

8618 Commerce Court Burnaby, BC V5A 4N6, Canada PH: 1 604.420.7760 FAX: 1 604.420.7730 EMAIL: BBALSTON@DALIWIRELESS.COM

INDUSTRY CANADA RSS-131 AND FCC PARTS 2, 22, 24, 27 TEST REPORT

Applicant	Dali Wireless, Inc.
Applicant	,
Address	8618 Commerce Court, Burnaby, British Columbia, V5A 4N6, Canada
FCC ID	HCOT30QSCPAN1B
IC Label	10323A-T30QSCPAN1B
Model Number	t30-QSCPA-N1N
Product Description	700, 850, 1900, AWS Indoor Remote Unit, Quad-Band
Date Sample Received	July 16 th , 2012
Date Sample Tested	July 16 th to August 3 rd , 2012
Tested by	Bruce Balston
Approved by	Daryl Meerkerk
Report No.	T30-QSC-PAN.1.0
Test Results	Compliant

This document contains information proprietary to Dali Wireless, Inc., to its subsidiaries, or to a third party to which Dali Wireless, Inc. may have a legal obligation to protect such information from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information contained herein for other than the specific purpose for which it was disclosed is expressly prohibited, except as Dali Wireless, Inc. may otherwise agree to in writing.

Revision History

Revision	Date	Reason For Change	Reviewed By	Author(s)
0.1	July 31, 2012	Initial release		A. Moldavanov
0.2	Aug 1, 2012	Data insertion		A. Moldavanov
0.3	Aug 5, 2012	Final remarks		A. Moldavanov

Table of Contents

Tabl	sion Desc e of Conte	ents	2 3
Acro 1.0	•	l Abbreviations RVIEW	4
1.0			
	1.1	Scope	
	1.2 1.3	Attestation Statement	
	1.3 1.4	Report Summary Test Environment	
	1.4 1.5	Test Environment	
	1.6	Device Under Test Information	
	1.7	Measurement Uncertainty	
	1.8	Equipment List	
	1.9	Test Procedure	9
	1.10	Operational Description	12
	1.11	Measurement Configuration	
		700 MHz DL Measurement Matrix	
		800 MHz DL Measurement Matrix	
		PCS DL Measurement Matrix.	
		AWS DL Measurement Matrix	
		DL Modulation Waveforms	
2.0	OUT	PUT POWER	15
	2.1	Methodology	15
	2.2	Interpretation	
	2.3	Results	15
3.0	OCC	CUPIED BANDWIDTH	18
	3.1	Methodology	18
	3.2	Results - Figures A1 - A12	
4.0	CON	DUCTED SPURIOUS EMISSIONS	22
	4.1	Methodology	22
	4.2	Interpretation	
	4.3	Results – Figures B1 – B8	23
5.0	BAN	D EDGE	28
	5.1	Methodology	28
	5.2		30
	5.3	Results – Figures C1- C24 (Tables)	33
6.0	FIEI	LD STRENGTH OF SPURIOUS RADIATION	36
	6.1	Methodology	36
	6.2	Interpretation	36
		esults – Figure D1 - D2	37
	6.3	-	37
7.0	FRE	QUENCY STABILITY	39
	7.1	Methodology	39
	7.2	Results - Figures E1 – E4	39
8.0	INTI	ERMODULATION	42

8.1	Methodology	Dal
8.2	Results - Figures F1 - F2	WIRELES 482

ACRONYMS AND ABBREVIATIONS

ACLRAdjacent Channel Leakage RatioACPRAdjacent Channel Power Ratio	
AUF K AUJACEIII UIIAIIIIEI FUWEI KALIU	
BTS Base Transceiver Station	
CDMA Code Division Multiple Access	
CW Continuous Wave	
dB deciBel (logarithmic ratio)	
dBc deciBels related to the RF carrier amplitude	
dBm deciBels related to 1 Mw	
DL Downlink	
EDGE Enhanced Data rates for Global (GSM) Evolution	
EIRP Effective Isotropic Radiated Power	
E-UTRA Enhanced UMTS Terrestrial Radio Access	
FH Frequency High (Top edge of band)	
FL Frequency Low (Bottom edge of band)	
FM Frequency Mid (Center of band)	
GSM Groupe Spéciale Mobile, Global System for Mobile com	munications
IF Intermediate Frequency	
IMD Inter-Modulation Distortion	
kHz kilo Hertz	
LTE Long Term Evolution	
MHz Mega Hertz	
NF Noise Figure	
PCS Personal Communications Service	
RF Radio Frequency	
RX Receiver	
TX Transmit	
UL Uplink	
UMTS Universal Mobile Telecommunications System	
WCDMA Wideband Code Division Multiple Access	
1xEVDOCDMA Evolution Data Optimized	

1.0 <u>Overview</u>

1.1 Scope

The purpose of this document is to present test results in the context of a full qualification test report for FCC Part 2, 22, 24, 27 as applicable to the equipment under test. The scope of this document is limited to the tests listed below in the downlink mode.

1.2 Attestation Statement

The device under test does fulfill the general approval requirements as identified in this test report.

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report. All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025:2005 requirements.

I attest that the necessary measurements were made, under my supervision, at DALI WIRELESS, INC. located at 8618 Commerce Court, Burnaby, British Columbia, V5A 4N6, Canada.

Authorized Signatory:

Signature: Bruce Balston Function: Test Engineer Date: August 1, 2012

1.3 Report Summary

Disclaimer	The test results relate only to the items tested.
Report Purpose	To demonstrate the DUT compliance with FCC Parts 2, 22, 24, 27 and Industry Canada RS-131 requirements for a quad band digital repeater.

Applicable Rule Parts	FCC CFR 47 Parts 2, 22, 24, 27; RSS-131
Test Procedures	ANSI/TIA-603-C: 2004

1.4 Test Environment

Test Facilities	Tests were performed by Dali Wireless Inc. located at 8618 Commerce Court, Burnaby, BC, V5A 4N6, Canada. Radiated spurious emission test was performed by QAI located at #16 - 211 Schoolhouse Street, Coquitlam, BC, V3K 4X9, Canada.
Test Conditions	Temperature: 25° C Relative Humidity: 60% Atmospheric Pressure: 98.1 kPa

1.5 Test Setup

Deviation to the rules	There was no deviation from the test standards.
Modification to the DUT	No modification was made to the DUT.
Test Exercise	The DUT was placed in continuous transmit mode of operation.

1.6 Device Under Test Information

Manufactured by	Dali Wireless Inc.
DUT Description	700, 850, 1900, AWS Indoor Remote Unit, Quad- Band Bi-directional Distributed Antenna System/Repeater.

