

Engineering Test Report No. 2300855-01				
Report Date	April 21, 2023			
Manufacturer Name	The Chamberlain Group LLC			
Manufacturer Address	300 Windsor Dr Oak Brook, IL 60523			
Model No.	HOMELINK RPTR			
Date Received	April 20, 2023			
Test Dates	April 20, 2023 to April 21, 2023			
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231(b) Innovation, Science, and Economic Development Canada, RSS-210 Innovation, Science, and Economic Development Canada, RSS-GEN			
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107		
Signature	Javin landenas			
Tested by	Javier Cardenas			
Signature	Raymond J. Klouda			
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894			
PO Number	4900090196			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210 and RSS-Gen test specification(s). The data presented in this test report pertains to the EUT on the test date(s) specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
2.1.	Scope of Tests	4
2.2.	Purpose	4
2.3.	Identification of the EUT	4
3.	Power Input	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads	4
7.	Modifications Made to the EUT	5
8.	Modes of Operation	5
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	5
13.	Summary	6
14.	Sample Calculations	6
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT	7
18.	Block Diagram of Test Setup	8
19.	Equipment List	9
20.	Powerline Conducted Emissions Test (AC Mains)1	0
21.	Periodic Operation Measurements1	7
22.	Duty Cycle Factor Measurements	0
23.	Spurious Radiated Emissions	2
24.	Occupied Bandwidth Measurements	7
25.	Scope of Accreditation	0

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
-	26 APR 2023	Initial Release of Engineering Test Report No. 2300855-01

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on The Chamberlain Group LLC Homelink Repeater MC (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by The Chamberlain Group LLC located in Oak Brook, IL.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Sections 15.231(b).

The test series was also performed to determine if the EUT meets the RF emission requirements of the Industry Canada Radio Standards Specification RSS-Gen and Industry Canada Radio Standards Specification RSS-210 for Transmitters.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification		
Product Description	Homelink Repeater MC	
Model/Part No.	HOMELINK RPTR	
S/N	SMP-86971	
Band of Operation	260MHz to 470MHz	
Modulation Type	Rolling E Code	
Antenna Type	Whip Antenna ¼ wave at 310MHz	
Antenna Gain (dBi)	N/A	
20dB Bandwidth	53.9kHz	
99% Bandwidth	210kHz	

The EUTs listed above were used throughout the test series.

3. Power Input

The EUT was connected to 120V 60Hz power.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Description	Model #	S/N
Remote Control	NA	NA

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

Mode	Description
Тх	EUT was powered and set to tx at 315MHz after receiving a signal at 310MHz

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210 test specification(s).

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- RSS-210 Issue 10, December 2019, "License-Exempt Radio Apparatus: Category I Equipment"
- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from The Chamberlain Group LLC and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231, Innovation, Science, and Economic Development Canada, RSS-210, and ANSI C63.4-2014 specification(s).

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

Ambient Parameters	Value
Temperature	22.4°C
Relative Humidity	28%
Atmospheric Pressure	1012.8mb

13. Summary

The following EMC tests were performed, and the results are shown below:

Test Description	Requirements	Test Methods	Results
Powerline Conducted Emissions Test (AC Mains)	FCC 15C RSS-GEN	ANSI C63.10: 2013	Conforms
Periodic Operation Measurements	FCC 15C ISED RSS-210	ANSI C63.10: 2013	Conforms
Duty Cycle Factor Measurements	FCC 15C ISED RSS-210	ANSI C63.10: 2013	Conforms
Spurious Radiated Emissions	FCC 15C ISED RSS-210	ANSI C63.10: 2013	Conforms
Occupied Bandwidth Measurements	FCC 15C ISED RSS-210	ANSI C63.10: 2013	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL (dBuV) = MTR (dBuV) + CF (dB).

