44.7	-13
210.030	22.8	1000.00	120.000	133.0	Н	30.0	13.1	-64.1	51.1	-13
244.004	32.2	1000.00	120.000	100.0	V	342.0	14.8	-54.7	41.7	-13
250.000	41.1	1000.00	120.000	121.0	Н	223.0	20.1	-45.8	32.8	-13
292.870	30.8	1000.00	120.000	115.0	V	71.0	20.4	-56.1	43.1	-13
548.997	37.8	1000.00	120.000	100.0	Н	252.0	22.5	-49.1	36.1	-13

Table 5.b. Spurious emissions measurements in 30MHz-1GHz.

AWS band

		-							
Frequency (GHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Pol	Turntable position (deg)	Adj Rdg (dBm)	Margin (dB)	Limit (dBm)
5.748	63.0	1000.00	1000.00	100	н	278.0	-34.4	21.4	-13
5.869	51.2	1000.00	1000.00	117	V	295.0	-46.2	33.2	-13
6.435	54.2	1000.00	1000.00	150.0	V	255.0	-43.2	30.2	-13
6.464	52.6	1000.00	1000.00	150.0	V	255.0	-44.8	31.8	-13
6.427	60.1	1000.00	1000.00	150.0	V	255.0	-37.3	24.3	-13

T43 with 2.122 – 2.142GHz TXON +43dBm MOD - DL

Table 6.a. Spurious emissions measurements in 1-18 GHz.

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	BW (kHz)	Antenna height (cm)	Pol	Turntable position (deg)	Corr. (dB)	Adj Rdg (dBmj)	Margin (dB)	Limit (dBm)
183.000	29.2	1000.00	120.000	190.0	н	30.0	12.4	-57.7	44.7	-13
210.030	22.8	1000.00	120.000	133.0	н	30.0	13.1	-64.1	51.1	-13
244.004	32.2	1000.00	120.000	100.0	V	342.0	14.8	-54.7	41.7	-13
250.000	41.1	1000.00	120.000	121.0	Н	223.0	20.1	-45.8	32.8	-13
292.870	30.8	1000.00	120.000	115.0	V	71.0	20.4	-56.1	43.1	-13
548.997	37.8	1000.00	120.000	100.0	Н	252.0	22.5	-49.1	36.1	-13

Table 6.b. Spurious emissions measurements in 30MHz-1GHz.

No other emissions were detected within 20dB of limit. Radiated emissions 1-18GHz measured at 3m in SAC.

7.0 Frequency Stability

7.1 Methodology

Measurements were performed at CW.

Data plot is shown in the figure F1 in section 7.2.

A brief summary of the applicable FCC specifications are listed in the table below.

 2.1055 Frequency stability. (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following. The frequency stability shall be measured with variation of ambient ambient temperature as follows from -30° to +50° centigrade for all equipment Vary primary supply voltage from85 to 115 percent of the nominal value
27.54 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1055.

Data was collected continuously over temperature range of -40C to 55C using a max hold function. Worst-case data is shown on aggregate plot.

7.2 Results

Figure F1. Data for frequency stability is presented.

F (MHz)	Delta A (Hz)	Delta B (Hz)	Error (Hz)	PPM
2132.5	6.046	5.301	0.745	0.003494

Table 7. Calculation of frequency deviation for aggregate plot.