

Engineering Test Report No. 2004754-02			
Report Date	December 28, 2020		
Manufacturer Name	Chamberlain Group, Inc.		
Manufacturer	300 Windsor Dr		
Address	Oak Brook, IL 60523		
Model No.	MYQPP1		
Date Received	December 17, 2020		
Test Dates	December 17, 2020 to December 23, 2020		
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 FCC "Code of Federal Regulations" Title 47, Part15, Subpart 15B Innovation, Science, and Economic Development Canada, RSS-247 Innovation, Science, and Economic Development Canada, RSS-GEN		
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107	
Signature	Janoi Condenas		
Tested by	Javier Cardenas		
Signature	Kaymond J. Kloude		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894		
PO Number	4900072649		

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 and RSS-GEN test specifications. The data presented in this test report pertains to the EUT on the test date(s) specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	.3
2.	Introduction	
2.1.	Scope of Tests	.4
2.2.	Purpose	
2.3.	Identification of the EUT	.4
3.	Power Input	
4.	Grounding	.4
5.	Support Equipment	.4
6.	Interconnect Leads	
7.	Modifications Made to the EUT	.5
8.	Modes of Operation	
9.	Test Specifications	.5
10.	Test Plan	
11.	Deviation, Additions to, or Exclusions from Test Specifications	.5
12.	Laboratory Conditions	.6
13.	Summary	.6
14.	Sample Calculations	.6
15.	Statement of Conformity	.7
16.	Certification	.7
17.	Photographs of EUT	.8
18.	Equipment List	.9
19.	Block Diagram of Test Setup	10
20.	6dB Bandwidth	
21.	Occupied Bandwidth (99%)	15
22.	Maximum Peak Conducted Output Power	19
23.	Effective Isotropic Radiated Power (EIRP)	23
24.	Duty Cycle Factor Measurements	28
25.	Case Spurious Radiated Emissions	31
26.	Band-Edge Compliance	45
27.	Power Spectral Density	49
28.	Scope of Accreditation	53

1. Report Revision History

Revision	Date	Description
_	13 JAN 2021	Initial Release of Engineering Test Report No. 2004754-02

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Chamberlain Group, Inc. Pet Portal Door (hereinafter referred to as the Equipment Under Test (EUT)). The EUTs were manufactured and submitted for testing by Chamberlain Group, Inc. located in Oak Brook, IL.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part15, Subpart 15B, Section 15.107 and 15.109 for Receivers and Part 15, Subpart C, Sections 15.247 for a Digital Modulation intentional radiator operating within the 2400-2483.5MHz band.

The test series was also performed to determine if the EUT meets the RF emission requirements of the Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-Gen and Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-247 for a Digital Modulation intentional radiator operating within the 2400-2483.5MHz band.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUTs were identified as follows:

EUT Identification			
Description	Wireless Pet Door		
Model/Part No.	MYQPP1		
S/N	Elite2 and Elite3		
Device Type	Digitally Modulated Transmission Device		
Band of Operation	2400-2483.5MHz		
Modulation Type	Bluetooth - GFSK		
Software/Firmware Version	BGM SDK version 2.13.8.0		
Conducted Output Power	3.12dBm		
Maximum EIRP	10.3dBm		
Antenna Type	inverted F		
6dB Bandwidth	664.3kHz		
Occupied Bandwidth (99% CBW)	1.03MHz		

The EUTs listed above were used throughout the test series.

3. Power Input

The EUT obtained 115V 60Hz power via a 3-wire, 1-meter, unshielded power cord.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Description	Model #	S/N
Laptop	NA	NA

6. Interconnect Leads

The following interconnect cables were submitted with the test item:

Item	Description
UART/USB	Connects laptop to EUT

7. Modifications Made to the EUT

No modifications were made to the EUTs during the testing.

8. Modes of Operation

The EUTs and all peripheral equipment were energized. The unit was programmed to transmit in one of the following modes:

Mode	Description		
	2402MHz: Power Setting = 6dBm		
Bluetooth Tx	2426MHz: Power Setting = 6dBm		
	2480MHz: Power Setting = 6dBm		

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 test specification(s).

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C
- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart B
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division, Guidance For Compliance Measurements On Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 April 2, 2019 KDB 558074 D01v05r02
- RSS-247 Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"
- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Chamberlain Group, Inc. and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247, Innovation, Science, and Economic Development Canada, RSS-247, and ANSI C63.4-2014 specification(s).

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

Ambient Parameters	Value
Temperature	21°C
Relative Humidity	18%
Atmospheric Pressure	1011.4mb

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Methods	S/N	Results
6dB Bandwidth	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite2	Conforms
Occupied Bandwidth (99%)	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite2	Conforms
Maximum Peak Conducted Output Power	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite2	Conforms
Effective Isotropic Radiated Power (EIRP)	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite3	Conforms
Duty Cycle Factor Measurements	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite2	—
Case Spurious Radiated Emissions	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite3	Conforms
Band-Edge Compliance	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite2	Conforms
Power Spectral Density	FCC 15C 15.247 ISED RSS-247	ANSI C63.10: 2013	Elite2	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL (dBuV) = MTR (dBuV) + CF (dB).

For Radiated Emissions:

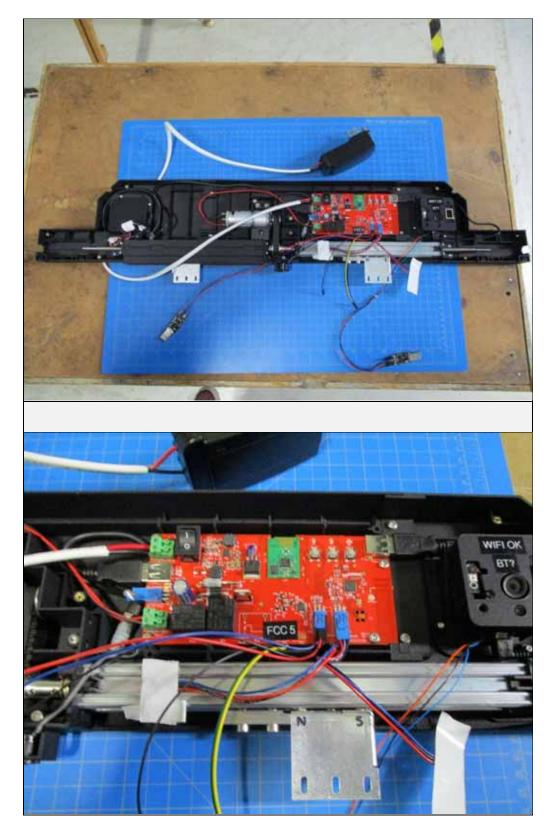
The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS (dBuV/m) = MTR (dBuV) + AF (dB/m) + CF (dB) + (- PA (dB)) + DC (dB)

To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

Formula 2: FS (uV/m) = AntiLog [(FS (dBuV/m))/20]