	WIRELES S™
FCC ID	HCOT30QSCPAN1B
IC Label	10323A-T30QSCPAN1B
Model Name	t30-QSCPA-N1N
Operating Frequency	Downlink 728 – 757 MHz, Downlink 869 – 894 MHz, Downlink 1930 – 1995 MHz, Downlink 2110 – 2155 MHz.
Emission Designators	F9W, F9X, DXW, D7W, GXW, G7W
Modulations	WCDMA, CDMA2000, LTE5M
User Power Range and Control	There are NO user power controls
Test Item	Production
DC Voltage and Current into final amplifier	Powered 115 or 230 VAC
Type of Equipment	Fixed

1.7 Measurement Uncertainty

Radio Frequency	±1 ppm
Total RF Power: Conducted	±1 dB
RF Power Density: Conducted	±2.75 dB
Spurious Emissions: Conducted	±3 dB

All Emissions: Radiated	±3.5 dB
Temperature	±1ºC
Humidity	±5 %
DC and Low Frequency Voltages	±3 %

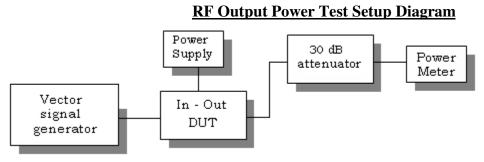
1.8 Equipment List

Description	Manufacturer	Model	Serial Number	Cal Due Date
3 meter Semi- Anechoic Chamber	ETS Lindgren	S201	1030	N/R
Turntable	ETS Lindgren	2165	00043677	N/R
Mast	ETS Lindgren	2165	00077487	N/R
Antenna	Sunol Sciences	JB3	A120106	06-Jul-2013
EMI Receiver	Rohde & Schwarz	ESU40	100011	29-Mar-2013
Spectrum Analyzer	Agilent	MXA-N9020A	ATO 71849 MY50140401	CAL 10-26-2013
Power Meter	Agilent	U2000A	MY50000490	CAL 6-18-2013
Signal Generator	Agilent	MXG-N5182A	MY50142520	CAL 10-12-2013

1.9 Test Procedure

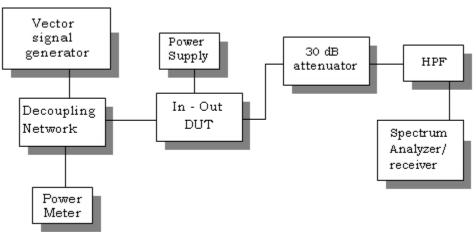
General

The t30 remote, is connected to the *t*Host in a manner consistent with a typical installation. A digital modulation signal generator is connected to the TX_IN port of the appropriate band of the *t*Host and spectrum analyzer is connected to the appropriate downlink antenna output through an attenuator, nominally 30 dB for the band under consideration.


The 700 MHz (728 - 757 MHz), 800 MHz (869 - 894 MHz), PCS (1930-1995 MHz) and AWS (2110-2155 MHz) band was investigated. Measurements were performed at three

modulation types (WCDMA, CDMA2000, LTE5M) for the mid, lowest and highest frequency for declared bandwidths. The modulation types are described in detail in Table 1-4.

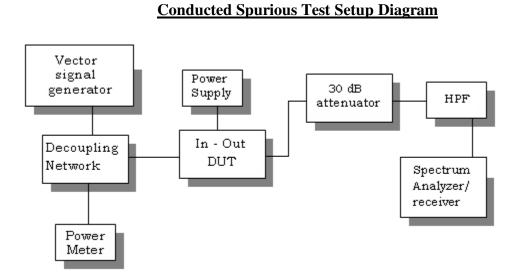
RF Power Output


RF power is measured by connecting a 50-ohm, resistive wattmeter to the RF output connector. With a nominal voltage and the amplifier properly adjusted the RF output is measured.

Band Edges Compliance

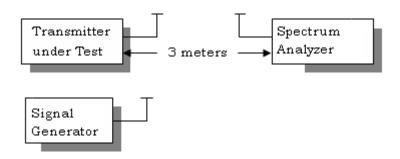
RF power is measured by connecting a 50-ohm, resistive wattmeter to the RF output. The required measurement resolution bandwidth (RBW) is 1% of the emission bandwidth. Measurements were made at an RBW sufficient to show detail at edge of band. Therefore data presented must be corrected to the measurement bandwidth using the formula below. The data calculated according to the formula below should be added to the reading in the graph for the modulation under consideration.

$$Corr(dB) = 20*log (measRBW / actualRBW)$$
 (1.9.1)



Band-Edges Test Setup Diagram

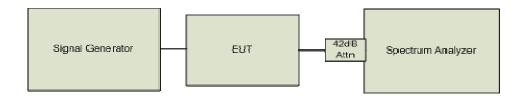
Spurious Emissions at Antenna Terminals


The procedure used was ANSI/TIA-603-C: 2004. The spectrum was scanned from 9 kHz to at least the tenth harmonic of the fundamental using a spectrum analyzer. Data on the following page shows the level of conducted spurious responses. For digital modulation, the carrier is modulated to its maximum extent. The measurements were made in accordance with standard ANSI/TIA-603-C: 2004. The maximum output power was set for each test.

Radiated Spurious Emissions

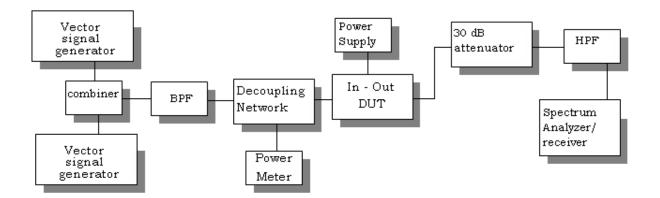
The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. All digital modulation signals were used to perform this test. This test was conducted per ANSI/TIA-603-C: 2004 using the substitution method.

Radiated Spurious Test Setup Diagram


Equipment placed 80 cm above ground on a rotating table platform.

Frequency Stability

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1055.


Frequency Stability Test Setup Diagram

Intermodulation Product Spurious Emissions

The procedure used was ANSI/TIA-603-C: 2004. The spectrum was scanned from 9 kHz to at least the tenth harmonic of the fundamental using a spectrum analyzer. The modulation type was tested using the two-tone / three tone test method. The input power to the amplifier was set at maximum drive level by combining the two tones. The two tones were chosen in such a way (1) the third order intermodulation product frequencies are located within the pass band of the DUT and (2) they produce the worst-case emissions out of band.

