MPE Calculation

Applicant : Chamberlain Group
Type of Equipment : Frequency Hopper
Model No. : 821LM
FCC ID : HBW1D7991

RF Exposure Calculations:
 FCC 2.1091

The following information provides the minimum separation distance for the highest gain antenna provided with the as calculated from FCC OET Bulletin 65 Appendix A, T able (B) Limits for General Population / Uncontrolled Exposure. This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $0.6 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:
$\mathbf{S}=(\mathbf{P} * \mathbf{G}) /\left(\mathbf{4}^{*} \pi * \mathbf{r} \mathbf{r}\right)$
Where
$\mathbf{P}=\mathbf{3 8 . 4 m W}$ (Maximum peak output power)
$\mathrm{G}=\mathbf{0 . 2 5}$ Numerical Antenna gain; equal -6 dBi
$\mathrm{r}=20.0 \mathrm{~cm}$
For: HBW6597 S = $0.00191 \mathrm{~mW} / \mathrm{cm}_{2}$

Calculated Power Density for WiFi Module: (FCC ID: COFWMNBM11)
The following information provides the minimum separation distance for the highest gain antenna provided with the as calculated from FCC OET Bulletin 65 Appendix A, T able (B) Limits for General Population / Uncontrolled Exposure. This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1.0 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

```
S = (P * G ) / (4* | * r2)
Where
P=237mW (Maximum peak output power)
G=0.631 Numerical Antenna gain; equal -2 dBi
r=20.0 cm
For: WiFi Module S = 0.595 mW/cm2
```


Calculated Power Density for BT Module: (FCC ID: COFBMGPBR65)

The following information provides the minimum separation distance for the highest gain antenna provided with the as calculated from FCC OET Bulletin 65 Appendix A, T able (B) Limits for General Population / Uncontrolled Exposure. This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1.0 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:
$\mathbf{S}=(\mathbf{P} * \mathbf{G}) /\left(\mathbf{4}^{*} \pi * \mathbf{r} \mathbf{2}\right)$
Where
$P=5 \mathrm{~mW}$ (Maximum peak output power)
$\mathbf{G}=\mathbf{0 . 5 6 2}$ Numerical Antenna gain; equal -2.5 dBi
$\mathrm{r}=20.0 \mathrm{~cm}$
For: BT Module $\mathbf{S}=\mathbf{0 . 0 1 1 2} \mathbf{~ m W} / \mathrm{cm}_{2}$

Calculated Ratio for all transmitters:

$0.00191 / 0.6+0.595 / 1+0.0112 / 1=0.609$
The total radio for all transmitters under 15.247 is $\mathbf{0 . 6 0 9}$ which is less than 1 therefore it is compliant.