15. Statement of Conformity


The Chamberlain Group, Inc. Pet Portal Door, Model No. MYQPP1, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUTs on the test date specified. Any electrical or mechanical modifications made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Equipment List

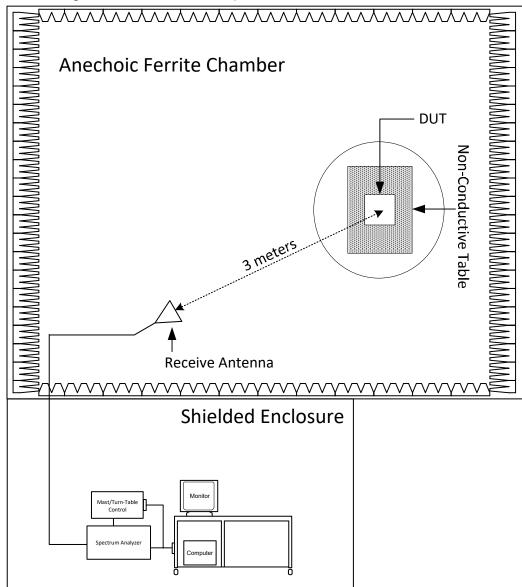

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW0	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-30-20G20R6G	PL2926/0646	20GHZ-26.5GHZ	9/24/2020	9/24/2021
APW3	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0-10-12	PL2924	1GHZ-20GHZ	3/23/2020	3/23/2021
CDW6	DESKTOP COMPUTER	ELITE	PENTIUM 4	007	3.8 GHZ	N/A	
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NHG1	STANDARD GAIN HORN ANTENNA	NARDA	638		18-26.5GHZ	NOTE 1	
NTA4	BILOG ANTENNA	TESEQ	6112D	46660	20-2000GHZ	10/5/2020	10/5/2021
NWQ0	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66657	1GHZ-18GHZ	5/13/2020	5/13/2022
RBG3	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101592	2HZ-44GHZ	4/24/2020	4/24/2021
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
T1EQ	10DB 25W ATTENUATOR	WEINSCHEL	46-10-34	CD6791	DC-18GHZ	3/16/2020	3/16/2022
T2DN	20DB, 25W ATTENUATOR	WEINSCHEL	46-20-34	BS2147	DC-18GHZ	1/10/2020	1/10/2022
T2S7	20DB 25W ATTENUATOR	WEINSCHEL	46-20-34	BU8139	DC-18GHZ	3/10/2020	3/10/2022
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XPQ5	FILTER	K&L MICROWAVE	11SH10-9000/U2000- O/O	1	5000-5800 MHZ	9/6/2019	9/6/2021
XPR0	HIGH PASS FILTER	K&L MICROWAVE	11SH10-4800/X20000	001	4.8-20GHZ	9/6/2019	9/6/2021

 Image: N/A: Not Applicable
 I/O: Initial Only
 CNR: Calibration Not Required

 NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. 6dB Bandwidth

Test Information		
Manufacturer	Chamberlain Group, Inc.	
Product	Pet Portal Door	
Model	MYQPP1	
Serial No	Elite2	
Mode	Bluetooth Tx	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	NA	
Measurement Method	Antenna Conducted	
Type of Test Site	EMC Workstation	
Type of Antennas Used	NA	
Notes	None	

Requirements

Systems using digital modulation techniques shall have a minimum 6 dB bandwidth of 500 kHz

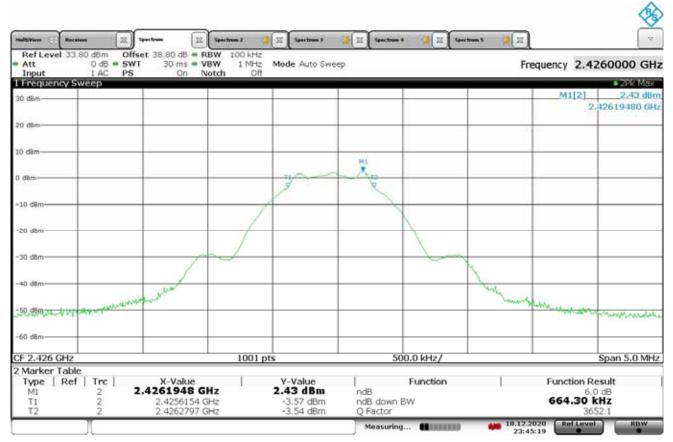
Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 100kHz, the video bandwidth (VBW) was set to the same as or 3 times greater than the RBW, and the span was set to 3 times the RBW.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

60


Test Details		
Manufacturer Chamberlain Group, Inc.		
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2402MHz	
Parameters	6dB BW = 664.3kHz	
Notes	None	

Att Input Frequency 9	0 d8 = SV		BW 100 kHz		- this -			Contraction and the second	and the second second
	1 AC PS		3W 1 MHz otch Off	Mode Auto Swee	P		Fn	equency 2.40	20000 GH
		-		_			-		2Pk Max
		-						M1[2]	2.93 dBr
								2.	40219480 GH
20 dBm		-							
0 dam									
					M1				
) dBm				1	- TE				
10 d8m		-					-		
20 dbm			/						
-30 dBm		~	~/			1000			
40 dBm		June 1					-		
SQIdBrit	how we	m					huch	whenperson	-barles also
-60 dBm									
F 2.402 GHz			1001 pt	s	50	00.0 kHz/			Span 5.0 MHz
Marker Tab									
Type Re M1	f Trc	X-Value 2.4021948 GI	47	Y-Value 2.93 dBm	ndB	Function		Function Re	esult dB
T1	2	2.4016154 G		-3.20 dBm	ndB down	BW		664.30 k	

23:41:10 18.12.2020

Test Details		
Manufacturer Chamberlain Group, Inc.		
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2426MHz	
Parameters	6dB BW = 664.3kHz	
Notes	None	

23:45:19 18.12.2020

60

Test Details		
Manufacturer Chamberlain Group, Inc.		
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2480MHz	
Parameters	6dB BW = 664.3kHz	
Notes	None	

naturien 🔅	Receiver 3	L) Spectrum II	Spectrum 2	Spectrum 3	Spictrum	• 🦼	Spectrum 3 🛛 🕌 🕱	l	(v
Ref Level Att Input	0 d8 🖷 :			Mode Auto Swe	ep		Fr	equency 2.4	1800000 GH
1 Frequence			otar on					1	2PK Max
30 d8m		_				-	_	M1[2]	2.42 dBm
0.02									2,48018480 GH
20 dBm-		-		-					
10 d8m									
				1000	MI				
0 d8m				3	- F				
-10 d8m		-		-				-	
-20 dBm-	_	_	1			<u>\</u>			-
			~ /						
-30 dBm									
-40 d8m		mer					A.		
-SO dBm - spa	manundert	ur land					men	Mr. Hannow	montaininger
-60 dBm									
CF 2.48 GH	Iz		1001 p	ts	5	00.0 kHz/			Span 5.0 MHz
2 Marker T	able								
	Ref Trc	X-Value		Y-Value		Function		Function F	
M1 T1 T2	2	2.4801848 G 2.4796104 G 2.4802747 G	Hz	-3.78 dBm -3.53 dBm	ndB ndB down Q Factor	BW		664.30	.0 dB kHz 733.3
14	T.	2.4002747 0	N NG	-3.55 UDIII		g B) 🗰 10.12.		