Intermodulation Test Setup Diagram

1.10 Operational Description

The Dali Wireless Transcend t30[™] quad-band indoor Distributed Antenna System (iDAS) provides effortless mobile coverage extension and capacity enhancement of GSM, CDMA, WCDMA, LTE, TD-SCDMA, and WiMAX wireless networks operating inside enclosed environments. Based on Dali's software configurable radio (SCR) systems for broadband applications with a comprehensive suite of proprietary digital signal processing (DSP) and radio frequency (RF) technologies, Dali iDAS brings leading edge flexibility, efficiency, control, linearity and instantaneous bandwidth to all mobile networks. The optical connection

is entirely digital ensuring that retransmitted signals are not degraded in any Way. The system is software configurable offering seamless upgrades to the

system. Dali's Transcend t 30^{TM} DAS model # DW-010-3274-04 is a quad band, 700-850-1900MHz-AWS unit with 1W average output power per band. This model number comprises a single tHostTM and a single t 30^{TM} remote as representative of the entire DAS system. The indoor DAS is comprised of a *tHost* that is connected to the RF output of the base station(s), and multiple $t30^{\text{TM}}$ remote units located in areas that the base station signal cannot reach to provide optimum coverage and capacity in wireless networks. A Single optical fiber interface, based on the CPRI standard, is used to connect the *tHost*TM with a number of $t30^{\text{TM}}$ units, in a star, daisy-chain, or hybrid star/daisy-chain configuration. The $t30^{\text{TM}}$ remote units can be installed 15km to 40km away from the *tHost*TM *unit*. Both, *tHost*TM *unit* and $t30^{\text{TM}}$ unit contain a digital processing section and an RF processing section.

1.11 Measurement Configuration

Modulation	# Carriers	Notation	Frequency (MHz)
WCDMA	1	DL1C-	730.5, 742.5, 754.5
		WCDMA	
CDMA2000	1	F1C-C2K	730.5, 742.5, 754.5
LTE5M	1	LTE5M	730.5, 742.5, 754.5

Table 1. 700 MHz DL Measurement Matrix

Table 2. 800 MHz DL Measurement Matrix

Modulation	# Carriers	Carrier	Frequency (MHz)
WCDMA	1	DL1C-	871.5, 881.5, 891.5
		WCDMA	
CDMA2000	1	F1C-C2K	871.5, 881.5, 891.5
LTE5M	1	LTE5M	871.5, 881.5, 891.5

Table 3. PCS DL Measurement Matrix

Modulation	#	Carrier	Frequency (MHz)
	Carriers		
WCDMA	1	DL1C-	1932.5 1962.5 1992.5
		WCDMA	
CDMA2000	1	F1C-C2K	1932.5 1962.5 1992.5
LTE5M	1	LTE5M	1932.5 1962.5 1992.5

Modulation	# Carriers	Carrier	Frequency (MHz)
WCDMA	1	DL1C- WCDMA	2112.4, 2132.5, 2152.6
CDMA2000	1	F1C-C2K	2111.25 2132.5, 2153.75
LTE5M	1	LTE5M	2112.6 2132.5, 2152.5

Table 4. AWS DL Measurement Matrix

Table 5. DL Modulation Waveforms

Notation	Waveform	Bandwidth (MHz)
DL1C-WCDMA	3GPP TS25	5
F1C-C2K	3GPP2	1.25
LTE5M	3GPP TS36	5

2.0 Output Power

2.1 Methodology

Measurements were performed at three modulations (F1C-C2K, DL1C-WCDMA, LTE5M) for the mid, lowest and highest frequency within the 700 MHz (730 – 755 MHz), 800 MHz (871 – 892 MHz), PCS (1930-1995 MHz) and AWS (2100-2155 MHz) band.

Worst-case data is shown in section 2.3 for the all bands.

A brief summary of applicable FCC specifications is listed in the table below.

2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

2.2 Interpretation

Full results for output power measurements are shown in the table below:

2.3 Results

	F1C-C2K modulation					
Frequency, MHz	Output power, dBm	Bandwidth, MHz	Limit, dBm			
730.5	30.448					
742.5	31.222	1.25	31.5			
754.5	31.085					
	DL1C-WCDMA mo	dulation				
730.5	29.997		31.5			
742.5	31.340	5				
754.5	30.828					
	LTE5M modula	ation				
730.5	29.967					
742.5	31.261	5	31.5			
754.5	30.824					

700 MHz band

	F1C-C2K modulation						
Frequency, MHz	Output power, dBm	Bandwidth, MHz	Limit, dBm				
871.5	31.110						
881.5	31.247	1.25	31.5				
891.5	31.021						
	DL1C-WCDMA modulation						
871.5	30.330						
881.5	30.277	5	31.5				
891.5	30.135						
	LTE5M modula	ation					
871.5	30.214						
881.5	30.270	5	31.5				
891.5	30.133						

PCS band

	F1C-C2K modulation						
Frequency, MHz	Output power, dBm	Bandwidth, MHz	Limit, dBm				
1932.5	29.145						
1962.5	29.597	1.25	31.5				
1992.5	31.203						
	DL1C-WCDMA modulation						
1932.5	29.489						
1962.5	30.269	5	31.5				
1992.5	30.755						
	LTE5M modula	ation					
1932.5	29.373						
1962.5	28.984	5	31.5				
1992.5	30.684						

AWS band

F1C-C2K modulation					
Frequency, MHz	Output power, dBm	Bandwidth, MHz	Limit, dBm		
2112.5	30.356				
2132.5	31.417	1.25	31.5		
2152.5	29.935				
	DL1C-WCDMA modulation				
2112.5	29.743		31.5		
2132.5	30.616	5			
2152.5	29.788				
	LTE5M modula	ation			
2112.5	30.733				
2132.5	30.872	5	31.5		
2152.5	30.359				

 Table 6. Output power measurements.

Conclusion: As the table 6 indicates, the maximum power output value of 31.4 dBm was obtained with F1C-C2K modulation at 2132.5 MHz bandwidth of 1.25 MHz (AWS band).

3.0 Occupied Bandwidth

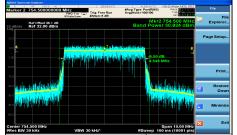
3.1 Methodology

Measurements were performed at three modulations (F1C-C2K, DL1C-WCDMA, LTE5M) for the mid, lowest and highest frequency within the 700 MHz (730 – 755 MHz), 800 MHz (871 – 892 MHz), PCS (1930-1995 MHz) and AWS (2100-2155 MHz) band.

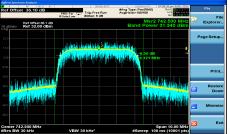
Worst-case data is shown in the figures in sections 3.2 in Figures A1-3 (700 MHz band), A4-6 (800 MHz band), A7-9 (PCS band), A10-12 (AWS band)


A brief summary of applicable FCC specifications is listed in the table below.

2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured


The plots below are for reference purposes only. Full results for occupied bandwidth measurements are shown in Table 7.