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS (dBuV/m) = MTR (dBuV) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)

To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

Formula 2: FS (uV/m) = AntiLog [(FS (dBuV/m))/20]

15. Statement of Conformity

The The Chamberlain Group LLC Homelink Repeater MC, Model No. HOMELINK RPTR, Serial No. SMP-86971, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Block Diagram of Test Setup

Radiated Measurements Test Setup

19. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
CDZ4	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NTA4	BILOG ANTENNA	TESEQ	6112D	46660	20-2000GHZ	10/26/2022	10/26/2024
PLF2	CISPR16 50UH LISN	ELITE	CISPR16/70A	002	.15-30MHz	4/10/2023	4/10/2024
PLF4	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	.15-30MHz	4/10/2023	4/10/2024
RBG3	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101592	2HZ-44GHZ	4/7/2022	5/7/2023
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	12/8/2022	12/8/2023
T1E15	10DB 25W ATTENUATOR	WEINSCHEL	46-10-43	CM5689	DC-18GHZ	5/18/2022	5/18/2024
T1E16	10DB 25W ATTENUATOR	WEINSCHEL	46-10-43	CM5685	DC-18GHZ	5/18/2022	5/18/2024
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XLT31	5W, 50 OHM TERMINATION	JFW INDUSTRIES	50T-199 N M		DC-18 GHZ	6/8/2021	6/8/2023

 N/A: Not Applicable
 I/O: Initial Only
 CNR: Calibration Not Required

 NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

20. Powerline Conducted Emissions Test (AC Mains)

Test Information		
Manufacturer	The Chamberlain Group LLC	
Product	Homelink Repeater MC	
Model	HOMELINK RPTR	
Serial No	SMP-86971	
Mode	Tx	
Test Date	April 20, 2023	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	NA	
Type of Test Site	Semi-Anechoic Chamber	
Test site used	R21F	
Note	None	

Measurement Uncertainty			
Measurement Type	Expanded Measurement Uncertainty		
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7		

Requirements						
All radio frequency voltages on the power lines for any frequency or frequencies of an intentional radiator shall not exceed the limits in the following table:						
Frequency of Emission	ed Limits μV)					
(MHz)	Quasi-peak	Average				
0.15-05 0.5-5 5-30	66 to 56* 56 60	56-46* 46 50				

*Decreases with the logarithm of the frequency

Procedures

The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.

- 1) The EUT was operated in the Tx mode.
- 2) Measurements were first made on the 120V, 60Hz high line.
- 3) The frequency range from 150 kHz to 30 MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector with a 9kHz resolution bandwidth.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits.
- 7) Steps (3) through (6) were repeated on the 120V, 60Hz neutral line.

Test Setup for Powerline Conducted Emissions (AC Mains)

FCC Part 15 Subpart C Conducted Emissions Test Significant Emissions Data

VBR8 01/04/2023

: The Chamberlain Group LLC
: HOMELINK RPTR
:
: SMP-86971
: Tx - 315MHz
: High
: 30
: 0
:
: J. Cardenas
: FCC15.207
: Apr 20, 2023 11:52:08 AM
: Up to 80 maximum levels detected with 6 dB level excursion threshold

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.227	39.8	62.6		14.2	52.6	
0.298	35.4	60.3		11.4	50.3	
0.600	21.6	56.0		3.4	46.0	
1.020	10.0	56.0		1.7	46.0	
2.676	6.8	56.0		0.6	46.0	
5.000	8.5	56.0		2.5	46.0	
12.911	7.5	60.0		1.6	50.0	
25.768	8.8	60.0		2.5	50.0	

VBR8 01/04/2023

FCC Part 15 Subpart C Conducted Emissions Test Cumulative Data

Manufacturer	:	The Chamberlain Group LLC
Model	:	HOMELINK RPTR
DUT Revision	:	
Serial Number	:	SMP-86971
DUT Mode	:	Tx - 315MHz
Line Tested	:	High
Scan Step Time [ms]	:	30
Meas. Threshold [dB]	:	0
Notes	:	
Test Engineer	:	J. Cardenas
Limit	:	FCC15.207
Test Date	:	Apr 20, 2023 11:52:08 AM

Emissions Meet QP Limit Emissions Meet Ave Limit

FCC Part 15 Subpart C Conducted Emissions Test Significant Emissions Data

VBR8 01/04/2023

Manufacturer	: The Chamberlain Group LLC
Model	: HOMELINK RPTR
DUT Revision	:
Serial Number	: SMP-86971
DUT Mode	: Tx - 315MHz
Line Tested	: Neutral
Scan Step Time [ms]	: 30
Meas. Threshold [dB]	: 0
Notes	:
Test Engineer	: J. Cardenas
Limit	: FCC15.207
Test Date	: Apr 20, 2023 11:57:58 AM
Data Filter	: Up to 80 maximum levels detected with 6 dB level excursion threshold