23:47:44 18.12.2020

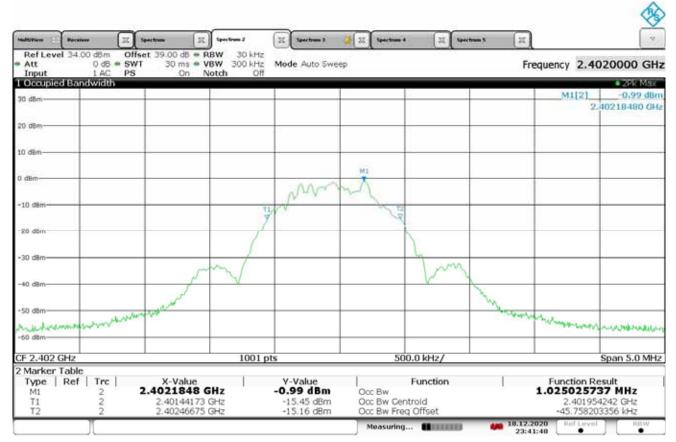
21. Occupied Bandwidth (99%)

Test Information		
Manufacturer	Chamberlain Group, Inc.	
Product	Pet Portal Door	
Model	MYQPP1	
Serial No	Elite2	
Mode	Bluetooth Tx	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	NA	
Measurement Method	Antenna Conducted	
Type of Test Site	EMC Workstation	
Type of Antennas Used	NA	
Notes	None	

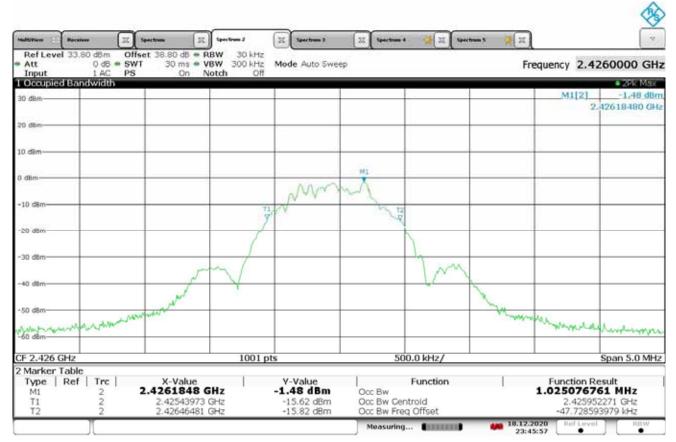
Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation.

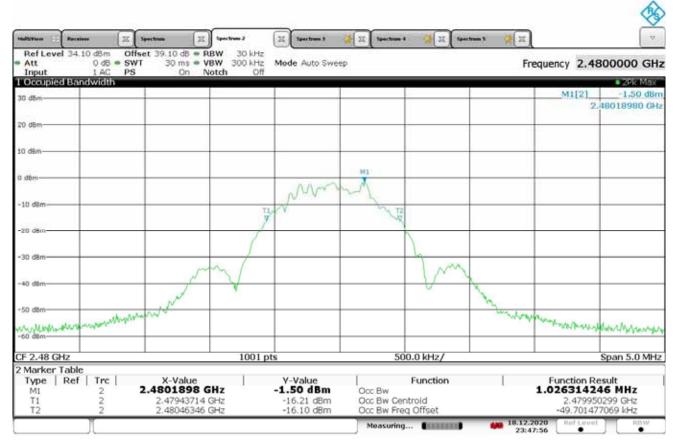

The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 1% to 5% of the actual occupied / x dB bandwidth, the video bandwidth (VBW) was set 3 times greater than the RBW, and the span was set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4


Test Details		
Manufacturer Chamberlain Group, Inc.		
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2402MHz	
Parameters	OBW = 1.03MHz	
Notes	None	

23:41:48 18.12.2020


Test Details		
Manufacturer Chamberlain Group, Inc.		
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2426MHz	
Parameters	OBW = 1.03MHz	
Notes	None	

23:45:58 18.12.2020

Test Details		
Manufacturer Chamberlain Group, Inc.		
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2480MHz	
Parameters	OBW = 1.03MHz	
Notes	None	

23:47:56 18.12.2020

22. Maximum Peak Conducted Output Power

Test Information				
Manufacturer	Chamberlain Group, Inc.			
Product	Pet Portal Door			
Model	MYQPP1			
Serial No	Elite2			
Mode	Bluetooth Tx			

Test Setup Details				
Setup Format	Tabletop			
Height of Support	NA			
Measurement Method	Antenna Conducted			
Type of Test Site	EMC Workstation			
Notes	None			

Requirements

The output power shall not exceed 1W (30dBm).

Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. The EUT was set to transmit separately at the low, middle, and high channels. The resolution bandwidth (RBW) was set to greater than the 6dB bandwidth. The span was set to greater than 3 times the RBW. The 'Max-Hold' function was engaged. The maximum meter reading was recorded. The peak power output was calculated for the low, middle and high channels.

60

Test Details				
Manufacturer	Chamberlain Group, Inc.			
Model	MYQPP1			
S/N	Elite2			
Mode	Bluetooth Tx			
Carrier Frequency	2402MHz			
Parameters	Output Power = 2.05mW (3.12dBm)			
Notes	None			

-	Petsiver	II Spectrum	Spictrum Z	Spectrum 2	Spectrum 4	Space) II		· *
Ref Level Att Input		Offset 39.00 (SWT 1.01 n	18 = RBW 2 MHz ns = VBW 20 MHz In Notch Off	Mode Auto Sweep			Fre	equency 2.4	020000 GHz
1 Frequence		10 1	an rester on						 2Pk Max
30 d8m		_						M1[2]	3,12 dBm
0.047.0474						1		2	40196000 GHz
20 dBm	_			-					
10 d8m				M			l l		
0 dBm						~			
			1						
-10 dBm		/							
-20 dBm	/	A							
-30 dBm	w			_				1	
monthle	-								- call manow
-40 dBm-									
-50 dBm									
-60 dBm									
CF 2.402 G	iHz		100	pts	1.0	MHz/			Span 10.0 MHz
	1				Measuring		10.12.2 23:42	020 Ref Leve	RBW

23:42:25 18.12.2020

60

Test Details				
Manufacturer	Chamberlain Group, Inc.			
Model	MYQPP1			
S/N	Elite2			
Mode	Bluetooth Tx			
Carrier Frequency	2426MHz			
Parameters	Output Power = 1.91mW (2.80dBm)			
Notes	None			

