

For

Dali Wireless, Inc.

535 Middlefield Road, Suite 280 Menlo Park, CA 94025

Date:	31 August 2017
Report No.:	16462-1E
Revision No.:	1
Project No.:	16462
Equipment:	PS 900 Remote Unit, Single-Band Medium Power
Model No.:	HD30-1-PS-NA-C-I1N
FCC ID:	HCOHD301PSNACI1A

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

A

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

TABLE OF CONTENTS

TEST REPORT_FCC Part 2, 90	3
Revision History	4
Device Under Test Description	4
Program details	5
Description of Equipment Under Test and Variant Models	5
Client Equipment Used During Test	7
Software and Firmware	7
Input/Output Ports	7
Power Interface	8
EUT Operation Modes	8
EUT Configuration Modes	8
Test Equipment Verified for function	8
Measurement Uncertainty	8
Result Summary	9
Radiated Emissions	9
Output Power (Conducted)	10
Test setup	10
Results	11
Occupied Bandwidth	17
Test setup	17
Results	18
Unwanted Emissions (Conducted)	24
Test setup	24
Results	25
Spectrum Emission Mask	33
Test setup	33
Results	34
Frequency Stability	40
Intermodulation	41
Test setup	42
Results	43
Input/output Power and Amplifier/Booster Gain	45
Test setup	45
Results	46
Noise Figure	47
Test setup	47
Results	48
Radiated Emissions - Enclosure	49
Test setup	50
Measurement Procedure	53
Test Result	53
Graphical Representation for Emission - Radiated 30kHz to 30MHz	53
Graphical Representation for Emission - Radiated 30MHz to 1GHz	54
Graphical Representation for Emission - Radiated 1 to 18GHz	55
Table Representation for Emission - Radiated 30MHz to 18GHz	55
APPENDIX A: ISO 17025:2005 Accreditation Certificate	56

Page 2 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

TEST REPORT_FCC Part 2, 90				
Private Land Mobile Services				
Report Reference No 16462-1E				
Report Revision History.	✓ Rev. 1: 31 Aug	gust 2017		
Compiled by (+ signature)	Sophie Piao,	GuihnPin		
	David Johanson	Den		
Approved by (+ signature)	Jeremy Lee	2 To Carro		
Date of issue:	31 August 2017			
Total number of pages	60			
	1			
FCC Site Registration No.:	721268			
IC Site Registration No.:	5970A-2			
Testing Laboratory	LabTest Certification Inc.			
Address:	Unit 205 – 8291 92ST. Delta, B.C. V4G 0A4, Canada			
Applicant's name:	Dali Wireless, Inc.			
Address:	: 535 Middlefield Road, Suite 280, Menlo Park, CA 94025			
Manufacture's Name	Dali Wireless (Canada) Inc.		
Address:	8618 Commerce Court, Burnaby, B.C. V5A 4N6, Canada			
Test specification:				
Standards:	 FCC Part 2; 2017 FCC Part 90; 2017 			
Test procedure:	 > ANSI C63.10:2013 > ANSI C63.4:2014 > ANSI/TIA-603- E-2016 > FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: Feb 12, 2016 			
Non-standard test method	N/A			
Test Report Form(s) Originator:	: Jeremy Lee			
Master TRF:	RF 1036_Rev2 – RF Report Template			
Test item description :				

Page 3 of 59

Trade Mark:	hd30™	
Model/Type reference:	HD30-1-PS-NA-C-I1N	
Serial Number:	10911101RA1B77003	
FCC ID	HCOHD301PSNACI1A	
IC ID:	-	
Possible test case verdicts:		
- test case does not apply to the test object:	N/A	
- test object does meet the requirement:	P (Pass)	
- test object does not meet the requirement:	F (Fail)	
Testing:		
Date of receipt of test item:	Aug 15, 2017	
Date (s) of performance of tests:	Aug 15 – 23, 2017	

Revision History

Revision	Date	Reason For Change	Author(s)
0	Aug. 22	Initial Data	Sophie Piao, David Johanson
1	Aug. 31	First version	Jeremy Lee

Device Under Test Description

Application for	PS 900 Remote Unit, Single Band Medium Power DAS		
Operating Transmit Frequency:	935 MHz – 940 MHz		
Operating Receive Frequency:	896 MHz – 901 MHz		
Number of Channels:	As many as which can fit		
Rated RF Output(e.i.r.p.)	30 dBm		
Modulation Type:	4FSK; P25 Phase I C4FM, CQPSK; P25 Phase II HDQPSK		
Equipment mobility	Fixed		
Operating condition:	-40 to +50 °C		
Mass of equipment (g):	< 22,700g		
Dimension(W X D X H)	430 mm X 194 mm X 466 mm		
Nominal Voltages for:	48 V stand-alone equipment		
	48 V combined (or host) equipment		

Page 4 of 59

Supply Voltage:	AC Amps DC1.667 Amps
If DC Power:	 Internal Power Supply √ External Power Supply Battery □ Nickel Cadmium □ Alkaline □ Nickel-Metal Hydride □ Lithium-Ion □ Other

Program details

Testing Facility by procedure:				
\bowtie	Radiated Measurement	LabTest Certification Inc.		
Testing location/ address		Unit 3128-20800 Westminster HWY, Richmond, B.C. V6V 2W3 Canada		
Conducted Measurement: LabTest Certification Inc.		LabTest Certification Inc.		
Testing location/ address		8618 Commerce Court, Burnaby, B.C. V5A 4N6, Canada		

Summary of testing:				
Tests performed (name of test and test clause): Conducted Measurement Radiated Emissions on Enclosure	Testing location: Client Site as Witness Testing In SAC, Richmond			
The tests indicated in Test Summary were performed on the product constructed as described below.				

The test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. LabTest does not make any claims of compliance for samples or variants which were not tested.

Description of Equipment Under Test and Variant Models

Description:

Page 5 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Dali's hd30-ps900, (30 dBm, 1 W) is an all-digital, medium power, single-band radio remote. It bi-directionally transfers two public safety bands over a single optical fiber (SFP -Single Mode Fiber) to/from the RF Router, hdHost® at 10 Gb/s up to 20 km. It also supports 1 Gbps Ethernet backhaul as well. This smart radio remote enables multiple network topologies that cater to different deployments scenarios including star, chain, hybrid and loop topologies.