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.173	42.6	64.8		14.6	54.8	
0.293	34.1	60.4		8.7	50.4	
0.623	20.8	56.0		3.4	46.0	
1.034	9.4	56.0		1.4	46.0	
2.204	6.8	56.0		-0.2	46.0	
5.000	8.3	56.0		3.6	46.0	
16.403	7.6	60.0		1.6	50.0	
21.187	8.4	60.0		1.5	50.0	

VBR8 01/04/2023

FCC Part 15 Subpart C Conducted Emissions Test Cumulative Data

Manufacturer	:	The Chamberlain Group LLC
Model	:	HOMELINK RPTR
DUT Revision	:	
Serial Number	:	SMP-86971
DUT Mode	:	Tx - 315MHz
Line Tested	:	Neutral
Scan Step Time [ms]	:	30
Meas. Threshold [dB]	:	0
Notes	:	
Test Engineer	:	J. Cardenas
Limit	:	FCC15.207
Test Date	:	Apr 20, 2023 11:57:58 AM

Emissions Meet QP Limit Emissions Meet Ave Limit

21. Periodic Operation Measurements

Test Information				
Manufacturer The Chamberlain Group LLC				
Product Homelink Repeater MC				
Model HOMELINK RPTR				
Serial No	SMP-86971			
Mode	Tx			
Test Date	April 20, 2023			

Test Setup Details				
Setup Format	Tabletop			
Height of Support	NA			
Type of Test Site	Test Bench			
Test site used	Test Bench			
Note	None			

Measurement Uncertainty				
Measurement Type	Expanded Measurement Uncertainty			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4			

Requirements

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. A transmitter activated automatically shall cease transmission within 5 seconds after activation. Transmission of set-up information for security systems may exceed said transmission duration limits, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

Procedures

The spectrum analyzer was setup to display the time domain trace. The EUT was set to transmit normally. The spectrum analyzer was used to record the amount of time that the EUT remained active following activation.

Test Details				
Manufacturer	The Chamberlain Group LLC			
Model	HOMELINK RPTR			
S/N	SMP-86971			
Mode	Tx			
Carrier Frequency	315MHz			
Parameters	Operation Time = 730msec			
Notes	None			

MultiView Ref Level 87 Att Input	■ Receiver .00 dBµV 0 dB ● SWT 1 AC PS	Spe RBW 10 s • VBW On Notch	1 MHz So 30 kHz Off	X GL		Frequ	ency 315.00	• 00000 MHz
1 Zero Span								●2Pk Max
							D2[2]	-0.28 dB 730.00 ms
во цвру —							M1[2]	69.73 dBµV 0 s
1 70 d8µV 50 d8µV 40 d8µV 30 d8µV 20 d8µV 10 d8µV 0 d8µV 0 d8µV 0 d8µV 0 d8µV 0 d8µV 0 d8µV		8μV			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 ne de la contrada de		
-10 dBµV					000 s			
CF 315.0 MHz				1001	. pts			1.0 s/

Momentary Operation Technical Requirements

Manufacturer	:	The Chamberlain Group LLC
Model Number	:	HOMELINK RPTR
Serial Number	:	SMP-86971
Mode	:	Tx - 315MHz
Line Tested	:	NA
Parameters	:	Time of Cease Transmission < 5sec
Date	:	4/20/2023 8:00:40 AM
Notes	:	None

22. Duty Cycle Factor Measurements

Test Information				
Manufacturer	The Chamberlain Group LLC			
Product	Homelink Repeater MC			
Model	HOMELINK RPTR			
Serial No	SMP-86971			
Mode	Tx			
Test Date	April 20, 2023			

Test Setup Details					
Setup Format	Tabletop				
Height of Support	NA				
Type of Test Site	Test Bench				
Test site used	Test Bench				
Notes	None				

Measurement Uncertainty					
Measurement Type	Expanded Measurement Uncertainty				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4				

Procedures

The duty cycle factor is used to convert peak detected readings to average readings. This factor is computed

from the time domain trace of the pulse modulation signal. The following procedure was used to measure a representative sample: Since this EUT utilizes a rolling code modulation, the duty is calculated based on the worst case. The following procedure was used to measure a representative sample:

1) With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer.