3.2 Results - Figures A1 - A12


700 MHz band

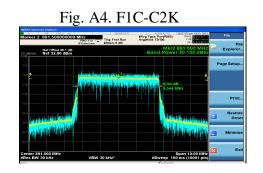
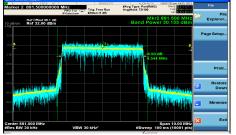
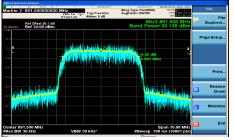


Fig. A3. DL1C-WCDMA




800 MHz band

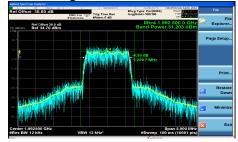
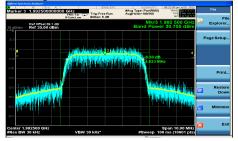
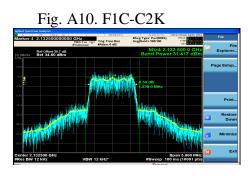


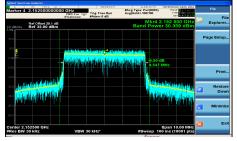
Fig. A6. DL1C-WCDMA

PCS band

Fig. A7. F1C-C2K




arker 3	1.992500000000		#Avg Type	Pwn(RMS)	10:21:10 pm 3.420, 2012 TRACE 1 2 5 4 6 0 TVTE 4 0.0 Vice 0	File
dB/div	Ref Offset 39.1 dB Ref 35.00 dBm	FGain:Low Matten: 6		Mkr3 1.9 d Power	992 500 GHz 30.684 dBm	Explorer.
a o						Page Setup.
5.0 <mark>0</mark> 6			3 martin antique	-		
		, di tinkok lingin		4.542 M	Hz	
						Print.
nyzih	International Contractor					Restor
hinh i				dila.di	THE REAL PROPERTY IN	Minimiz
enter 1.9	92500 GHz	VBW 30 kHz*		Sweep 100	pan 10.00 MHz ms (10001 pts)	Ex Ex


Fig. A9. DL1C-WCDMA

AWS band

Fig. A12. DL1C-WCDMA

Agilent Spectrum A						
Reference L	evel 35.00 c	Bm	#Avg Type: P	WINITO 07:39 WINIFERS) 1	24 pm 3.620, 2012 9402	File
PASS		PNO: Far Trig: Free IFGain:Low #Atten: 6 d	Run Avg Hold>10 B	0/100	DET A A SPISE	File
	f Offset 39.1 dB f 35.00 dBm		Banc	Mkr4 2.132 Power 30	500 GHz 616 dBm	Explorer
Trace 1	Pass					Page Setup
15.0		and to us opposible	a landa a balance .			
5.00 <mark>6</mark> 3-		a se ha a dad dad da da da da da da da da da d		6.50 dB 4.101 MHz		
s.co <mark>2</mark>		Mala i sh kuta	hit waa af Ba			Print
	والطار والاردين	/		abalitati	dia	Restore
W WW	الملطان الالالا			the block of the second		Down
AND NOT THE OWNER	di na sa				a na Mari	Minimize
-55.0						
						Exit
#Res BW 30		VBW 30 kHz*	#8v	Spar veep 100 ms	10.00 MHz (10001 pts)	
MEG				TATATICS.		

Figure A1, A4, A7, A10 – occupied bandwidth for CDMA2000 modulation at 1.25MHz bandwidth for 700 MHz, 800 MHz, PCS, and AWS band,

appropriately. A2, A5, A8, A11 - LTE5M modulation at 5MHz bandwidth for 700 MHz, 800 MHz, PCS, and AWS band, , appropriately. A3, A6, A9, A12 - WCDMA modulation at 5MHz bandwidth for 700 MHz, 800 MHz, PCS, and AWS band, appropriately.

Conclusion: As the table below indicates, the minimum occupied bandwidth value of 1.2351 MHz (AWS band) was obtained with F1C-C2K modulation (bandwidth of 1.25 MHz).

700 MHz band				
Modulation	Occupied Bandwidth, MHz			
DL1C-WCDMA	4.1721			
F1C-C2K	1.2352			
LTE5M	4.4735			

800 MHz band				
Modulation	Occupied Bandwidth, MHz			
DL1C-WCDMA	4.0791			
F1C-C2K	1.2376			
LTE5M	4.5462			

900 MII- hand

PCS band

Modulation	Occupied Bandwidth, MHz
DL1C-WCDMA	4.0334
F1C-C2K	1.2406
LTE5M	4.544

AWS band

Modulation	Occupied Bandwidth, MHz
DL1C-WCDMA	4.1715
F1C-C2K	1.2351
LTE5M	4.4733

 Table 7. Occupied bandwidth measurements.

4.0 Conducted Spurious Emissions

4.1 Methodology

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1051.

The data is shown in the figures C1 - C8 for 700 MHz, 800 MHz, PCS, and AWS band, appropriately, in section 4.3.

For each plot lowest, mid, and highest frequency were used and data accumulated for each plot in a max hold/pause sequence. Data was collected for all eight modulations, worst-case is shown.

In the figures provided, both the peak detector (yellow trace) and average detector (blue trace) have been used. The "43+10*log P" limit (see below in green) is of -13dBm/1MHz and is shown in the figures.

A brief summary of the applicable FCC specifications are listed in the table below.

2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency

shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show

the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in§ 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

27.53 Emission limits.

(d) (3) *Out-of-band emission limit.* On any frequency outside of the frequency ranges covered by the ACP tables in this section, the power of any emission must be reduced below the unmodulated carrier power (P) by at least $43 + 10 \log (P) dB$.

(f) For operations in the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be

attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log_{10}(P) dB$. (g) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}(P) dB$.

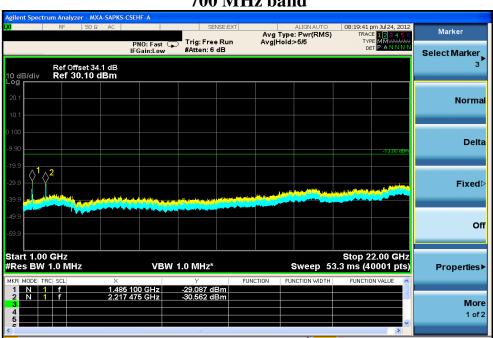
(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

22.917 Emission limits.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

24.238 Emission limitations for Broadband PCS equipment.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.


The limit is = -13 dBm.