- Top view

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

Page 6 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Client Equipment Used During Test

Use*	Product Type	Manufacturer	Model	Comments
EUT	hd30, 900PS	Dali Wireless Inc.	HD30-1-PS- NA-C-I1N	EUT where the RF (I/O) antenna attached.
AE1	UBiT-hdHost, 900PS	Dali Wireless Inc.	UBiT-hdHost-S- PS-C-SS2Q	Auxiliary equipment, which is connected to the Base Station via RF coaxial cables, has no air interface.
AE2	UBiT-CP	Dali Wireless Inc.	UBiT-CP	Auxiliary equipment provides the configuration and control interface to UBiT- hdHost and hd30.
Abbreviations: EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)				

Software and Firmware

Use*	Description	Version	
EUT	Software installed	2.0.2.206	
AE1	Software installed	2.0.2.206	
AE2	Software installed	2.0.2.206	
Abbreviations: EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)			

Input/Output Ports

Port #	Name	Туре*	Cable Max. >3m	Cable Shielded	Comments
1	DC Power Port	DC	No	No	Dual feed 48 VDC Assembly
2	RF I/O Port	I/O	No	No	N-Type Coaxial
3	2 X Optical Fibre I/O Ports	I/O	No	No	LC/UPC Duplex
4	4 X TP	TP	No	No	RJ-45
*Note: AC = AC Power Port DC = DC Power Port N/E = Non-Electrical I/O = Signal Input or Output Port (Not Involved in Process Control) TP = Telecommunication Ports					

Page 7 of 59

Power Interface

Mode	Voltage	Current	Power	Frequency	Phases	Comments
#	(V)	(A)	(W)	(DC/AC-Hz)	(#)	
1	48	-	-	DC	-	

EUT Operation Modes

Mode #	Description
1	UL and DL transmission and receiving ON

EUT Configuration Modes

Mode #	Description
1	Ubit-hdHost maximum input threshold set to 0dBm, uplink attenuation set to 0dB; hd30 uplink and downlink attenuation set to 0dB

Test Equipment Verified for function

Model #	Description	Checked Function	Results
N9038A	Spectrum Analyzer	Frequency and Amplitude	Connected 50MHz and -20 dBm Ref_siganI and checked OK.
JB1	Antenna, 30 to 2000MHz	Checked structure	Normal – no damage.
SAS-571	Antenna, 1 to 18GHz	Checked structure	Normal – no damage.
AL-130	Antenna, 9kHz to 30MHz	Checked structure	Normal – no damage.
KT- N5172B	Signal Generator, up to 6GHz	Frequency, Amplitude and Modulation	Within MFR Specs
KT- N9010A	Spectrum Analyzer	Frquency and Amplitude	Within MFR Specs

Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty
Radio Frequency	±1 ppm
Total RF Power: Conducted	±1 dB
RF Power Density: Conducted	±2.75 dB
Spurious Emissions: Conducted	±3 dB
Temperature	±1 °C
Humidity	±5 %

DC and Low Frequency Voltages	±3 %
Radiated Emission, 30 to 6,000MHz	± 4.95 dB

Uncertainty figures are valid to a confidence level of 95%.

Result Summary

The Compliance Status is a judgment based on the direct measurements and calculated highest emissions to appropriate standard limits. Measurement uncertainty values, provided on calibration certificates, were not be used in the judgment of the final status of compliance.

FCC Part 15.231 and IC RSS-210								
Test Type	Regulation	Measurement Method	Result					
Output Power (Conducted)	FCC Part 2 2.1046 FCC Part 90.219	ANSI TIA-603-E-2016	PASS					
Occupied Bandwidth	FCC Part 2 2.1049 FCC Part 90.210	ANSI TIA-603- E-2016	PASS					
Unwanted Emissions (Transmitter Conducted)	FCC Part 2 2.1046(a) FCC Part 90.210	ANSI TIA-603- E-2016 & FCC KDB 935210 D05, v01r01	PASS					
Spectrum Emission Mask	FCC Part 90 90.210	ANSI TIA-603- E-2016 & FCC KDB 935210 D05, v01r01	PASS					
Intermodulation	FCC Part 90 90.219	ANSI TIA-603- E-2016 & FCC KDB 935210 D05, v01r01	PASS					
Input/output Power and Amplifier/Booster Gain	FCC Part 90 90.219	ANSI TIA-603- E-2016 & FCC KDB 935210 D05, v01r01	PASS					
Noise Figure	FCC Part 90 90.219	ANSI TIA-603- E-2016 & FCC KDB 935210 D05, v01r01	PASS					
Radiated Emissions - Enclosure	FCC Part 2.1053, FCC Part 90.210 & FCC Part 90.219	ANSI C63.4:2014 & ANSI/TIA- 603-E-2016	PASS					

Output Power (Conducted)

Governing Doc	FCC Part 2 2.1046(a) FCC Part 90.219(d)		Room Temperature (°C)			25		
Test Procedure ANSI/TIA-603- E-2016			Relative Humidity (%)			60		
Test Location	Burnaby		Barome	tric Pressure (kP	a)	98.1		
Test Engineer	Sophie Piao/Jeremy Lee		Date			Au	ıg 17, 2017	
EUT Voltage	⊠ DC		□ 12	0VAC @ 60Hz				
Test Equipment Used	Manufacturer	ſ	Nodel	Serial Number	Са	libration	Calibration due	
Signal Generator	Keysight	N	15172B	MY53050270	08/04/17		08/04/18	
Spectrum Analyzer	Keysight	N	9010A	MY50520285	08/07/17		08/07/18	
40dB Attenuator	Aeroflex Winschel 58		3-40-43	n/p	CVP		CVP	
Note) CVP = Calibration	N Verification Performed ir	nterr	nally, n/p	= not provided.				
Frequency Range:	⊠ 935.0125 MHz, 937.	5 M	Hz, 939.9	9875 MHz				
Detector:	⊠ Peak							
Type of Facility:	⊠ Test bench							
Distance:	⊠ Direct							
Arrangement of EUT: Table-top only		☐ Floor-standing only			Rack Mounted			
	·							
Output Power is less than 5 W.								
Compliant 🛛 Non-Compliant 🗆 Not Applicable 🗆								

Test setup

Page 10 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 11 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Page 12 of 59