Maltiliere EE	Pacatana	Spectrum	T Spectrum 2	Spectrum 2	Spectrum 4	tiper	tram 5 📜 🗐		×.
Ref Leve Att Input		ffset 38.80 dB WT 1.01 ms S On		Mode Auto Sweep			Free	uency 2.42	260000 GHz
1 Frequen		011	Noter On		_				2Pk Max
30 dBm	219 200 M							M1[2]	2,80 dBm
								2.	42591000 GHz
20 d8m		-							-
10 dBm						-			
				H1 V					
0 dBm									
-10 dam		1		-					
on days									
-20 dBm	/								
-30 dBm	w							No.	mandrealise
-40 dBm									
-SO dBm									
-60 dBm									
CF 2.426 0			1001 pt	l l	1.	0 MHz/		s	pan 10.0 MHz
0. 21120 0	T		1001 0				10.12.20 23:46:	20 Ref Level	

23:46:21 18.12.2020

Test Details					
Manufacturer	Chamberlain Group, Inc.				
Model	MYQPP1				
S/N	Elite2				
Mode	Bluetooth Tx				
Carrier Frequency	2480MHz				
Parameters	Output Power = 1.85mW (2.67dBm)				
Notes	None				

v.		• 4 II	Spectrum	1	Spectrum 4	lpectrum 3	24	Spectrum 2	- 2	Spectrum	H	Pacaterr	-
800000 GHz	equency 2.48	Fre				Auto Sweep	Mode	W 20 MHz	10 dB = RB 01 ms = VB	τ 1.	dB SW		Att
2PK Max								tch Off	On No		AC PS	ncy Swe	Input I Frequ
2,67 dBm	M1[2]										Sr		30 dBm-
47980000 GHz	2.												30 upril
													0.02
													20 dBm-
	-					MI	-			-			10 dBm-
							-						
1				-				/		-		_	0 d8m
			-	2					/				
-		-	-				+		1	-			-10 dBm-
	·									4	/		-20 dBm-
											1		
	and the second s									+			-30 dBm-
mentaliste												and the second	man
			-				-			-			-40 dBm-
			-				-			-			-50 dBm-
			_										-60 dBm-
Span 10.0 MHz				MHz/	1.0		pts	1001				GHz	CF 2.48

23:48:05 18.12.2020

23. Effective Isotropic Radiated Power (EIRP)

Test Information				
Manufacturer	Chamberlain Group, Inc.			
Product	Pet Portal Door			
Model	MYQPP1			
Serial No	Elite3			
Mode	Bluetooth Tx			

Test Setup Details				
Setup Format	Tabletop			
Height of Support	NA			
Measurement Method	Radiated			
Type of Test Site	Semi-Anechoic Chamber			
Type of Antonnoo Llood	Below 1GHz: Bilog (or equivalent)			
Type of Antennas Used	Above 1GHz: Double-ridged waveguide (or equivalent)			
Notes	None			

Requirements

The output power shall not exceed 4W (36dBm).

Procedures

The EUT was placed on the non-conductive stand and set to transmit. A double ridged waveguide antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 6dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle and high channels.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna (double ridged waveguide antenna for all measurements above 1GHz) was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss (and antenna gain for all measurements above 1GHz), as required. The peak power output was calculated for low, middle, and high hopping frequencies.

Measurement Uncertainty					
Measurement Type	Expanded Measurement Uncertainty				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4				

Test Details					
Manufacturer	Chamberlain Group, Inc.				
Model	MYQPP1				
S/N	Elite2				
Mode	Bluetooth Tx				
Carrier Frequency	2402MHz				
Parameters	EIRP = 10.7mW (10.3dBm)				
Notes	None				

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2402.00	Н	68.4	7.4	5.0	3.4	9.0	36.0	-27.0
2402.00	V	69.3	8.7	5.0	3.4	10.3	36.0	-25.7

Test Details			
Manufacturer	Chamberlain Group, Inc.		
Model	MYQPP1		
S/N	Elite2		
Mode	Bluetooth Tx		
Carrier Frequency	2426MHz		
Parameters	EIRP = 7.6mW (8.8dBm)		
Notes	None		

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2426.00	Н	65.8	3.4	5.0	3.5	4.9	36.0	-31.1
2426.00	V	69.1	7.3	5.0	3.5	8.8	36.0	-27.2

Test Details				
Manufacturer	Chamberlain Group, Inc.			
Model	MYQPP1			
S/N	Elite2			
Mode	Bluetooth Tx			
Carrier Frequency	2480MHz			
Parameters	EIRP = 5.6mW (7.5dBm)			
Notes	None			

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2480.00	Н	64.3	2.9	4.9	3.5	4.3	36.0	-31.7
2480.00	V	67.3	6.1	4.9	3.5	7.5	36.0	-28.5

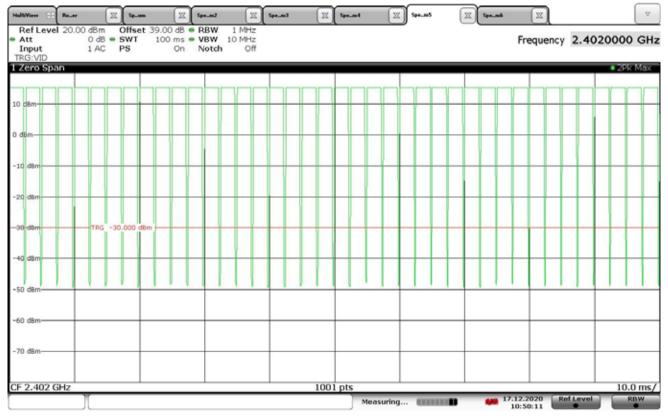
24. Duty Cycle Factor Measurements

Test Information			
Manufacturer	Chamberlain Group, Inc.		
Product	Pet Portal Door		
Model	MYQPP1		
Serial No	Elite2		
Mode	Bluetooth Tx		

Test Setup Details			
Setup Format	Tabletop		
Height of Support	NA		
Measurement Method	Antenna Conducted		
Type of Test Site	EMC Workstation		
Notes	None		

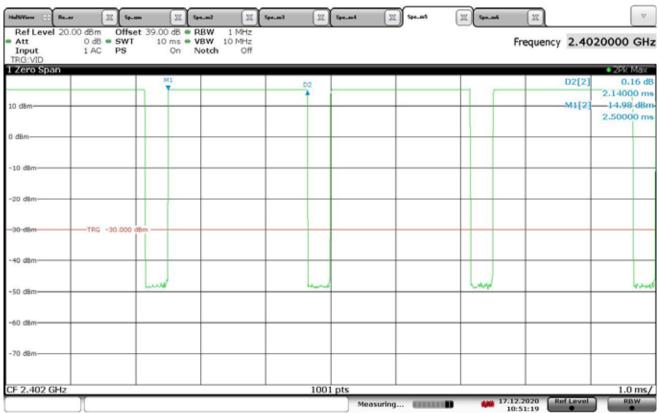
Procedures

The duty cycle factor is used to convert peak detected readings to average readings when pulsed modulation is employed. This factor is computed from the time domain trace of the pulse modulation signal.