4.2 Interpretation

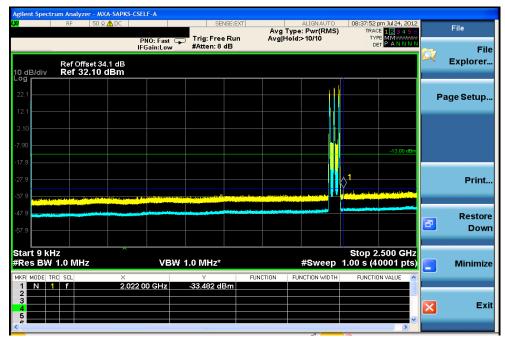
Peak trace is shown in yellow, average trace in blue. Green line is a limit of -13dBm, applies to the AVG trace.

Results – Figures B1 – B8 4.3

700 MHz band

Agilent Spectrum Analyzer - MXA-SAPKS-					
₩ RF 50 Ω ΔC Marker 2 762.131256350		e Run A	ALIGNAUTO Avg Type: Pwr(RMS) avg Hold:>10/10	08:11:53 pm Jul 24, 2012 TRACE 123456 TYPE MMWWWW DET PANNN	
Ref Offset 34.1 dB 10 dB/div Ref 28.10 dBm			MI	r2 762.13 MHz -33.939 dBm	Explorer
18.1	1				Page Setup
8.10					
-1.90					
-11.9				-13.00 dBm	Print
-21.9	. 2				
-31.9	an an I for the first product for a second for a	l la dista ka seban dika di sa (in a second as a second as the second se	والأباذة ومقاويته والمراجع والمواد والمتعاوي	Bestore Down
-51.9					Minimize
-61.9					- Will Hilling
Start 9 kHz				Stop 2.500 GHz	🔀 Exit
#Res BW 1.0 MHz	VBW 1.0 MHz	ę	Sweep 5	.33 ms (40001 pts)	

800 MHz



Agilent Spectr	um Analyzer - MXA-SAPKS-	CSELF-A								
<mark>(X)</mark> Marker 2	RF 50 Ω ▲DC 906.818235475	MHz	SEM	ISE:EXT		ALIGNAUTO : Pwr(RMS)	TRACE	n Jul 24, 2012		File
	300.010233473	PNO: Fast G	Trig: Free #Atten: 8		Avg Hold:		TYPE	MM WAMA PANNNN		
		IFGain:Low	#Atten. 0			Mk	r2 906.8			File
10 dB/div	Ref Offset 34.1 dB Ref 28.10 dBm					IVIN	-33.13	8 dBm	-	Explorer
		1								
10.1									Pa	ge Setup
18.1										5 1
8.10										
-1.90		—— <mark>"</mark> —								
-11.9								-13.00 dBm		Print
-21.9										FIIII
-21.9										
-31.9		\$ 2								Restore
	State false and a strend for the str	a data data data		and the second strate states and	ally an electric state of the	a and a survey of the second	allere testifice	المراطعة وبالبلج	æ	Down
-41.9		and a strength of the second	and the second	and the second secon	a hin an ini an ini an ina an	in state (second s				
-51.9										Minimize
-61.9										
Start 9 kH							Stop 2	500 CH	\mathbf{X}	Exit
#Res BW		VBW	1.0 MHz*			Sweep 5.	33 ms (40	500 GHz 001 pts)		
لأناعيهم								/		

PCS band

AWS band

Agilent Spectrum Analyzer - MXA							
Marker 2 3.17087500		SENSE		ALIGNAUTO	09:02:13 pm Jul 24, 201 TRACE 1 2 3 4 5		File
Marker 2 5. 17007500	PNO: Fast	Trig: Free R			TYPE MMWWWW DET P A N N N	*	
	IFGain:Lov	#Atten: 6 dB					File
Ref Offset 34.1 10 dB/div Ref 30.10 d				Mkr2 3	3.170 875 GH: -35.690 dBn		Explorer
Log 1							
20.1						Pa	ge Setup
10.1							
0,100							
-9.90					-13.00 dBi		
-19.9							
-29.9 2					- have		Print
	with which the state of the state		a da alta a da a da alta da	A DECEMBER OF	Construction of the local division of the lo		
-39.9				mum	· ·····		
-49.9		and the second s					Restore
-59.9						8	Down
Start 1.00 GHz					Stop 22.00 GH	2	
#Res BW 1.0 MHz	VE	W 1.0 MHz*		#Sweep	1.00 s (40001 pts		Minimize
MKR MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		
2 N 1 f	2.112 475 GHz 3.170 875 GHz	26.445 dBm -35.690 dBm					
3						\mathbf{X}	Exit
5							
<		ш			>		

	Im Analyzer - M RF 50 S 2.088938	2 <u>∧</u> DC 979825 G P		Trig: Free R #Atten: 8 dB	Avg	ALIGNAUTO 3 Type: Pwr(RMS) Hold:>10/10	08:58:40 pm Jul 24, 201 TRACE 12345 TYPE MMWWWW DET PANNN	3	File
10 dB/div	Ref Offset 3 Ref 32.10					Mkr	2 2.088 94 GHz -34.246 dBm		Explorer
22.1								Р	age Setup
2.10									
.17.9							-13.00 dBr		Print.
37.9			ulla i como co		en ante straling <mark>katilente a</mark>	d deve for all the stand large day is the book is the stand			Philic.
47.9 								7	Restore Dowr
tart 9 kH Res BW			VBW	1.0 MHz*	^	#Sweep	Stop 2.500 GHz 1.00 s (40001 pts		Minimize
MKR MODE TR 1 N 1 2 N 1 3	C SCL f f	× 2.133 0 2.088 9	0 GHz 4 GHz	Y 26.274 dBm -34.246 dBm		FUNCTION WIDTH	FUNCTION VALUE		Exi
4 5									Exi

On the plots shown the low, middle and high channel are presented.

There were no emissions detected within 20 dB of limit. The peak trace is also shown to illustrate the peak to average ratio of approximately 11 dB.

Data was collected for all signals (average measurement) within 20 dB of limit. No signals were found within 20 dB of limit.

5.0 Band Edge

5.1 Methodology

Measurements were performed at three worst case modulations (WCDMA, CDMA2000, and LTE5M) for the lowest and highest frequency within the band.

Worst-case data is shown in the figures C1 - C6 (700 MHz band), C7 - C12 (800 band), C13-C18 (PCS band), and C14-C24 (AWS band) in section 5.2 and 5.3.

27.53 Emission limits.

(f) For operations in the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be

attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log_{10}(P) dB$. (g) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}(P) dB$.

(g) For operations in the 1710-1755 MHz and 2110-2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}$ (P) dB.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

22.917 Emission limits.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

24.238 Emission limitations for Broadband PCS equipment.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The required measurement resolution bandwidth (RBW) is 1% of the emission bandwidth. Measurements were made at the RBW sufficient to show detail at edge of band. Therefore data presented must be corrected to the measurement bandwidth using the formula (1.9.1). The data in the following tables must be added to the reading in the graph for the modulation under consideration.

