DUTY_CYCLE_BILL.doc

This is the billion code modulation duty cycle calculation. Refer to FCC 47 CFR Ch. 1 (10-1-02 Edition) Page 691.

		ON	OFF	TOTAL TIME
1 msec first sync p	ulse	1 mS	N/A	1 mS
10 digits		30 mS	10 mS	40 mS
37 msec blanktime		N/A	37 mS	37 mS
3 msec second sync pulse		3 mS	N/A	3 mS
4.666 digits		14 mS	5 mS	19 mS
Total		48 mS		100 mS
20 log 48/100 = -6.37				
NOTES:				
Each digit allowed 4 mS. Each digit starts with an OFF mS.				
1 mS/bit				
Could be all OFF	0 mS ON	4 mS OFF		
Could be 1 ON	1 mS ON	3 mS OFF		
Could be 2 ON	2 mS ON	2 mS OFF		
Could be 3 ON	3 mS ON	1 mS OFF	(WORST CAS	E)

This calculation has all bits ON for each digit (WORST CASE). This would rarely happen in a transmitter because all ON for the digits would be an unrealistic transmitter code.