With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer. This trace is obtained by tuning center frequency to the transmitter frequency and then setting a zero span width with 10msec/div. The amplitude settings are adjusted so that the on/off transitions clear the 4th division from the bottom of the display. The markers are set at the beginning and end of the "on-time". The trace is recorded.

Next the spectrum analyzer center frequency is set to the transmitter frequency with a zero span width and 10msec/div. This shows if the word is longer than 100msec or shorter than 100msec. If the word period is less than 100msec, the display is set to show at least one word. The on-time and off-time are then measured. The on-time is total time signal level exceeds the 4th division. Off-time is time under for the word period. The duty cycle is then computed as the (On-time/ word period) where the word period = (On-time + Off-time).

Measurement Uncertainty				
Measurement Type	Expanded Measurement Uncertainty			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4			



Test Details				
Manufacturer	Chamberlain Group, Inc.			
Model	MYQPP1			
S/N	Elite2			
Mode	Bluetooth Tx			
Carrier Frequency	2402MHz			
Parameters	On time = 40*2.14msec = 85.6msec			
Notes	None			

10:50:11 17.12.2020

10:51:19 17.12.2020

Duty Cycle Factor = $20 \log \left(\frac{100 \text{msec}}{85.6 \text{msec}}\right) = 1.35 \text{dB}$

25. Case Spurious Radiated Emissions

Test Information			
Manufacturer	Chamberlain Group, Inc.		
Product	Pet Portal Door		
Model	MYQPP1		
Serial No	Elite3		
Mode	Bluetooth Tx		

Test Setup Details			
Setup Format	Tabletop		
Height of Support	NA		
Measurement Method	Radiated		
Type of Test Site	Semi-Anechoic Chamber		
Type of Antonneo Llood	Below 1GHz: Bilog (or equivalent)		
Type of Antennas Used	Above 1GHz: Double-ridged waveguide (or equivalent)		
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.		

Measurement Uncertainty				
Measurement Type	Expanded Measurement Uncertainty			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4			

Procedures

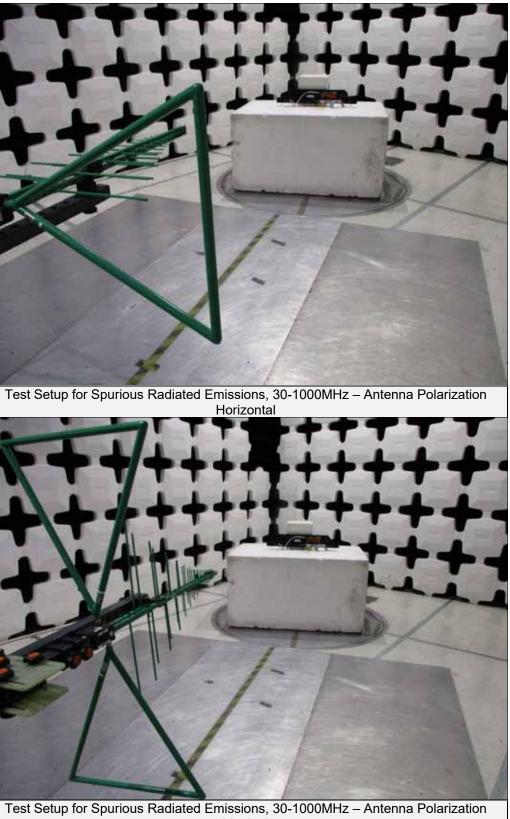
Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency range from 30MHz to 25GHz was investigated using a peak detector function.

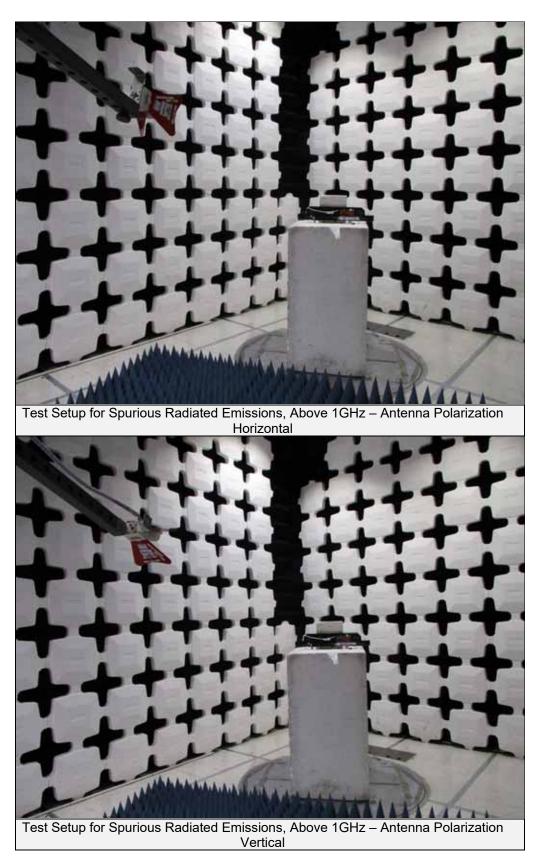
The final open field emission tests were then manually performed over the frequency range of 30MHz to 25GHz.

- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a double ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a

non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.


- b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
- c) To ensure that maximum or worst case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer. The measuring antenna was not raised or lowered to ensure maximized readings, instead the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
- d) All harmonics not in the restricted bands must be at least 20 dB (30dB for DTS systems where average power was used)_below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1 GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1 GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a non-conductive stand. A peak detector with a resolution bandwidth of 1 MHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer. The measuring antenna was not raised or lowered to ensure maximized readings, instead the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
 - d) For all radiated emissions measurements below 1 GHz, if the peak reading is below the limits listed in 15.209(a), no further measurements are required. If however, the peak readings exceed the limits listed in 15.209(a), then the emissions are remeasured using a quasi-peak detector.
 - e) For all radiated emissions measurements above 1 GHz, the peak readings must comply with the 15.35(b) limits. 15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency

emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1 GHz must be no greater than 20 dB above the limits specified in 15.209(a).


f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.