High end

700 MHz band

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	10	3.5
DL1C-WCDMA	30	45	-3.5
LTE5M	30	45	-3.5

800 MHz band

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	30	13.5	6.94

PCS band

30

30

DL1C-WCDMA

LTE5M

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	12	1.94
DL1C-WCDMA	30	50	-4.4
LTE5M	30	50	-4.4

AWS band

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	12	1.94
DL1C-WCDMA	30	51	-4.6
LTE5M	30	51	-4.6

Low end

700 MHz band

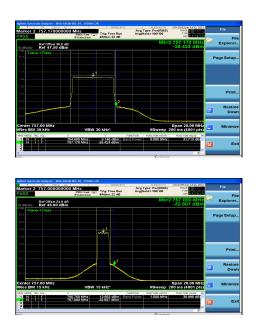
Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	16	-0.56
DL1C-WCDMA	30	48	-4.1
LTE5M	30	40	-2.5

800 MHz band

Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	13.5	0.9
DL1C-WCDMA	30	51	-4.6
LTE5M	30	51	-4.6

PCS band

Modulation Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
------------------------------	-----------------	-----------------

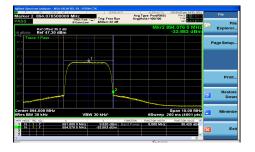

		V	/ I R E L E S S [™]
F1C-C2K	15	12	1.94
DL1C-WCDMA	30	51	-4.6
LTE5M	30	51	-4.6

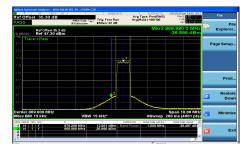

AWS band

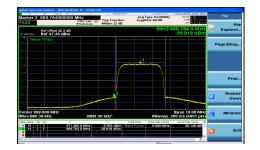
Modulation	Measured RBW, kHz	Actual RBW, kHz	Correction (dB)
F1C-C2K	15	15	0
DL1C-WCDMA	30	50	-4.4
LTE5M	30	50	-4.4

5.2 Results – Figures C1- C24 (Plots)

AUSNAUTO 09:06:60 m 3430 Avg Type: Pur(RMS) 19402 ee Run Avg[Hold>100/100 107	File
22 dB ter 0.4	EI EI
Mkr2 727.845 N -29.430 d	HZ Kerner Bm
	Page Setup
li l	Print
2	
	Resto
	Dow
Span 20.00	MHZ 📑 Minimi
#Sweep 200 ms (4001	ots)
PUNCTION PUNCTION WOTH PUNCTION WLUE GIBM Barry Power 2000 MHz 30700 c	
dBm 5.000 MHz 30.700 C	E:

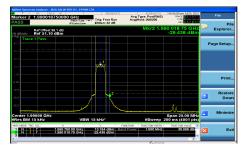

Avg Type: Pwr(RMS) 1942 Avg Avg[Heid>100/100 1942	No Co
Mkr2 727.845 F -31.773 c	
	Page Setur
	Page Setup
	Prin
	Resto
	Dov
Span 20.00 #Sweep 200 ms (4001	MHZ 📑 Minimi pts)
INCTION FUNCTION WOTH FUNCTION WILL IN POWER 5,000 MHz 30,731	
5,000 MP12 30.731	E 🔀 E



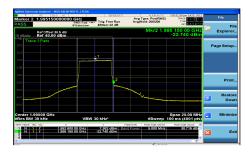

	93,99550000	Tria:	ree Rur 1:22 dB	Ava	ALIONAUTO Fype: Par(RMS) Ield>100/100	09:37:13 pm 3.430, 2012 19:402 1 2 3 4 1 0 19:402 4 4 5 0 5 1		File
	Ref Offset 35.3 dB Ref 47.30 dBm				Mkr2 8	393.995 5 MHz -34.385 dBm		Explore
ar a Trace	Pass						Pi	nge Setu
								-
		anter 1						
								Prir
			.2				_	
			ĸ				3	Rest
42.7								_
enter 894.	000 MHz				and the second	Span 18,00 MHz		Minim

File F		am AJ 30, 2012 C 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	09:42:251 1040 1111 11	ype: Pwr(RMS) eld>100/100	Ave 1	Trig: Free Run #Atten: 22 dB	MHz PN0: Fast C, IFGain:Low	20 0 AC 240000000	as 868.7		dan PAS
Explore	Α	0 MHz 00 dBm	868.784 -36.5	Mkr2 (et 35.3 dB .30 dBm	Ref 0 Ref 4	B/div	10 d
Page Setup									e 1 Pas	Trac	
											
Prin											
Resto	8										
Minimi	-	8.00 MHz 4001 pts)	Span 1 200 ms (#Sweep :		0 KHZ*	VBW	IHz	9.000 30 kHz	ter 86 s BW	Cen /Re
E				RUNCTION WIDTH 6.000 MHz	FUNCTION BRIDE ROWLER	6.057 dBm -36 500 dBm	0010 MHz 84 0 MHz	× 971,4 969,7	C SCL	NODE TE	1 2 3

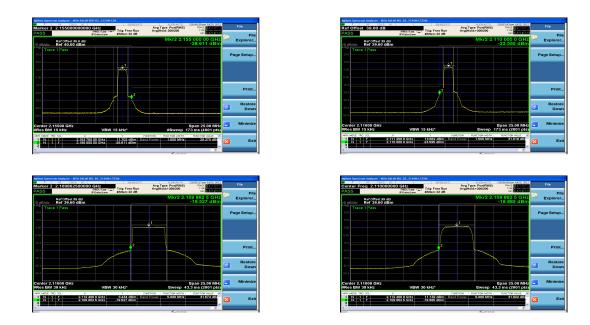
800 MHz band








PCS band



AWS band

larker 2	2.1551687	50000 GH		Trie: Fre	e Run	Avg Tr Avg Ho	pe: Pwr(RMS)	05:45:17 s 19AC TVP	21 3.625, 2012		File
ASS	Ref Offset 39 Ref 40.00 d	6 dB	in:Low	#Atten: 2	2 68		Mkr2 2.1	55 168 -24.5	75 GHz 12 dBm	2	File Explorer.
Trac	e 1 Pass									Pa	ige Setup.
				1							
200											Print.
											Restor
2.0											Dow
tes BW	15500 GHz 30 kHz		VBW	30 kHz'			#Sweep	173 ms (•	1001 pts)		Minimiz
N HOLE 1		× 152 500 00 155 169 76	SHz SHz	7 971 e -24.542 e	sam Ban		FUNCTION WIDTH	PUNCTIC			Ex