Page 13 of 59

Page 14 of 59

ISG

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Page 15 of 59

STATUS

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Page 16 of 59

Occupied Bandwidth

Governing Doc	FCC Part 2 2.1049 FCC Part 90.210		Room Temperature (°C)			25	
Test Procedure	ANSI/TIA-603- E-2016		Relative Humidity (%)			60	
Test Location Burnaby			Barometric Pressure (kPa)			98.1	
Test Engineer	Sophie Piao/Jeremy Lee	1	Date			Au	g 18, 2017
EUT Voltage	DC DC	[□ 12	0VAC @ 60Hz			
Test Equipment Used	Manufacturer		lodel	Serial Number	Са	libration	Calibration due
Signal Generator	Keysight N		5172B	MY53050270	08/04/17		08/04/18
Spectrum Analyzer	Keysight	N9	9010A	MY50520285	0	8/07/17	08/07/18
40dB Attenuator Aeroflex Winschel 5		58-	-40-43	n/p	CVP		CVP
Note) CVP = Calibration	n Verification Performed ir	nterna	ally, n/p	= not provided.			
Frequency Range:	⊠ 935.0125 MHz, 937.5 MHz, 939.9875 MHz						
Detector:	⊠ Peak						
Type of Facility:	⊠ Test bench						
Distance:	⊠ Direct						
Arrangement of EUT:		□ Floor-standing only		Rack Mounted			
Compliant 🖂	Non-Compliar	nt 🗆	Not Applicabl			le □	

Test setup

Description of test set-up:								
Occupied Bandwidth is measured by connecting a Spectrum Analyzer to the RF output connector via 40dB attenuator. The required measurement resolution bandwidth (RBW) is 1% of the emission bandwidth. 99% energy rule was applied to measure the occupied channel bandwidth. The emission bandwidth is measured as the width of the signal between two frequency points on the channel edge, outside of which the transmission power is attenuated at least 26dB below the transmitter output power The EUT was set to Operation Mode #1 with configuration Mode #1 .								
Vector Signal Generator NdHost O EUT EUT Attenuator Attenuator Spectrum Analyzer								

Page 17 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 18 of 59

C4FM at Lower Edge

Page 19 of 59

C4FM at Higher Edge

Page 20 of 59

CQPSK at Center of Band

Page 21 of 59

Page 22 of 59

HDQPSK at Higher Edge

Page 23 of 59

Unwanted Emissions (Conducted)

Governing Doc	FCC Part 2 2.1046(a) FCC Part 90.210	Room T	Room Temperature (°C)			25		
Test ProcedureANSI/TIA-603- E-2016; FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: February 12, 2016		s Relative	Relative Humidity (%)			60		
Test Location	Burnaby	Barome	tric Pressure (kP	a)		98.1		
Test Engineer	Sophie Piao/Jeremy Lee	Date			Au	g 16, 2017		
EUT Voltage	⊠ DC	□ 12	20VAC @ 60Hz					
			_					
Test Equipment Used	Manufacturer	Model	Serial Number	Calib	oration	Calibration due		
Signal Generator	Keysight	N5172B	MY53050270	08/0	04/17	08/04/18		
Spectrum Analyzer	Keysight	N9010A	MY50520285	08/07/17		08/07/18		
40dB Attenuator	Aeroflex Winschel	58-40-43	n/p	CVP		CVP		
Note) CVP = Calibration	Note) CVP = Calibration Verification Performed inter							
Frequency Range:	🖾 9 kHz – 9.4 GHz							
Detector:	Peak(for Formal)	⊠ Peak(for Formal)						
RBW/VBW: ⊠ 1/10kHz for 9kHz – 150kHz; ⊠ 10/100kHz for 150kHz – 30 MHz; ⊠ 100/1000kHz for 30MHz – 1GHz; ⊠ 1/50MHz for 1GHz – 9.4GHz								
Type of Facility:	Type of Facility:							
Distance:	Direct Connection							
Arrangement of EUT:	□ Table-top only □] Floor-stan	ding only 🛛 🖾 Ra	ack Mo	ounted			
No emission is greater than -13 dBm.								
Compliant 🖂	Compliant 🛛 Non-Compliant 🗆 Not Applicable 🗆							

Test setup

Page 24 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 25 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

	(CW at	Lowe	r Edą	ge, Emi	ssion	in 30N	1Hz – 9)34MH	z Range	e
Agilent Spec <mark>X/</mark> RL S Center I	trum Analyze RF Freq 482	er - Swept S 50 Ω Α 2.00000	A D MHz PNO:	:Fast ↔	SEN: → Trig: Free	BE:EXT	Avg Typ Avg Hold	ALIGNAUTO e: Log-Pwr 1: 5/5	06:51:56 P TRA TY	M Aug 16, 2017 CE 1 2 3 4 5 6 PE M WWWWWW	Frequency
10 dB/div	Ref Offset 43.1 dB Mkr1 934.0 MHz 0 dB/div Ref 20.00 dBm -37.636 dBm										Auto Tur
10.00											Center Fre 482.000000 MH
20.0 30.0										-13.00 dBm	Start Fro 30.000000 Mi
50.0 44-644	Lydd y ddinawfan d	hander and we did	Myrtologializeriziyer	-Jypeganelik (ha	prisonen Cabilerrey	lipoviti Masou	den hjultanti	ngan til hlen	endistristications	and and a second second second	Stop Fr 934.000000 M
Start 30. Res BV	0 MHz V 100 kH:	z		VBW	1.0 MHz			Sweep 8	Stop 9 33.47 ms (34.0 MHz 1001 pts)	CF Ste 90.400000 M
MKR MODE 1 N 2 3	trc scl 1 f		× 934.0 M	ИНz	¥ -37.636 dB	m FUN	ICTION FL	INCTION WIDTH	FUNCTI	DN VALUE 🔦	Freq Offs
4 5 6 7 8											0
9 10 11 <										×	
SG								STATU	s		

CW at Lower Edge, Emission in 941MHz – 1GHz Range

Page 26 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

	CW at L	ower E	dge, Emis	sion in '	1GHz – 9	.4GHz Rar	nge	
Agilent Spectrum Analy	vzer - Swept SA							
XIRLS RF Center Freq 5.3	50 Ω AC 200000000 G	GHZ PNO: Fast ←	SENSE:E)	ת Avg N Avg	ALIGNAUTO Type: Log-Pwr Hold: 5/5	06:51:58 PM Aug 16, TRACE 1 2 3 TYPE M WM	2017 456	Frequency
Ref O	ffset 43.1 dB 20.00 dBm	FGain:High	#Atten: 0 dB		M	r1 5.729 2 G -30.475 dl	Hz Bm	Auto Tun
								Center Fre
-10.0						-19.0)0 dDm	5.20000000 GF
20.0 30.0 40.0 heatbayetugetymu ⁿ	Nohonoronymethon	top of the store of the star	pro vicent respectively result	all hand and hand	or the first of the second	wither warden and the states	Marian	Start Fre 1.000000000 GF
50.0								Stop Fr 9.40000000 G
itart 1.000 GHz Res BW 1.0 MI	Hz	VBW	50 MHz		Sweep 1	Stop 9.400 (4.00 ms (1001	GHz pts)	CF Ste 840.000000 M
1kr mode tro scl 1 N 1 f	× 5.72	9 2 GHz	Y -30.475 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		<u>Auto</u> M
2 3 4 5								Freq Offs 0
6 7 8								
10 11							~	
SG					STATU	в		