2) The pulse width is measured, and a plot of this measurement is recorded.

3) Next the number of pulses in the word period is measured and a plot is recorded.

4) Finally, the length of the word period is measured, and a third plot is recorded. If the word period exceeds 100msec, the word period is limited to 100msec.

5) The pulse width and number of pulses for the word period are used to compute the on-time. The duty cycle is then computed as the (on-time/ word period).

6) The duty cycle factor is computed from the duty cycle.

Test Details				
Manufacturer	The Chamberlain Group LLC			
Model	HOMELINK RPTR			
S/N	SMP-86971			
Mode	Тх			
Carrier Frequency	315MHz			
Notes	The data shown is a representative sample. The following information, supplied by The Chamberlain Group for the Rolling EF Code, was used to calculate the worst-case duty cycle factor:			

Duty Cycle

Manufacturer	:	Chamberlain Group Inc
Model Number	:	Homelink Repeater MC
Serial Number	:	SMP-86971
Mode	:	Tx - 315MHz
Line Tested	:	NA
Parameters	:	Pulse Lengths
Date	:	4/20/2023 8:08:22 AM

Duty Cycle Factor Measured = $20 \log \left(\frac{44 \times 0.210 msec + 9 \times 0.455 msec}{(100 msec)}\right) = -17.5$

23. Spurious Radiated Emissions

Test Information				
Manufacturer	The Chamberlain Group LLC			
Product	Homelink Repeater MC			
Model	HOMELINK RPTR			
Serial No	SMP-86971			
Mode	Tx			
Test Date	April 21, 2023			

Test Setup Details				
Setup Format	Tabletop			
Height of Support	NA			
Type of Test Site	Semi-Anechoic Chamber			
Test site used	R21F			
Notes	None			

Measurement Uncertainty					
Measurement Type	Expanded Measurement Uncertainty				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4				

Requirements							
The EUT must comply with the requirements of FCC "Code of Federal Regulations Title 47", Part 15, Subpart C, Section 15.231(b) as well as the requirements of the RSS-GEN specification Section 8.10.							
Carrier Frequency (MHz) Field Strength of Carrier (uV/m) Field Strength of Spurious (uV/m)							
70-130	1250 1250 to 3750*	125 125 to 375*					
174-260	3750	375					
260-4703750 to 12500*375 to 1250*Above 470125001250							

*Linear interpolations

Procedures

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations, from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

A preliminary radiated emissions test was performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 4GHz was investigated using a peak detector function. The data was then processed by the computer to calculate equivalent field intensity.

The final emission tests were then manually performed over the frequency range of 30MHz to 4GHz. Between 30MHz and 1000MHz, a bi-log antenna was used as the pick-up device. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.

Above 1GHz, a broadband double ridged waveguide antenna was used as the pick-up device. The EUT was placed on a 150cm high non-conductive stand. A peak detector with a resolution bandwidth of 1 MHz was used on the spectrum analyzer.

The peak detected levels were converted to average levels using a duty cycle factor which was computed from the pulse train.

To ensure that maximum or worst case, emission levels were measured, the following steps were taken:

- 1) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- 2) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- 3) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
- 4) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.

In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer and the antenna cannot be raised to 4 meters. The measuring antenna is raised or lowered as much as the cable will allow and the EUT is rotated through all axis to ensure the maximum readings are recorded.

Test Details				
Manufacturer	The Chamberlain Group LLC			
Model	HOMELINK RPTR			
S/N	SMP-86971			
Mode	Тх			
Carrier Frequency	315MHz			
Requirements	Field Strength of Carrier Limit = 2804.3µV/m			
Notes	None			