PASS				FGain:Low	#Atten: 5	2 68		Mkr2 2.1				FI
	Ref Ref	Offset 38 40.00 d	6 dB Brn					WIK12 2.1	-24.3	06 dBm		Explorer
30.0	ace 1 P	ass									Pa	ige Setup
20.0					"1							
20.0						2						Print
30.0				4							-	Resto
40.0											8	Dow
												Minimiz
Res B	2.1550 W 30 k	Hz		VBW	/ 30 kHz*			#Sweep	173 ms		-	
1 1	THC SCL	1 2	× 11392-500	60 GHz	0.195 c -24.305 c	sam Ban	INCTION	FUNCTION WIDTH 5,000 MIHz		ON VALUE	-	E

5.3 Results – Figures C1- C24 (Tables)

Low end

700 MHz band

Modulation	Freq (MHz)	•	Correction factor, dB	Limit (dBm)	Margin (dB)	Result	
------------	---------------	---	-----------------------	----------------	----------------	--------	--

							S S™
CDMA2000	729.3	-31.8	-0.56	-13	19.4	PASS	
WCDMA	729	-31.7	-4.1	-13	22.8	PASS	
LTE5M	729	-29.4	-2.5	-13	16.4	PASS	

800 MHz band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB	Limit (dBm)	Margin (dB)	Result
CDMA2000	871	-36.9	0.9	-13	23.0	PASS
WCDMA	871	-36.8	-4.6	-13	28.4	PASS
LTE5M	871	-36.5	-4.6	-13	28.1	PASS

PCS band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB	Limit (dBm)	Margin (dB)	Result
CDMA2000	1931	-32.8	1.94	-13	17.9	PASS
WCDMA	1931	-30.1	-4.6	-13	21.7	PASS
LTE5M	1932	-27.0	-4.6	-13	18.6	PASS

AWS band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB	Limit (dBm)	Margin (dB)	Result
CDMA2000	2111	-23.6	0	-13	10.6	PASS
WCDMA	2112	-19.9	-4.4	-13	11.3	PASS
LTE5M	2112	-19.5	-4.4	-13	10.9	PASS

High end

700 MHz band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB		Margin (dB)	Result	
------------	---------------	------------------	-----------------------	--	----------------	--------	--

							S S™
CDMA2000	754	-32.6	3.5	-13	16.1	PASS	
WCDMA	754	-27.7	-3.5	-13	18.2	PASS	
LTE5M	754	-29.4	-3.5	-13	19.9	PASS	

800 MHz band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB	Limit (dBm)	Margin (dB)	Result
CDMA2000	891	-34.4	6.94	-13	14.46	PASS
WCDMA	891	-33.9	-3.7	-13	24.6	PASS
LTE5M	891	-36.0	-4.1	-13	27.1	PASS

PCS band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB	Limit (dBm)	Margin (dB)	Result
CDMA2000	1990	-23.3	1.94	-13	8.36	PASS
WCDMA	1990	-24.9	-4.4	-13	16.3	PASS
LTE5M	1990	-29.4	-4.4	-13	20.8	PASS

AWS band

Modulation	Freq (MHz)	Reading (dBm)	Correction factor, dB	Limit (dBm)	Margin (dB)	Result
CDMA2000	2152	-28.6	1.94	-13	13.7	PASS
WCDMA	2152	-24.3	-4.6	-13	15.9	PASS
LTE5M	2153	-24.5	-4.6	-13	16.1	PASS

Table 8. Band edge measurements.

6.0 Field Strength of Spurious Radiation

6.1 Methodology

Measurements were performed at three modulations (F1C-C2K, DL1C-WCDMA, LTE5M) for the mid, lowest and highest frequency within the band.

Worst-case data is shown in the figures E1 - E2 in section 6.3.

A brief summary of the applicable FCC specifications are listed in the table below.

27.53 Emission limits.

(f) For operations in the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be

attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log_{10} (P) dB$. (g) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10} (P) dB$.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

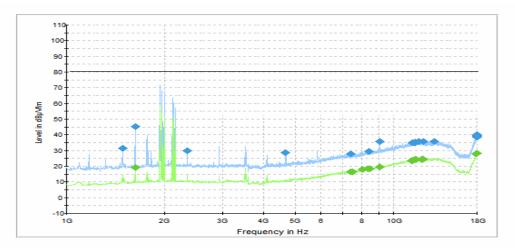
22.917 Emission limits.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

24.238 Emission limitations for Broadband PCS equipment.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Thus the required attenuation = 43+10*Log (P) dB and the limit = -13dBm (82.2 dB μ V/m) ERP for average detector.


6.2 Interpretation

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1053. Substitution method as prescribed under ANSI/TIA-603-C section 2.2.12 and 22.17 is not required for all signal margin exceeds 20 dB.

⁽g) For operations in the 1710-1755 MHz and 2110-2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}$ (P) dB.

6.3 Results – Figure D1 - D2

Figure D1. Data for radiated spurious emission 1 – 18 GHz is presented.

No signals were detected within 20dB of limit. Substitution method is required on all signals within 20dB of limit.

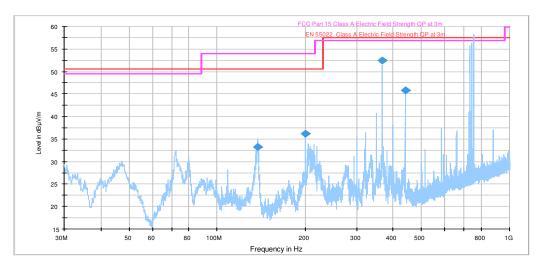


Figure D2. Data for radiated spurious emission 30MHz – 1GHz is presented.

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
137.520680	33.2	1000.00	120.000	200.0	н	99.0	14.8	49.0	82.2
200.020680	36.2	1000.00	120.000	147.0	Н	76.0	14.6	46.0	82.2
365.996360	52.4	1000.00	120.000	100.0	Н	142.0	17.3	29.8	82.2
439.197880	45.8	1000.00	120.000	100.0	Н	319.0	19.0	36.4	82.2

No other emissions were detected within 20dB of limit.

7.0 Frequency Stability

7.1 Methodology

Measurements were performed at CW.

Data plot is shown in the figure E1 - E4 in section 7.2.

A brief summary of the applicable FCC specifications are listed in the table below.