Vertical

Test Details						
Manufacturer	Chamberlain Group, Inc.					
Model	MYQPP1					
S/N	Elite3					
Mode	Bluetooth Tx					
Carrier Frequency	2402MHz					
Parameters	Peak Measurements in the Restricted Bands					
Notes	None					

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4804.00	н	53.2		3.7	36.6	-40.2	53.3	460.7	5000.0	-20.7
4804.00	V	56.9		3.7	36.6	-40.2	57.0	704.5	5000.0	-17.0
12010.00	Н	50.1	*	6.1	41.5	-39.7	58.0	790.8	5000.0	-16.0
12010.00	V	50.4	*	6.1	41.5	-39.7	58.2	812.1	5000.0	-15.8
19216.00	Н	31.8	*	2.2	40.4	-28.2	46.1	202.2	5000.0	-27.9
19216.00	V	31.5	*	2.2	40.4	-28.2	45.8	196.0	5000.0	-28.1

	Test Details					
Manufacturer Chamberlain Group, Inc.						
Model	MYQPP1					
S/N	Elite3					
Mode	Bluetooth Tx					
Carrier Frequency	2402MHz					
Parameters	Average Measurements in the Restricted Bands					
Notes	None					

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4804.00	Н	41.7		3.7	36.6	-40.2	1.4	43.1	143.2	500.0	-10.9
4804.00	V	48.4		3.7	36.6	-40.2	1.4	49.8	310.4	500.0	-4.1
12010.00	Н	34.5	*	6.1	41.5	-39.7	1.4	43.7	152.3	500.0	-10.3
12010.00	V	35.5	*	6.1	41.5	-39.7	1.4	44.7	172.0	500.0	-9.3
19216.00	н	16.2	*	2.2	40.4	-28.2	1.4	31.9	39.2	500.0	-22.1
19216.00	V	16.1	*	2.2	40.4	-28.2	1.4	31.8	39.0	500.0	-22.2

	Test Details					
Manufacturer Chamberlain Group, Inc.						
Model	MYQPP1					
S/N	Elite3					
Mode	Bluetooth Tx					
Carrier Frequency	2402MHz					
Parameters	Peak Measurements not in the Restricted Bands					
Notes	None					

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2402.00	Н	67.8		2.6	32.8	0.0	103.2	145122.9		
2402.00	V	68.7		2.6	32.8	0.0	104.1	160966.7		
7206.00	Н	40.0	*	4.6	37.7	-40.1	42.3	130.4	16096.7	-41.8
7206.00	V	38.9	*	4.6	37.7	-40.1	41.2	114.7	16096.7	-42.9
9608.00	Н	40.3	*	5.2	39.3	-39.6	45.2	182.1	16096.7	-38.9
9608.00	V	39.0	*	5.2	39.3	-39.6	43.9	157.2	16096.7	-40.2
14412.00	Н	39.8	*	6.6	41.9	-40.0	48.4	263.4	16096.7	-35.7
14412.00	V	39.0	*	6.6	41.9	-40.0	47.6	240.3	16096.7	-36.5
16814.00	Н	39.7	*	7.2	44.8	-38.9	52.8	434.9	16096.7	-31.4
16814.00	V	39.0	*	7.2	44.8	-38.9	52.1	402.2	16096.7	-32.0
21618.00	Н	23.6	*	2.2	40.6	-28.5	37.9	78.2	16096.7	-46.3
21618.00	V	23.9	*	2.2	40.6	-28.5	38.3	81.8	16096.7	-45.9
24020.00	Н	22.0	*	2.2	40.6	-29.3	35.6	60.4	16096.7	-48.5
24020.00	V	22.5	*	2.2	40.6	-29.3	36.1	63.6	16096.7	-48.1

	Test Details						
Manufacturer Chamberlain Group, Inc.							
Model	MYQPP1						
S/N	Elite3						
Mode	Bluetooth Tx						
Carrier Frequency	2426MHz						
Parameters	Peak Measurements in the Restricted Bands						
Notes	None						

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4852.00	н	54.2		3.7	36.6	-40.2	54.2	510.0	5000.0	-19.8
4852.00	V	57.2		3.7	36.6	-40.2	57.2	727.9	5000.0	-16.7
7278.00	н	50.3	*	4.7	37.8	-40.1	52.7	430.7	5000.0	-21.3
7278.00	V	49.6	*	4.7	37.8	-40.1	52.0	397.8	5000.0	-22.0
12130.00	н	49.6	*	6.1	41.6	-39.6	57.6	759.9	5000.0	-16.4
12130.00	V	49.5	*	6.1	41.6	-39.6	57.5	753.8	5000.0	-16.4
19408.00	н	32.0	*	2.2	40.4	-27.7	46.9	222.1	5000.0	-27.0
19408.00	V	31.7	*	2.2	40.4	-27.7	46.6	214.4	5000.0	-27.4

	Test Details					
Manufacturer Chamberlain Group, Inc.						
Model	MYQPP1					
S/N	Elite3					
Mode	Bluetooth Tx					
Carrier Frequency	2426MHz					
Parameters	Average Measurements in the Restricted Bands					
Notes	None					

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4852.00	н	44.0		3.7	36.6	-40.2	1.4	45.3	184.5	500.0	-8.7
4852.00	V	49.4		3.7	36.6	-40.2	1.4	50.7	344.0	500.0	-3.2
7278.00	Н	34.37	*	4.7	37.8	-40.1	1.4	38.1	80.7	500.0	-15.8
7278.00	V	34.4	*	4.7	37.8	-40.1	1.4	38.2	80.9	500.0	-15.8
12130.00	н	35.2	*	6.1	41.6	-39.6	1.4	44.5	168.8	500.0	-9.4
12130.00	V	35.2	*	6.1	41.6	-39.6	1.4	44.6	169.5	500.0	-9.4
19408.00	н	15.8	*	2.2	40.4	-27.7	1.4	32.0	39.9	500.0	-22.0
19408.00	V	15.7	*	2.2	40.4	-27.7	1.4	32.0	39.7	500.0	-22.0

	Test Details					
Manufacturer Chamberlain Group, Inc.						
Model	MYQPP1					
S/N	Elite3					
Mode	Bluetooth Tx					
Carrier Frequency	2426MHz					
Parameters	Peak Measurements not in the Restricted Bands					
Notes	None					

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2426.00	н	64.7		2.6	32.9	0.0	100.3	103045.5		
2426.00	V	68.3		2.6	32.9	0.0	103.8	154535.8		
9704.00	Н	41.3	*	5.2	39.4	-39.6	46.3	207.0	15453.6	-37.5
9704.00	V	40.7	*	5.2	39.4	-39.6	45.7	192.3	15453.6	-38.1
14556.00	Н	39.1	*	6.7	42.2	-40.1	47.9	247.9	15453.6	-35.9
14556.00	V	38.2	*	6.7	42.2	-40.1	47.0	223.5	15453.6	-36.8
16982.00	Н	39.5	*	7.2	44.8	-38.7	52.9	440.2	15453.6	-30.9
16982.00	V	38.5	*	7.2	44.8	-38.7	51.9	391.8	15453.6	-31.9
21834.00	Н	22.6	*	2.2	40.6	-28.9	36.4	66.4	15453.6	-47.3
21834.00	V	22.2	*	2.2	40.6	-28.9	36.1	64.0	15453.6	-47.7
24260.00	н	21.8	*	2.2	40.6	-29.4	35.3	58.0	15453.6	-48.5
24260.00	V	21.5	*	2.2	40.6	-29.4	34.9	55.7	15453.6	-48.9

	Test Details						
Manufacturer Chamberlain Group, Inc.							
Model	MYQPP1						
S/N	Elite3						
Mode	Bluetooth Tx						
Carrier Frequency	2480MHz						
Parameters	Peak Measurements in the Restricted Bands						
Notes	None						