		Meter		CBL	Ant	Pre	Duty				
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	Total	Total	Limit	Margin
(MHz)	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	(dB)	(dBuV/m)	(uV/m)	(uV/m)	(dB)
315.000	Н	64.05		1.66	19.43	0.00	-16.19	68.96	2804.30	6041.67	-6.67
315.000	V	59.61		1.66	19.43	0.00	-16.19	64.52	1682.00	6041.67	-11.11
630.000	Н	39.52		2.41	24.94	0.00	-16.19	50.69	342.32	604.17	-4.93
630.000	V	37.26		2.41	24.94	0.00	-16.19	48.43	263.90	604.17	-7.19
945.000	Н	29.27		2.96	26.99	0.00	-16.19	43.03	141.80	604.17	-12.59
945.000	V	27.13		2.96	26.99	0.00	-16.19	40.89	110.84	604.17	-14.73
1260.000	Н	21.77		3.32	29.81	0.00	-16.19	38.71	86.15	604.17	-16.92
1260.000	V	22.12		3.32	29.81	0.00	-16.19	39.06	89.70	604.17	-16.57
1575.000	Н	21.54	Ambient	3.63	29.33	0.00	-16.19	38.31	82.30	500.00	-15.67
1575.000	V	20.65	Ambient	3.63	29.33	0.00	-16.19	37.42	74.29	500.00	-16.56
1890.000	Н	21.91		3.91	32.28	0.00	-16.19	41.91	124.63	604.17	-13.71
1890.000	V	22.08		3.91	32.28	0.00	-16.19	42.08	127.09	604.17	-13.54
2205.000	Н	23.19		4.15	32.54	0.00	-16.19	43.69	152.90	500.00	-10.29
2205.000	V	22.54		4.15	32.54	0.00	-16.19	43.04	141.88	500.00	-10.94
2520.000	Н	24.40	Ambient	4.36	33.59	0.00	-16.19	46.16	203.23	604.17	-9.46
2520.000	V	23.52	Ambient	4.36	33.59	0.00	-16.19	45.28	183.65	604.17	-10.34
2835.000	Н	23.09	Ambient	4.73	33.25	0.00	-16.19	44.87	175.28	500.00	-9.10
2835.000	V	23.56	Ambient	4.73	33.25	0.00	-16.19	45.34	185.03	500.00	-8.63
3150.000	Н	22.20	Ambient	5.07	33.66	0.00	-16.19	44.75	172.73	604.17	-10.88
3150.000	V	22.02	Ambient	5.07	33.66	0.00	-16.19	44.57	169.19	604.17	-11.06

24. Occupied Bandwidth Measurements

Test Information			
Manufacturer	The Chamberlain Group LLC		
Product	Homelink Repeater MC		
Model	HOMELINK RPTR		
Serial No	SMP-86971		
Mode	Tx		
Test Date	April 20, 2023		

Test Setup Details			
Setup Format	Tabletop		
Height of Support	NA		
Type of Test Site	Test Bench		
Test site used	Test Bench		
Notes	None		

Requirements

FCC 15.231(c):

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

RSS-210, Annex A, Section A.1.3:

The occupied bandwidth (99% Bandwidth) of momentarily operated devices shall be less than or equal to 0.25% of the center frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5% of the center frequency.

Procedures

The EUT was placed on an 80cm high non-conductive stand. The unit was set to transmit continuously. With an antenna positioned nearby, occupied bandwidth emissions were displayed on the spectrum analyzer. The resolution bandwidth was set to 30kHz, and span was set to 2MHz. A screen capture was taken of the frequency spectrum near the carrier using a screen dump function on the spectrum analyzer.

Test Details		
Manufacturer	The Chamberlain Group LLC	
Model	HOMELINK RPTR	
S/N	SMP-86971	
Mode	Тх	
Carrier Frequency	315MHz	
Parameters	20dB BW = 53.9kHz	
Notes	None	

MultiView	Receiver	× Spectru	m 🗙		
Ref Level 87.0 Att Input	0 dBµV 0 dB ● SWT 1 AC PS	● RBW 10 100 ms ● VBW 30 On Notch	kHz kHz Mode Auto Sweep Off		Frequency 315.0000000 MHz
1 Frequency Sw	eep				● 2Pk Max
80 dBuV					M1[2] 69.85 dBµV 314.94310 MHz
			M1		
70 авµv			Á		
60 dBµV			T_2		
50 dBµ∨					
40 dBµV					
30 dBµV					
20 dBµV		produce	New Contraction of the Contracti		
10 dBµV	hu to water	Wardson March Mar		marine	www.www.www.www.www.www.www.www.www.ww
how the way was a fear the second sec	n Mar				Mary Mary Mary Mary Mary
			1 314.606 MHz	V2 315.394 MHz	
-10 dBµV			CHICARDI GASE		
CF 315.0 MHz			1001 pts	300.0 kHz/	Span 3.0 MHz
2 Marker Table					
NI Ref			69 85 dBuV	Function	
	∠ ⊒ ?	314 9101 MHz	49.95 dBuV	nuo ndB. down. BW	53.90 kHz
T2	2	314.964 MHz	51.01 dBµV	Q Factor	5838.1