2.1055 Frequency stability.
(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in
the following. The frequency stability shall be measured with variation of ambient ambient temperature as follows from -30° to $+50^{\circ}$
centigrade for all equipment Vary primary supply voltage from 85 to 115 percent of the nominal value
27.54 Frequency stability.
The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.
24.235 Frequency stability.
The frequency stability shall be sufficient to ensure that the fundamental emission stay within the authorized bands of operation.
The nequency submity shall be sufficient to ensure that the fundamental emission stary whilm the automized balles of operation.
22.355 Frequency tolerance.
Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within
tolerances given in Table C–1 of this section.
TABLE C-1—FREQUENCY TOLERANCE FOR TRANSMITTERS IN THE PUBLIC MOBILE SERVICES
Frequency range (MHz) 2110 to 2220 10.0 ppm

All test conditions and measurement procedures were performed in accordance with FCC CFR47 part 2 subpart J Clause 2.1055.

Data was collected continuously over temperature range of -40C to 55C using a max hold function. Worst-case data is shown on aggregate plot.

7.2 Results - Figures E1 – E4

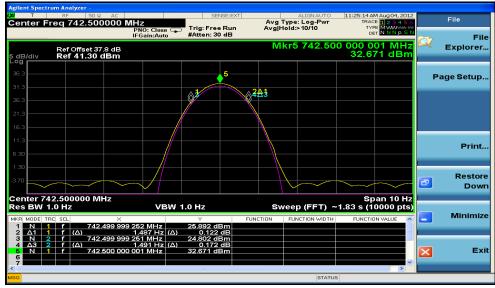


Figure E1. Data for frequency stability is presented for 700 MHz.

f Offset 38.8 d If 42.30 dBn	B n 	¢ ²		1kr5 881.49		99 MHz 8 dBm	Page Set
		↓ ↓ 3					Page Set
		<u>j</u>					
		<u>Å</u>	2≜3				
			N N				
							Pr
			\longrightarrow				FI
							Res
						-	а р
00000 MHz Hz	VBV	№ 1.0 Hz	s	weep (FFT) ~			
L	×	Y	FUNCTION	FUNCTION WIDTH	FUNCTION		Mini
(Δ)	2 Hz (/	Δ) -0.157 dl	3				
							×
						~	
ι	Hz (Δ) (Δ) (Δ)	Hz VB1 × 881.500 MHz (Δ) 2 Hz ((Δ) 881.499 999 114 MHz (Δ) 2 Hz (881.499 999 999 MHz	Hz VBW 1.0 Hz × 21.586 dBr (Δ) 2142 (Δ) (Δ) 31.168 dBr (Δ) 31.168 dBr t Completed	Hz VBW 1.0 Hz S Δ 881.500 MHz 21.586 Bm Δ 2 Hz Δ.157 dB Δ 2 Hz Δ.157 dB Δ 2 Hz Δ.057 dB Δ 31.499 999 114 MHz 2.0638 dBm Δ 31.168 dBm 4.168 dBm t Completed 5.168 dBm	Hz VBW 1.0 Hz Sweep (FFT) X Y FUNCTION (Δ) 881.600 MHz 21.586 dBm (Δ) 2.142 (Δ) 0.157 dB (Δ) 2.142 (Δ) 0.097 dB (Δ) 2.142 (Δ) 30.157 dB (Δ) 2.142 (Δ) 0.097 dB 881.499 999 999 MHz 31.168 dBm 51.168 dBm t Completed STATUS	Hz VBW 1.0 Hz Sweep (FFT) ~1.83 s (10 × Y FUNCTION FUNCTION (△) 2 Hz (△) 0.157 dB FUNCTION (△) 2 Hz (△) 0.057 dB FUNCTION (△) 2 Hz (△) 0.097 dB FUNCTION (△) 31.168 dBm STATUS STATUS	Span 10 Hz Span 10 Hz Hz VBW 1.0 Hz Sweep (FFT) ~1.83 S (10000 pts) (a) 881.600 MHz 21.656 dBm FUNCTION FUNCTION WIDTH FUNCTION VALUE (b) 2 Hz (a) -0.157 dB FUNCTION FUNCTION FUNCTION VALUE (c) 2 Hz (a) -0.157 dB FUNCTION FUNCTION FUNCTION VALUE (c) 2 Hz (a) -0.097 dB FUNCTION FUNCTION FUNCTION 881.499 999 999 MHz 31.168 dBm FUNCTION FUNCTION FUNCTION t Completed STATUS FUNCTION FUNCTION

Figure E2. Data for frequency stability is presented for 800 MHz.

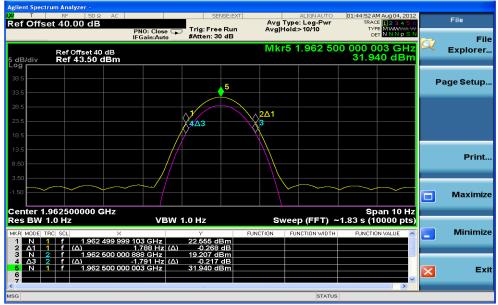


Figure E3. Data for frequency stability is presented for PCS band.

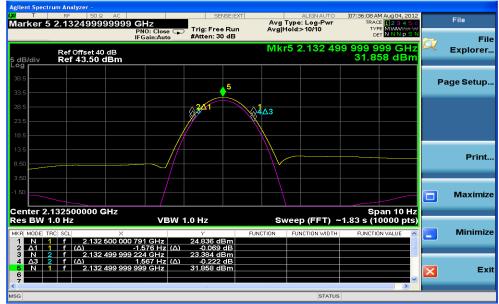
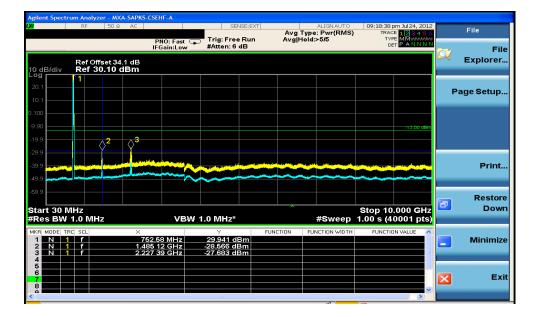


Figure E4. Data for frequency stability is presented for AWS band.

Band	Delta A (Hz)	Delta B (Hz)	Error (Hz)	PPM
700 MHz	1.487	1.491	0.004	5.38E-6
800 MHz	2.0	2.0	< 0.001	< 1.25E-6
PCS	1.788	1.791	0.003	1,53E-6
AWS	1.576	1.567	0.009	4.2E-6

 Table 9. Calculation of frequency error in ppm.

8.0 Intermodulation


8.1 Methodology

Measurements were performed at three modulations (F1C-C2K, DL1C-WCDMA, LTE5M) for the mid, lowest and highest frequency within the 700 MHz (730 – 755 MHz), 800 MHz (871 – 892 MHz).

Worst-case data is shown in the figures in sections 3.2 in Figures F1 - F2.

A brief summary of applicable FCC specifications is listed in the table below.


8.2 Results - Figures F1 - F2

700 MHz band

800 MHz band