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4960.00	н	56.2		3.7	36.4	-40.3	56.0	630.9	5000.0	-18.0
4960.00	V	58.0		3.7	36.4	-40.3	57.8	780.7	5000.0	-16.1
7440.00	н	48.9	*	4.7	37.8	-40.0	51.4	373.2	5000.0	-22.5
7440.00	V	50.0	*	4.7	37.8	-40.0	52.5	421.7	5000.0	-21.5
12400.00	н	49.3	*	6.1	41.8	-39.5	57.6	759.6	5000.0	-16.4
12400.00	V	49.6	*	6.1	41.8	-39.5	57.9	789.1	5000.0	-16.0
19840.00	н	34.6		2.2	40.4	-28.0	49.2	288.6	5000.0	-24.8
19840.00	V	34.3		2.2	40.4	-28.0	48.8	276.9	5000.0	-25.1
22320.00	Н	32.1		2.2	40.6	-28.8	46.1	202.2	5000.0	-27.9
22320.00	V	32.4		2.2	40.6	-28.8	46.3	207.1	5000.0	-27.7

	Test Details					
Manufacturer Chamberlain Group, Inc.						
Model	MYQPP1					
S/N	Elite3					
Mode	Bluetooth Tx					
Carrier Frequency	2480MHz					
Parameters	Average Measurements in the Restricted Bands					
Notes	None					

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4960.00	Н	48.1		3.7	36.4	-40.3	1.4	49.2	290.1	500.0	-4.7
4960.00	V	50.8		3.7	36.4	-40.3	1.4	52.0	399.0	500.0	-2.0
7440.00	Н	34.36	*	4.7	37.8	-40.0	1.4	38.2	81.7	500.0	-15.7
7440.00	V	34.4	*	4.7	37.8	-40.0	1.4	38.2	81.6	500.0	-15.7
12400.00	Н	34.8	*	6.1	41.8	-39.5	1.4	44.5	167.0	500.0	-9.5
12400.00	V	35.7	*	6.1	41.8	-39.5	1.4	45.4	187.1	500.0	-8.5
19840.00	Н	18.3		2.2	40.4	-28.0	1.4	34.3	51.7	500.0	-19.7
19840.00	V	19.0		2.2	40.4	-28.0	1.4	34.9	55.9	500.0	-19.0
22320.00	Н	16.2		2.2	40.6	-28.8	1.4	31.6	37.9	500.0	-22.4
22320.00	V	16.1		2.2	40.6	-28.8	1.4	31.4	37.3	500.0	-22.5

	Test Details						
Manufacturer Chamberlain Group, Inc.							
Model	MYQPP1						
S/N	Elite3						
Mode	Bluetooth Tx						
Carrier Frequency	2480MHz						
Parameters	Peak Measurements not in the Restricted Bands						
Notes	None						

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2480.00	Н	64.0		2.7	33.2	0.0	99.9	98836.5		
2480.00	V	66.6		2.7	33.2	0.0	102.5	133634.1		
9920.00	Н	40.9	*	5.3	39.6	-39.5	46.2	205.3	13363.4	-36.3
9920.00	V	41.0	*	5.3	39.6	-39.5	46.3	207.0	13363.4	-36.2
14880.00	Н	40.1	*	6.8	42.6	-40.4	49.1	286.3	13363.4	-33.4
14880.00	V	39.9	*	6.8	42.6	-40.4	48.9	279.1	13363.4	-33.6
17360.00	Н	40.2	*	7.4	44.1	-39.1	52.6	426.3	13363.4	-29.9
17360.00	V	40.1	*	7.4	44.1	-39.1	52.5	420.5	13363.4	-30.0
24800.00	н	22.9		2.2	40.6	-29.3	36.4	66.0	13363.4	-46.1
24800.00	V	22.7		2.2	40.6	-29.3	36.2	64.5	13363.4	-46.3

26. Band-Edge Compliance

	Test Information									
Manufacturer Chamberlain Group, Inc.										
Product Pet Portal Door										
Model	MYQPP1									
Serial No	Elite2									
Mode	Bluetooth Tx									

	Test Setup Details								
Setup Format	Tabletop								
Height of Support	NA								
Measurement Method	Antenna Conducted and Radiated								
Type of Test Site	Semi-Anechoic Chamber								
Notes	None								

Procedures

Low Band Edge

1) The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation.

- 2) The EUT was set to transmit continuously at the channel closest to the low band-edge.
- 3) To determine the band edge compliance, the following spectrum analyzer settings were used:

a. Center frequency = low band-edge frequency.

b. Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.

c. Resolution bandwidth (RBW) \geq 1% of the span.

d. The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.

e. The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)

f. The analyzer's display was plotted using a 'screen dump' utility.

High Band Edge

C.

1) The EUT was set to transmit continuously at the channel closest to the high band-edge.

2) A double ridged waveguide was placed 3 meters away from the EUT. The antenna was connected to the input of a spectrum analyzer.

3) The center frequency of the analyzer was set to the high band edge (2483.5MHz)

- 4) The resolution bandwidth was set to 1MHz.
- 5) To ensure that the maximum or worst case emission level was measured, the following steps were taken:
 - a. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - b. Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - The measuring antenna was raised and lowered from 1 to 4 meters for each antenna

polarization to maximize the readings.

- 6) 7)
- The highest measured peak reading was recorded. The highest measured average reading was recorded.

Measurement Uncertainty									
Measurement Type	Expanded Measurement Uncertainty								
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3								
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1								
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2								
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3								
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4								

60

	Test Details								
Manufacturer Chamberlain Group, Inc.									
Model	MYQPP1								
S/N	Elite2								
Mode	Bluetooth Tx								
Carrier Frequency	2402MHz								
Parameters	Low Band-Edge								
Notes	None								

Maltiviere	Recature	H.	pectrum 🌽	22 Spee	trem 2	# 24	Spectrum 3		Spectrum		Spectrum 5	(III)			v.
Ref Level Att Input	-5.00 dBm 0 dB 1 AC	SWT	1.02 ms . V		NHz N Off	Aode /	Auto Sweep				·	Fre	quency :	2.40	00000 GHz
1 Frequence															2Pk Max
-10 dBm				-		+						-	MI	2	-36,16 dBm ,4021980 GH2
-20 d8m				-		+								_	
-30 d8m	_			_		+				ME				_	
-40 dBm	_					-			N	J				_	
-50 dBm				_					1	1				_	
-60 dBm		5.370 đ		_		+					_			_	
-70 d8m								1		h					
-90 dBm								N.		1	Z				
-90 dBm	mmm	www	mm	arm	m	m	WWW A				marco -	mh	mm	m	man
-100 dBm								OO GHZ							
CF 2.4 GHz					1001	pts			2	.0 MHz/				S	pan 20.0 MHz

23:44:14 18.12.2020

	Test Details								
Manufacturer Chamberlain Group, Inc.									
Model	MYQPP1								
S/N	Elite3								
Mode	Bluetooth Tx								
Carrier Frequency	2480MHz								
Parameters	High Band-Edge								
Notes	None								