FCC 15.231 20dB BW

Manufacturer Model Number Serial Number Mode Line Tested Parameters Date Notes		The Chamberlain Group LLC HOMELINK RPTR SMP-86971 Tx - 315MHz NA 20dB BW = 53.9kHz 4/20/2023 7:54:18 AM None
---	--	---

Test Details		
Manufacturer	The Chamberlain Group LLC	
Model	HOMELINK RPTR	
S/N	SMP-86971	
Mode	Тх	
Carrier Frequency	315MHz	
Parameters	99% BW = 210kHz	
Notes	None	

Ref Level 87.00 dBµV * RBW 10 kHz Mode Auto Sweep Frequency 315.0000000 MHz Input 1.4 C PS On Notch Off *2Pk Max Input 1.4 C PS On Notch Off *2Pk Max Input 1.4 C PS On Notch Off *2Pk Max Input 1.4 C PS On Notch Off *2Pk Max Input 1.4 C PS On Notch Off *2Pk Max Input 1.4 C PS On 0.4 Lin *2Pk Max Input 1.4 C PS On 4BµV M1[2] 69.70 dBµV 0 dBµV 0 0 0 0 0 0 0 dBµV 0 0 0 0 0 0 0 0 dBµV 0 0 0 0 0 0 0 0 0 dBµV 0 0 0 0 0 0 0 0 0 dBµV 0 0 0 0 0 <t< th=""><th>MultiView Receiv</th><th>er X Spectrum</th><th>×</th><th></th><th></th><th>-</th></t<>	MultiView Receiv	er X Spectrum	×			-
I Frequency Sweep =28k Max 80 dBµV D3[2] -19.82 dB 80 dBµV M1 M1[2] 69.70 dBµV 70 dBµV M1 M1[2] 69.70 dBµV 50 dBµV M1 G9.70 dBµV 314.94310 MHz 50 dBµV M1 G9.70 dBµV G9.70 dBµV 50 dBµV M1 G9.70 dBµV G9.70 dBµV 50 dBµV M2 G9.70 dBµV G9.70 dBµV 30 dBµV M2 G9.70 dBµV G9.70 dBµV 10 dBµV M2 G9.70 dBµV G9.70 dBµV 10 dBµV G9.70 dBµV G9.70 dBµV G9.70 dBµV 10 dBµV G9.70 dBµV G9.70 dBµV G9.70 dBµV 10 dBµV G9.70 dBµV G9.70 dBµV G9.70 dBµV 10 dBµV 2 314.9431 MHz G9.70 dBµV 10 dBµV 1001 pts 300.0 kHz/ Span 3.0 MHz 10 dBµV 2 314.9431 MHz G9.70 dBµV	Ref Level 87.00 dBµV ● Att 0 dB ● 1 Input 1 AC	● RBW 10 kHz SWT 100 ms ● VBW 30 kHz PS On Notch Off	Mode Auto Sweep		Frequency 315.00	00000 MHz
S0 B3(2) -19.82 dB S0 B4/V M12 S0.70 dB/V 70 B4/V M12 S0.70 dB/V S0 B4/V S0.70 dB/V S0.70 dB/V M12 S13.60 MHz S0.70 dB/V M12 S14.9431 MHz G9.70 dB/V	1 Frequency Sweep					2Pk Max
Bu day M1 M1[2] 69.70 dByV 70 dByV M1 G9.70 dByV G9.70 dByV 60 dByV M1 G9.70 dByV G9.70 dByV 50 dByV M1 G9.70 dByV G9.70 dByV 50 dByV M2 G9.70 dByV G9.70 dByV 50 dByV M2 G9.70 dByV G9.70 dByV 50 dByV M2 G9.70 dByV G9.70 dByV 10 dByV G9.70 dByV G9.70 dByV G9.70 dByV					D3[2]	-19.82 dB
70 dBµV 314.94310 MHz 60 dBµV 40 dBµV 50 dBµV 40 dBµV 40 dBµV 40 dBµV 40 dBµV 40 dBµV 40 dBµV 40 dBµV 40 dBµV 40 dBµV 50 dBµV 40 dBµV 50 dBµV 40 dBµV 50 dBµV 50 dBµV 10 dBµV 50 dBµV	80 aBha				M1[2]	69.70 dBµV
60 dBµV 50 dBµV 40 dBµV 40 dBµV 20 dBµV 20 dBµV 10	70 dBμV		MI		3	14.94310 MHz
00 dbpv 00 dbpv <t< td=""><td>60 dbuV</td><td></td><td></td><td></td><td></td><td></td></t<>	60 dbuV					
50 dBµV 40 dBµV 10	00 ush4					
40 dBµV 30 dBµV 20 dBµV 20 dBµV 10 dBµV -10 dAµV -10 dAµV -	50 dBµ∨		M2			
30 dBµV 20 dBµV 20 dBµV 10	40 dBµV					
20 dBµV 20 dBµV 10 dBµV -10 dAµV -10 dAµV	20 dbuV					
20 dBµV 10	30 dbp+		Y Y			
10 dBµV 	20 dBµV					
0 dBpV 0 dBpV <td>10 dBuV</td> <td>and monorman</td> <td></td> <td></td> <td>and marken the state of the sta</td> <td></td>	10 dBuV	and monorman			and marken the state of the sta	