CW at Center Channel, Emission in 9kHz - 150 kHz Range

Page 27 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

	CW a	t Center C	nannel, En	nission in	150kHz	– 30MF	Iz Rang	ge
Agilent Spectr	rum Analyzer - Swe	ept SA						
Center Fi		100 MHz	SENSE	Avg	ALIGNAUTO	06:51:49 PM TRAC	4 Aug 16, 2017 E 1 2 3 4 5 6	Frequency
		PNO: Fas IFGain:Lov	V #Atten: 0 dE	lun Avg H 3	old: 5/5	DE		
10 dB/div	Ref Offset 43 Ref 20.00 (.1 dB JBM				Mkr1 2 -37.9	299 kHz 72 dBm	Auto Tur
10.0								Center Fre
0.00								15.075000 M
10.0							-13.00 dDm	
20.0								Start Fr
30.0 <mark> 1</mark>								150.000 k
40.0								
	manuffleshinker	maplement	Wed provident of the states	armhu larmanthatha	the appropriate	monund	mphylowne	Stop Fr
70.0				M				30.000000 M
tart 150	LU-2					Stop 2	0.00 MHz	
Res BW	10 kHz	VE	3W 100 kHz		Sweep 2	75.5 ms (1001 pts)	CF St 2.985000 M
IKR MODE TR	RC SCL	X	Ŷ	FUNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> N
1 N 1 2	f	299 kHz	-37.972 dBn	1				
3 4								Freq Offs
5 6								0
7								
9								
11							~	
sg					STATU	S 🔥 DC Cou	upled	

CW at Center Channel, Emission in 30MHz – 934MHz Range

Page 28 of 59

	CW at Ce	nter Ch	annel, Emiss	ion in 941MH	lz – 1GHz Ran	ge
Agilent Spectrum An	alyzer - Swept SA					
RLS RF Center Freq	50 Ω AC 970.500000 N	ЛНz	SENSE:EXT	ALIGN AUTO Avg Type: Log-Pwi AvgHold: 5/5	06:51:50 PM Aug 16, 2017 TRACE 1 2 3 4 5 6 TYPE M MANAGAMAN	Frequency
		PNO: Fast + IFGain:High	#Atten: 0 dB		DET P N N N N	Auto Tur
Rei 10 dB/div Re	f Offset 43.1 dB f 20.00 dBm			M	kr1 943.478 MHz -34.995 dBm	
Log						Contor Fr
0.00						970 500000 M
-10.0					-13 00 dDm	
-20.0						01-14 F
-30.0						Start Fr
-40.0 HILL JAL	h					341.000000 14
-50.0	WWW AMUN UMA		ซาร์เกมสมเป็นกาสตรสกาสตรสกาสตร	14 August whether has don't	มมากการสารการการการสารสารการการ	
-60.0	1.1.10 \$10.00	er en Linter e	er overflerent Bereke off.	A share of a subsection of	a state and off in the second of	Stop Fr
-70.0						1.00000000 G
Start 041 00 B	лц ₂				Stop 1 00000 GHz	
#Res BW 100	kHz	VBV	/ 1.0 MHz	Sweep	5.467 ms (1001 pts)	5.900000 M
MKR MODE TRC SCI	L X		Y F	UNCTION FUNCTION WIDT	TH FUNCTION VALUE	Auto N
1 N 1 f	943	3.478 MHz	-34.995 dBm			
3						Freq Offs
5					Ē	0
6 7						
8						
v					-	
10						
10 11 <					>	

CW at Center Channel, Emission in 1GHz – 9.4GHz Range

Page 29 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

CW at Higher Edge, Emission in 150kHz - 30MHz Range

Page 30 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

	CW	/ at Hig	her Ec	lge, Emiss	ion in 30N	IHz – 9	34MHz	z Rang	е
Agilent Spect	rum Analyzer - S	Swept SA							
X/RLS Center F	RF 50		17	SENSE:EX	T Avg Type	ALIGNAUTO : Log-Pwr	06:52:03 PM TRAC	Aug 16, 2017	Frequency
	100 102.00		PNO:Fast ← FGain:High	Trig: Free Run #Atten: 0 dB	Avg Hold	: 5/5	TYP DE		
10 dB/div	Ref Offset	43.1 dB) dBm				N	1kr1 933 -37.99	.1 MHz 90 dBm	Auto I une
									Contor From
0.00									482.000000 MH
-10.0								-13.00 dDm	
20.0									Start Ere
-30.0								1	30.000000 MH
-40.0									
-50.0 <mark>~/~////</mark>	while we want the second	had the second	from and and	and the second second	man hugi ana manga	also many long	in non-telementation	naturality	Stop Ere
-60.0									934.000000 MH
-70.0			_						
Start 30. #Res BW	0 MHz 100 kHz		VBW	/ 1.0 MHz		Sweep 8	Stop 93 3.47 ms (1	34.0 MHz 1001 pts)	CF Stej 90.400000 MH
	RC SCL	X 93	3 1 MHz	Y 37.990 dBm	FUNCTION FUI	NCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Ma
2		30.	5.1 1411 12	-07.330 dBm					Fred Offse
4									0 Н
6									
8									
9 10									
11 <								~	
ISG						STATUS	3		t