D dBµV Image: Constraint of the second of	Manufacture Manufactures of the				a wather way and a show	Mummun
Image: Constraint of the second sec	0 dвµV			VZ 315.394 MHz		
CF 315.0 MHz 1001 pts 300.0 kHz/ Span 3.0 MHz 2 Marker Table Type Ref Trc X-Value Function Function Result M1 2 314.99431 MHz 69.70 dBµV 69.70 dBµV Function Function Result	-10 dBµV	V1 314. A -787	606 MHZ SAA KHZ			
P Marker Table Y-Value Function Function Result Type Ref Trc X-Value Y-Value Function M1 2 314.99431 MHz 69.70 dBµV Function Function Result M2 2 314.895 MHz 44.96 dBµV Function Function	CF 315.0 MHz	10	01 pts	300.0 kHz/		Span 3.0 MHz
Type Ref Trc X-Value Y-Value Function Function Result M1 2 314.99431 MHz 69.70 dBµV 69.70 dBµV Function Result	2 Marker Table					
M1 2 314.9431 MHz 69.70 dBµV	Type Ref Trc	X-Value	Y-Value	Function	Function Re	sult
M2 2 314.895 MH7 44.96 ABIIV	M1 2	314.9431 MHz	69.70 dBµV			
	M2 2	314.895 MHZ	44.96 dBµV			

RSS-210 99% BW

Manufacturer Model Number Serial Number Mode Line Tested Parameters Date Notes		The Chamberlain Group LLC HOMELINK RPTR SMP-86971 Tx - 315MHz NA 99% BW = 210kHz 4/20/2023 7:50:45 AM None
---	--	---

25. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163 Email: blugo@elitetest.com Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123 Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Valid To: June 30, 2023

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

Test Technology:	Test Method(s) ¹ :
Transient Immunity	ISO 7637-2 (including emissions); ISO 7637-3; ISO 16750-2:2012, Sections 4.6.3 and 4.6.4; CS-11979, Section 6.4; CS.00054, Section 5.9; EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222); GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12; ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008); CS-11979 Section 7.0; CS.00054, Section 5.10; EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3; CISPR 25 (2016), Sections 6.3 and 6.4; CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2; EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310);

(A2LA Cert. No. 1786.01) Revised 08/08/2022

Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u>	Test Method(s) ¹ :
Vehicle Radiated Emissions	CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BCI)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Radiated Immunity Anechoic (Including Radar Pulse)	ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (R1114); FMC1278 (R1114); ISO 11452-11
Radiated Immunity (Portable Transmitters)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Vehicle Product Specific EMC Standards	EN 14982; EN ISO 13309; ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012
Electrical Loads	ISO 16750-2
Emissions Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz)	47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997):