CW at Higher Edge, Emission in 941MHz – 1GHz Range

Page 31 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Agilent Spectro (X) RLS Center Fr	um Analyzer - Sw RF 50 Q req 5.2000	AC 00000 GHz PNO: Fast	SENSE:EXT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 5/5	06:52:04 PM Aug 16, 2017 TRACE 1 2 3 4 5 6 TYPE IM WWWWW DET IP N N N N N	Frequency
10 dB/div	Ref Offset 43 Ref 20.00	IFGain:High 3.1 dB dBm	#Atten: U dB	Mk	r1 5.695 6 GHz -31.577 dBm	Auto Tune
10.0						Center Free 5.200000000 GH:
-10.0					-13.00 dDm	Start Free
-30.0	African and a start of the	man white an an indian	ration of the second second second	and an an and the state of the	the state of the s	1.000000000 GH:
-50.0 -60.0						Stop Fred 9.400000000 GH;
Start 1.00 #Res BW	0 GHz 1.0 MHz	VBI	N 50 MHz	Sweep 1	Stop 9.400 GHz 4.00 ms (1001 pts)	CF Step 840.000000 MHz
MKR MODE TR	C SCL	× 5.695 6 GHz	-31.577 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
2 3 4 5 6						Freq Offsei 0 Hz
7 8 9						
10 11					~	

Page 32 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Spectrum Emission Mask

Governing Doc	FCC Part 90.210 (i)	25							
Test Procedure	ANSI/TIA-603- E-2016; FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: February 12, 2016	Relativ	e Humidity (%)		60				
Test Location	Burnaby	Barom	etric Pressure (kF	Pa)	98.1				
Test Engineer	Sophie Piao/Jeremy Lee	Date		ŀ	Aug 17, 2017				
EUT Voltage	DC 🛛	□ 1	20VAC @ 60Hz						
Test Equipment Used	Manufacturer	Model	Serial Number	Calibratio	Calibration due				
Signal Generator	Keysight	N5172B	MY53050270	08/04/17	08/04/18				
Spectrum Analyzer	Keysight	N9010A	MY50520285	08/07/17	08/07/18				
40dB Attenuator	Aeroflex Winschel	58-40-43	n/p	CVP	CVP				
Note) CVP = Calibration	n Verification Performed int	ernally, n/	p = not provided.						
Frequency Range:	🛛 Center Channel								
Detector:	🛛 Peak								
RBW/VBW:	⊠100 Hz								
Type of Facility:	⊠ Testbench								
Distance:	☑ direct connect								
Arrangement of EUT:	□ Table-top only □ Floor-standing only ⊠ Rack Mounted								
Signal of all types of mo	odulation is contained withir	n the emis	sion mask.						
Compliant 🖂	Non-Compliant		Not Appl	icable 🗆					

Test setup

Description of test set-up:

Spectrum Emission Mask is measured by connecting a Spectrum Analyzer to the RF output connector. The input power was adjusted to produce maximum output power on the antenna port. The reference level was measured with integrated BW 2 times of the channel BW. The emission was measured with RBW 100 Hz.

The EUT was set to **Operation Mode #1 with configuration Mode #1.**

Page 33 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 34 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

C4FM at Input

enter Fre	RF 50 Ω AC	0 MHz	Ce	sense:ext nter Freq: 9	37.500000 MHz	ALIGN AU	12:4 Radio	9:11 AM Aug 23, 2017 • Std: None	Frequenc
ASS		IFGain:Lo	w #A	ig: Free Run tten: 10 dB	Avg: 1	00.00% of	5 Radio	Device: BTS	
) d Baladia Windo		m							
)g								Absolute Limit	
				m	\sim				Center
.0									937.50000
.0		/			\sim				
					<u> </u>	\searrow			
								Relative Limit	
			/						
.0						\mathbf{X}			
.0	www.www.www.www.www.							Spectrum	
).0									
enter 937	7.5 MHz							Span 50 kHz	
									CF 5.00
otal Powe	er Ref 0.00	0 dBm 0.0125	MHz						Auto
				Lower	<-	Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	FreqO
0.0 Hz	2.500 kHz	100.0 Hz	-16.07	(-16.07)	-775.0	-15.77	(-15.77)	550.0	
2.000 KHZ	0.500 KHZ	100.0 HZ	-21.92	(-21.92)	-2.500 K	-30.27	(-21.83)	4.100 K	
9 500 kHz	9.00 kHz	100.0 Hz	-40.10	(-23.33)	-0.500 k	-49.03	(-23.03)	10.98 k	
11.00 kHz	25.00 kHz	100.0 Hz	-76.98	(-26.98)	-11.35 k	-77.10	(-27.10)	12.28 k	
99.90 kHz	100.0 kHz	100.0 kHz		` ()́			· ()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
17.50 MH7	15 00 MH7	1 000 MH7		7 1		c	TATUS	44	Ľ
1						0			

Page 35 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

C4FM at Output with input signal 3dB above the AGC threshold

Page 36 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

CQPSK at Output just below the AGC threshold ilent Spectrum Analyzer - Spectrum Emission Mask 11:47:07 PM Aug 17, 2017 ALIGN AU Center Freq: 937.500000 MHz Trig: Free Run Avg: 10 #Atten: 4 dB Frequency Center Freq 937.500000 MHz Radio Std: None Avg: 100.00% of 5 PASS Radio Device: BTS IEGain:Low Ref Offset 43.1 dB Ref 30.0 dBm 10 dBaldiaWindo 00 **Center Freq** 937.500000 MHz 0.00 Relative L 30.0 40. 50. Center 937.5 MHz Span 50 kHz CF Step 5.000 kHz Man Total Power Ref 30.00 dBm .0.0125 MHz Auto <- Peak -> Uppe Freq Offset Start Freq Stop Freq Freq (Hz) Intea BW dBm ∆Lim(dB) Frea (Hz) dBm ∆Lim(dB) 13.77 -875.0 -2.500 k 525.0 2.500 kHz (-16.23)(-16.37) 0 H; 0.0 Hz 100.0 Hz 13.63 (-26.01) (-27.82) (-20.21) 2.500 kHz 6.500 kHz 100.0 Hz 3.993 3.699 (-26.30) 2.500 k -37.65 -40.21 -9.500 k (-28.46) (-19.81) 9.375 k 11.00 k 6.500 kHz 9.500 kHz 100.0 Hz -37.58 9.500 kHz 11.00 kHz 100.0 Hz -11.00 k -39.81 11.00 kHz 99.90 kHz 25.00 kHz 100.0 Hz 100.0 kHz -39.80 (-19.80) -11.20 k -39.52 (-19.52) 11.08 k 100.0 kHz (----) (----) 15.00 MHz 15.00 MHz 1.000 MHz 1.000 MHz 12.50 MHz 12.50 MHz STATUS

Page 37 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

nter Fre	q 937.50000	0 MHz	Ce	sense:ext enter Freq: 9	37.500000 MHz	ALIGN AU	דס 12:48 Radio	B:03 AM Aug 23, 2017 Std: None	Frequency
SS		IFGain:Lo	w #A	ig: Free Run tten: 10 dB	Avg: 1	00.00% of	5 Radio	Device: BTS	
d 🗆 šali v Wordow	a Ref 0 00 dB	m							
								Absolute Limi	
)					\rightarrow				Center F
				manner and a second sec					937.500000
		/			~				
						\searrow			
								Relative Limit	
			1						
) — — ·		- 1/10/10	/						
)						and the second	mm	Spectrum	
nter 937	.5 MHz							Span 50 kHz	
									CFS
tal Powe	r Ref 0.0	0 dBm 0 0125	MHz						5.000 Auto
									Auto
				Lower	<-	⊃eak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	Freq Of
).0 Hz	2.500 kHz	100.0 Hz	-16.81	(-16.81)	0.0	-16.69	(-16.69)	25.00 🔺	
2.500 kHz	6.500 kHz	100.0 Hz	-24.21	(-16.43)	-3.975 k	-24.83	(-16.52)	4.075 k	
0.000 KHZ	9.500 KHZ	100.0 HZ	-49.22	(-26.37) (-26.76)	-6.500 K	-49.98	(-27.13)	0.500 K =	
11.00 kHz	25.00 kHz	100.0 Hz	-76.76	(-26.76)	-11.00 k	-76.71	(-26.71)	11.25 k	
99.90 kHz	100.0 kHz	100.0 kHz		()			()		
12 50 MHz	15.00 MHz	1.000 MHz		()			()		
2.30 10112							())		

HDQPSK at Input

Page 38 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

HDQPSK at Output with input signal 3dB above the AGC threshold

Page 39 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Frequency Stability

The hdHost and hd30 are sychronized to the same reference clock. Therefore there is no frequency error after down and up frequency conversion are performed.

The frequency stability check is not applicable to the EUT.

Page 40 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Intermodulation

Governing Doc	FCC Part 90.219Room Temperature (°C)25							
Test Procedure	ANSI/TIA-603- E-2016; FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: February 12, 2016	ANSI/TIA-603- E-2016; FCC KDB 935210 D05 ndus Booster Basic Meas /01r01: February 12, 2016					60	
Test Location	Burnaby		Barome	tric Pressure (kP	'a)		98.1	
Test Engineer	Sophie Piao/Jeremy Lee		Date			Au	g 18, 2017	
EUT Voltage	⊠ DC		□ 12	0VAC @ 60Hz				
Test Equipment Used	Manufacturer	/lodel	Serial Number	Ca	libration	Calibration due		
Signal Generator	Keysight	N	5172B	MY53050270	0	8/04/17	08/04/18	
Spectrum Analyzer	Keysight	NS	9010A	MY50520285 08		8/07/17	08/07/18	
40dB Attenuator	Aeroflex Winschel	58·	-40-43	n/p		CVP	CVP	
Note) CVP = Calibration	n Verification Performed int	terna	ally, n/p	= not provided.				
Frequency Range:	Max Gain Frequency	± 50	0kHz					
Detector:	⊠ Average							
RBW/VBW:	⊠100/910Hz							
Type of Facility:	⊠ Tabletop							
Distance:	⊠ Direct							
	·							
In order to comply with condition that the ERP of intermodulation products should not exceed -30 dBm in 10 kHz measurement bandwidth, a minimum amount of distribution loss between the <i>hd</i> 30 remote unit antenna port and antenna radiated power shall be • 12 dB when 2-Carrier composite power is 30 dBm • 10 dB when 2-Carrier composite power is 26.5 dBm								
Compliant 🛛 Non-Compliant 🗆 Not Applicable 🗆						ole □		

Page 41 of 59

Test setup

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Description of test set-up:

The procedure used was ANSI/TIA-603-E-2016. Two tones (CW) method was used. The input power to the amplifier was set at maximum drive level by combining the two tones. The two tones were chosen in such a way (1) the third order intermodulation product frequencies are located within the pass band of the DUT and (2) they produce the worst-case emissions out of band. All signals were modulated.

Based on FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: 2016, the two tone was located on either side of the maximum gain frequence in the passing band, and separated with the available spacing, which is 12.5kHz in 900 MHz band.

Measurements were performed with modulated -tone at identical input amplitude which produced integrated maximum rated output power.

The EUT was set to Operation Mode #1 with configuration Mode #1.

Page 42 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 43 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Page 44 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Input/output Power and Amplifier/Booster Gain

Governing Doc	FCC Part 90.219	FCC Part 90.219Room Temperature (°C)25							
Test Procedure	ANSI/TIA-603-E-2016; FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: February 12, 2016					60			
Test Location	Burnaby		Barome	etric Pressure (k	Pa)		98.1		
Test Engineer	Sophie Piao/Jeremy Le	e	Date			Αι	ıg 15, 2017		
EUT Voltage	⊠ DC	⊠ DC □ 120VAC @ 60Hz							
Test Equipment Used	Manufacturer	M	odel Identifier Cali		libration	Calibration due			
Signal Generator	Keysight	N5	172B	MY53050270	08	3/04/17	08/04/18		
Spectrum Analyzer	Keysight	N9	010A	MY50520285	08	3/07/17	08/07/18		
40dB Attenuator	Aeroflex Winschel	58-4	40-43	n/p		CVP	CVP		
Note) CVP = Calibration	n Verification Performed	d interr	nally, n/p	= not provided.					
Span:	🛛 Max Gain Frequer	רcy ± 1	500kHz						
Detector:	⊠ Peak								
RBW/VBW:	⊠100k Hz/ 300 kHz								
Type of Facility:	⊠ Tabletop								
Distance:	Distance: 🛛 Direct								
The booster gain was 3 Watt limited in Part 90.2	0.07 dB at 0 dBm nomi 219.	nal inp	out powe	er. The output po	wer	produced	is less than 5		
Compliant 🛛 Non-Compliant 🖾 Not Applicable 🗆									

Test setup

Description of test set-up:

The procedure used was ANSI/TIA-603-E-2016 and FCC KDB 935210 D05 Indus Booster Basic Meas v01r01:. A CW tone was input at the frequency where the system gain is the maximum in the pass band, with the nominal input power level 0 dBm. The spectrum analyzer was connected to the output RF port via a 50 Ohm 40 dB attenuator. The maximum hold trace and peak detector was used to capture the output power. The output power minus the input power (0dBm) equals to the booster gain in dB.

The EUT was set to Operation Mode #1 with configuration Mode #1.