EN 55022 (1998) + A1(2000);

CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband) ECE Regulation 10.06 Annex 14 (Conducted)

EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);

Page 2 of 8

Test Technology:	Test Method(s) ¹ :
Emissions (cont'd) Cellular Radiated Spurious Emissions	ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124
Current Harmonics	IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11
Flicker and Fluctuations	IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12
Immunity Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; KS C 9610-4-3; IEEE C37.90.2 2004
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16

Page 3 of 8

<u>Test Technology:</u>	Test Method(s) ¹ :
Immunity (cont'd) Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6
Power Frequency Magnetic Field Immunity (<i>Down to 3 A/m</i>)	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002
Generic and Product Specific EMC Standards	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20

Page 4 of 8

Test Technology:	Test Method(s) ¹ :
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502; EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4
Canadian Radio Tests	RSS-102 (RF Exposure Evaluation ^{MEAS}); RSS-102 (Nerve Stimulation ^{MEAS}) (5Hz to 400kHz); SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008-2015; NOM-208-SCFI-2016
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002 (July 15, 2020)
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125; KS X 3130; KS X 3126; KS X 3129
Vietnam Radio Test Standards	QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT; QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT
Vietnam EMC Test Standards	QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT; QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT

Page 5 of 8

Test Technology:

Test Method(s) 1:

Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)
<i>OTA (Over the Air) Performance</i> GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/a	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0
Electrical Measurements and Simulation	
(1mV to 5kV) 60 Hz	FAA AC 150/5345-10H
(0.1V to 250V) up to 500 MHz	FAA AC 150/5345-43J
(1µA to 150A) 60 Hz	FAA AC 150/5345-44K
DC Voltage / Current	FAA AC 150/5345-46E
(1mV to 15-kV) / (1µA to 10A)	FAA AC 150/5345-47C
Power Factor / Efficiency / Crest Factor	FAA EB 67D

On the following products and materials:

(Up to 10 kV / 5 kA) (Combination

(Power to 30kW)

 $(1m\Omega \text{ to } 4000M\Omega)$

Wave and Ring Wave)

Resistance

Surge

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA *R101 - General Requirements- Accreditation of ISO-IEC 17025 Laboratories.*

Page 6 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table $A.1^2$

	Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
	Unintentional Radiators Part 15B	ANSI C63.4:2014	40000
	Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
	Intentional Radiators Part 15C	ANSI C63.10:2013	40000
	<u>Unlicensed Personal Communication</u> <u>Systems Devices</u> Part 15D	ANSI C63.17:2013	40000
	U-NII without DFS Intentional Radiators Part 15E	ANSI C63.10:2013	40000
	<u>U-NII with DFS Intentional Radiators</u> Part 15E	FCC KDB 905462 D02 (v02)	40000
	UWB Intentional Radiators Part 15F	ANSI C63.10:2013	40000
	BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
	White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
	Commercial Mobile Services (FCC Licensed <u>Radio Service Equipment</u>) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
	General Mobile Radio Services (FCC Licensed Radio Service Equipment) Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
	<u>Citizens Broadband Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
(A2LA Cert. No. 1786.01) Revised 08/08/2022		Page 7 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table $A.1^2$

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Maritime and Aviation Radio Services		
Parts 80 and 87	ANSI/TIA-603-E;	40000
	ANSI C63.26:2015	
Microwave and Millimeter Bands Radio		
Services		
Parts 25, 30, 74, 90 (above 3 GHz), 97	ANSI/TIA-603-E;	40000
(above 3 GHz), and 101	TIA-102.CAAA-E;	
	ANSI C63.26:2015	
Broadcast Radio Services		
Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E;	40000
	TIA-102.CAAA-E;	
	ANSI C63.26:2015	
Signal Boosters		
Part 20 (Wideband Consumer Signal	ANSI C63.26:2015	40000
Boosters, Provider-specific signal boosters,		
and Industrial Signal Boosters)		
Section 90.219		

² Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Page 8 of 8

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 19th day of May 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.