Page 45 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 46 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Noise Figure

Governing Doc	FCC Part 90.219Room Temperature (°C)25						25	
Test Procedure	ANSI/TIA-603-E-2016; FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: February 12, 2016						60	
Test Location	Burnaby		Barome	tric Pressure (kP	a)		98.1	
Test Engineer	Sophie Piao/Jeremy Lee Date					Au	ig 23, 2017	
EUT Voltage	⊠ DC □ 120VAC @ 60Hz							
Test Equipment Used	Manufacturer	ľ	Model	Serial Number	Ca	libration	Calibration due	
Spectrum Analyzer	Keysight	Ν	9010A	MY50520285	08	8/07/17	08/07/18	
Noise Source	Keysight	Ν	I4001A	MY44420489		CNR	CNR	
Note) CNR = Calibratio	n not required when used	with	n other ca	alibrated equipme	ent.			
Frequency Range:	🖾 896 MHz – 901 MHz							
Detector:	⊠ Average							
RBW:	⊠510 kHz							
Type of Facility:	⊠ Tabletop							
Distance:	⊠ Direct							
Noise Figure is less that	n 9dB.							
Compliant 🛛 Non-Compliant 🗆 Not Applicable 🗆								

Test setup

Description of test set-up:				
Based on FCC KDB 935210 D05 Indus Booster Basic Meas v01r01: 2016, A noise figure analyzer reside in the standard spectrum analyzer was used to connect to the signal output. An excess noise ratio (ENR) calibrated noise source was used to inject noise into the input port of EUT.				
Measurements were performed within the EUT's passband.				
The EUT was set to Operation Mode #1 with configuration Mode #1.				
Spectrum Analyzer hdHost O EUT Noise Source				

Page 47 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Results

Page 48 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Radiated Emissions - Enclosure

Governing Doc	FCC 15.209	Room Temperature (°C)		26.5		
Test Procedure	ANSI C63.4	Relative Humidity (%)		33		
Test Location	Richmond	Barometric Pressure (kPa)		101.7		
Test Engineer	David Johanson	Date			July 19, 2017	
EUT Voltage	⊠ DC	□ 120V	□ 120VAC @ 60Hz			
Test Equipment Used	Manufacturer	Model	Identifier	Calib	ration date	Calibration
Spectrum Analyzer	KeySight	N9038A	702	18-Apr-2017 1		18-Apr-2018
Broadband Antenna	Sunol	JB1	371	29-Mar-2016		29-Mar-2018
Loop Antenna	ComPower	AL-130	241	28-Oct-2015		28-Oct-2017
Horn Antenna	A.H Systems	SAS-571	227C	22-Sep-2016		22-Sep-2018
RF Preamplifier	Agilent	8449B	273	NCR N		NCR
EMC Shielded Enclosure	USC	USC-26	374	NCR ¹		NCR ¹
Note1) NCR = No Calibration Required, but NSA was done at 2016.						
Frequency Range:	⊠ 9kHz-30MHz	⊠ 30-1000MH	Z	⊠ 1	-18GHz	
Detector:	Peak (for Prescan)	🛛 Quasi-Peak	(for Formal))) 🗵	Average(f	or Formal)
RBW/VBW:	⊠ 9/30kHz	⊠ 120/300kHz	2	⊠ 1,	/3MHz	
Type of Facility:	⊠ SAC	□ FSOATS] FSOATS 🛛 in-situ		n-situ	
Distance:	⊠ 3meter	10meter	10meter			
Arrangement of EUT:	☑ Table-top only	□ Floor-standing only □ F		🗆 Ra	Rack Mounted	
Compliant 🖂	Non-Complian	it 🗆	Not Ap	plicabl	e 🗆	

Page 49 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Test setup

Description of test set-up:

The EUT was placed on a nonconducting platform (i.e., an "EUT support table"), of nominal size 1 m by 1.5 m, whose top surface is nominally 80 cm above the reference ground plane. The EUT was set up on 3 meters away from the EUT. The EUT was set continually on its Radio, 1W Max., which was downlinked from tHOST. And the output of RF was terminated via 40dB attenuator, for rejecting the high power of carrier. The lowest, middle and highest channels were used for measuring of all radiated spurious emisions .

The EUT was set to **Operation Mode #1 with configuration Mode #1**.

Page 50 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Page 51 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Page 52 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Measurement Procedure

Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

Scans were made with an EMC Analyzer, controlled by EMC Test Software, Tile7!, from 30kHz to 18GHz with the receiver in the peak mode. The receiver IF bandwidth was 9kHz,120 kHz or 1MHz as appropriate for the frequency and scan step was about 30kHz. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Under 30MHz was only tested at 1meter height and Antenna was changed both polarization, Horizontal and Vertical. Measurements were then made using CISPR quasi peak when the peak readings were within 10dB of the limit line. The numerical results are included herein to demonstrate compliance.

Test Result

The output of EUT was set to 1 Watt(+30dBm), the PASS level of Spurious is: $43 + 10\log(P) = 43 + 10\log(1) = 43dB$ attenuation = -13dBm Since of radiated measurement was performed at 3 meters, the limit line was converted to dBuV/m using the formulas ad outlined in KDB 971168: -13 dBm ERP = 84.38 dBuV/m at 3 meters. Spurious Emission level (dBuV/m) = Detected level (dBuV) + Path Loss(dB) + Antenna Factor (dB/m) - Preamplifier's Gain (dB)

Graphical Representation for Emission - Radiated 30kHz to 30MHz

Spectrum was scanned manually from 30kHz to 30MHz. No automated plot is available for this frequency range. No spurious emissions from the product were detectable

Page 53 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Graphical Representation for Emission - Radiated 30MHz to 1GHz

Page 54 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Graphical Representation for Emission - Radiated 1 to 18GHz

Table Representation for Emission - Radiated 30MHz to 18GHz

No Emissions were measured. All emissions detected, other than the fundamental, were related to the Digital Mode circuitry. No Transmitter Spurious Emissions were detectable and are greater than 20dB below the limit line.

Page 55 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

APPENDIX A: ISO 17025:2005 Accreditation Certificate

CERTIFICATE OF ACCREDITATION

ANSI-ASQ National Accreditation Board

500 Montgomery Street, Suite 625, Alexandria, VA 22314, 877-344-3044

This is to certify that

Labtest Certification, Inc. 3128, 20800 Westminster HWY Richmond B.C. V6V 2W3

has been assessed by ANAB and meets the requirements of international standard

ISO/IEC 17025:2005

while demonstrating technical competence in the field of

TESTING

Refer to the accompanying Scope of Accreditation for information regarding the types of tests to which this accreditation applies.

<u>AT-2033</u> Certificate Number

ANAB Approval

Certificate Valid: 08/07/2017-03/04/2018 Version No. 004 Issued: 08/07/2017

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Page 56 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Labtest Certification, Inc.

3128, 20800 Westminster HWY Richmond, B.C. V6V 2W3 Kavinder Dhillon Ruben Ugarte Phone: 604-247-0444 kdhillon@labtestcert.com ruben Ugarte@labtestcert.com www.labtestcert.com

TESTING

Validto: March 4, 2018

Certificate Number: A T-2033

Testing performed in support of FCC DoC and Certification approval procedures

Type of Device Examples	Scope of Accreditation	Supporting FCC Guidance	Comments
Unintentional Radiators (FCC Part 15, Subpart B)	• ANSI C63.4-2014		
Industrial, Scientific, and Medical Equipment (FCC Part 18)	• FCC MP-5, (February 1986)	-1	
 Consumer ISM equipment. 			
Intentional Radiators	 ANSI C63.10-2013 		
(FCC Part 15 Subpart C)			
UPCS(FCC Part 15, Subpart D)	 ANSI C63.17-2013 		
•Unlicensed Personal			
Communication Systems devices			
U-NII without DFS Intentional	 ANSI C63.10-2013 	KD B Publication 789033	
Radiators (FCC Part 15, Subpart E)			
•Unlicensed National Information			
Infrastructure Devices (U-NII			
without DFS)			
D-NII WIN DFS Intentional	FUU KDB Publication		
- The line and Mation of Information	903402 D02 ONIL DFS		
• Onlicensed National Information	Dulac rol (0rril 9, 2016)		
Dynamic Fragmancy Salaction (DFS)	Kalles Vol (April 0, 2010)		
IIWB Intentional Radiators (ECC	 ANSLC63 10.2013 		
Part 15, Subpart F)	• ANDI COD 10-2015		
•Ultra-wideband Operation			
BPL Intentional Radiators (FCC Part	 ANSI C63.10-2013 		
15, Subpart G)			
•Access Broadband Over Power			
Line (Access BPL)			
White Space Device Intentional	 ANSI C63.10-2013 		
Radiators (FCC Part 15, Subpart H)			
 White Space Devices 			

Version 003 Issued: 08/07/2017

www.anab.org

Pagel of 8

Page 57 of 59

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Testing performed in support of FCC DoC and Certification approval procedures

Type of Device Examples	Scope of Accreditation	Supporting FCC Guidance	Comments
Commercial Mobile Services (FCC	 ANSI/TIA-603-D 	KD B Publication 971168	
Licensed Radio Service Equipment)	 TIA-102.CAAA-D 		
•Part 22 (celbilar)			
•Part 24			
 Part 25 (non-microwave) 			
•Part 27			
General Mobile Radio Services	 ANSI/TIA-603-D 		Microwave Frequencies, as
(FCC Licensed Radio Service	 TIA-102.CAAA-D 		used in this part, refers to
Equipment)			frequencies of 890 MHz
•Part 22 (non-celbilar)			and above .
•Part 90 (non-microwave)			
•Part 95			
•Part 97			
 Part 101 (non-microwave) 			
Citizens Broadband Radio Services	 ANSI/TIA-603-D 	KD B Publication 971168	
(FCC Licensed Radio Service	 TIA-102.CAAA-D 		
Equipment)			
•Part 96			
Maritime and Aviation Radio	 ANSI/TIA-603-D 		
Services (FCC Licensed Radio	A A A A	- A	
Service Equipment)			
•Part 80			
Part 87			
Microwave and Millimeter Bands	 ANSI/TIA-603-D 		
Radio Services (FCC Licensed	 TIA-102.CAAA-D 		
Radio Service Equipment)			
Part 25			
•Part 74			
•Part 90 (90 Y,90Z,D SRC)			
•Part 101			
Broadcast Radio Services (FCC	 ANSI/TIA-603-D 		
Licensed Radio Service Equipment)	 TIA-102.CAAA-D 		
•Part 73			
•Part 74 (non-microwave)			
RF Exposure	 IEEE 3td 1528¹⁷⁴-2013 	KDB Publication 865664	
•Devices subject to SAR		KD B Publication 447498	
requirements			
Hearing Aid Compatibility (Part 20)	 ANSI C63.19-2007; or 		
•HAC for Commercial mobile	 ANSI C63.19-2011 		
services			

Version 003 Issued: 08/07/2017

www.anab.org

Page 2 of 8

Page 58 of 59

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Dali Wireless, Inc. Report No.:16462-1E Revision No.: 1

Testing performed in support of FCC DoC and Certification approval procedures

Type of Device Examples	Scope of Accreditation	Supporting FCC Guidance	Comments
Signal Boosters (Part 20)	 FCC KDB Publication 		
 Wideband Consumer signal 	935210 D03 Signal Booster		
boosters	Measurements v04(February		
 Provider-specific signal boosters 	12,2016)		
 Industrial signal boosters 	 FCC KD B Publication 		
-	935210 D04 Provider		
	Specific Booster		
	Measurements v02 (February		
	12,2016)		
	 FCC KD B Publication 		
	935210 D05 Indus Booster		
	Basic Meas v0 lr0 l (February		
	12,2016)		

Electromagnetic Compatibility (EMC)

Test Method	Test Specification(s)	Range	Comments
Unintentional Radiators	AN SI C63.4-2003 AN SI C63.4-2009		
Radiated and Conducted Emissions	AN SI C63.4:2014; FCC 0 STMP-05 (1986); ICE S-001(2006); ICES-002(2013); ICES-003(2016); ICES-003(2016); ICES-005(2009); CISPR 16-1-1(2015); CISPR 16-1-2(2014); CISPR 16-1-3(2006); CISPR 16-2-1(2014); CISPR 16-2-5(2008); CISPR 16-4-2(2014); EN 55016-1-2(2014); EN 55016-1-2(2014); EN 55016-1-4(2010); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-4-2(2014); CISPR 11(2012); EN 55011(2013); AS/NZS CISPR 11(2013); KN 11 (RRA Armounce 2015-110, Dec, 03, 2015); VCCI V-3 (up to 6 GH2); VCCI V-5; CNS 13438	9 kHz to 40 GHz	

Version 003 Issued: 08/07/2017

www.anab.org

Page 3 of 8

END OF REPORT

Page 59 of 59