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2483.50	Н	26.9		2.7	33.3	0.0	62.9	1391.2	5000.0	-11.1
2483.50	V	26.1		2.7	33.3	0.0	62.0	1257.1	5000.0	-12.0

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2483.50	н	5.3		2.7	33.3	0.0	1.4	42.6	134.6	500.0	-11.4
2483.50	V	6.8		2.7	33.3	0.0	1.4	44.1	159.9	500.0	-9.9

27. Power Spectral Density

Test Information	
Manufacturer	Chamberlain Group, Inc.
Product	Pet Portal Door
Model	MYQPP1
Serial No	Elite2
Mode	Bluetooth Tx

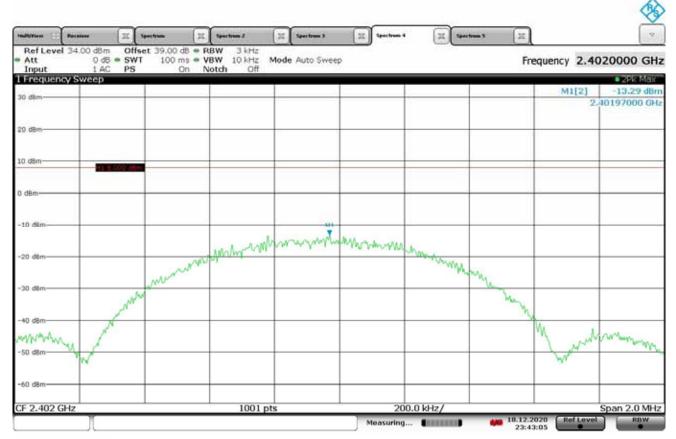
Information	
Setup Format	Tabletop
Height of Support	NA
Measurement Method	Antenna Conducted
Type of Test Site	EMC Workstation
Type of Antennas Used	NA
Notes	None

Requirements

The power spectral density from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

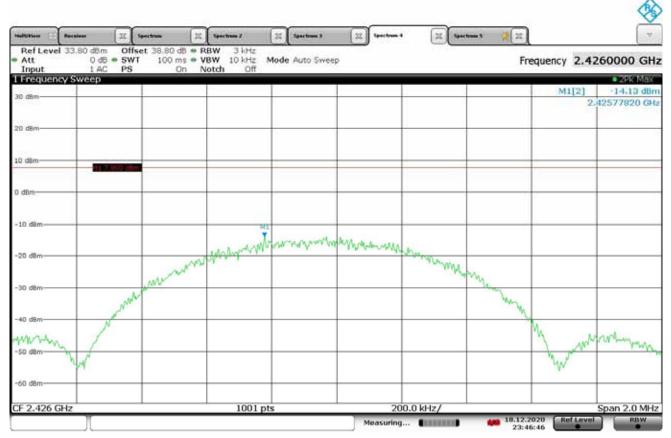
Procedures

The EUT was placed on the non-conductive stand and set to transmit continuously. The antenna port of the EUT was connected to the spectrum analyzer through a 40dB pad. To determine the power spectral density, the following steps were followed:

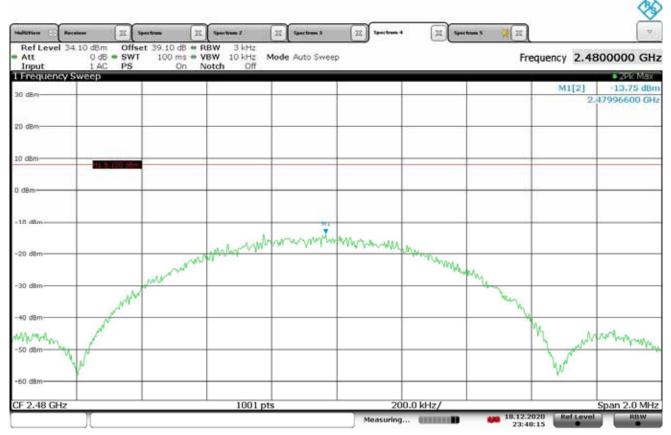

- 1) Center frequency = transmit frequency
- 2) Span = 1.5 times the DTS (6 dB) bandwidth
- 3) Resolution bandwidth (RBW): $3kHz \le RBW \le 100kHz$
- 4) Sweep time = auto
- 5) The peak detector and 'Max-Hold' function was engaged.
- 6) The display line represents the 8 dBm limit
- 7) The analyzer's display was plotted using a 'screen dump' utility.
- 8) If the measured value exceeded the limit, the RBW was reduced (no less than 3kHz) and repeated.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test	3.4

site) (26.5 GHz – 40 GHz)


Test Details		
Manufacturer	Chamberlain Group, Inc.	
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2402MHz	
Parameters	PSD = -13.29dBm	
Notes	None	

23:43:05 18.12.2020


Test Details		
Manufacturer	Chamberlain Group, Inc.	
Model	MYQPP1	
S/N	Elite2	
Mode	Bluetooth Tx	
Carrier Frequency	2426MHz	
Parameters	PSD = -14.13dBm	
Notes	None	

23:46:46 18.12.2020

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	MYQPP1
S/N	Elite2
Mode	Bluetooth Tx
Carrier Frequency	2480MHz
Parameters	PSD = -13.75dBm
Notes	None

23:48:16 18.12.2020

28. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Stanley Dolecki (Automotive Team Leader) Phone: 630 495 9770 ext. 103 Email: sdolecki@elitetest.com Website: www.elitetest.com

Valid to: June 30, 2021

ELECTRICAL

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

Test Technology:	Test Method(s) ¹ :
Transient Immunity	ISO 7637-2 (including emissions); ISO 7637-3; ISO 16750-2:2012, Sections 4.6.3 and 4.6.4; CS-11979, Section 6.4; CS.00054, Section 5.9; EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222); GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008); CS-11979 Section 7.0; CS.00054, Section 5.10; EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3; CISPR 25 (2016), Sections 6.3 and 6.4; CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2; EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310)
Vehicle Radiated Emissions	CISPR 12; ICES-002

(A2LA Cert. No. 1786.01) Revised 01/10/2020

M Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Test Technology:	Test Method(s) ¹ :
Bulk Current Injection (BCI)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112)
Bulk Current Injections (BCI) (Closed Loop Method)	ISO 11452-4; SAE J1113-4
Radiated Immunity Anechoic (Including Radar Pulse)	ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2
Electrical Loads	ISO 16750-2, Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12
Dielectric Withstand Voltage	MIL-STD-202, Method 301; EIA-364-20D
Insulation Resistance	MIL-STD-202, Method 302; SAE/USCAR-2, Revision 6, Section 5.5.1; EIA-364-21D
Contact Resistance	MIL-STD-202, Method 307; SAE/USCAR-2, Revision 6, Section 5.3.1; EIA/ECA-364-23C; USCAR21-3 Section 4.5.3
DC Resistance	MIL-STD-202, Method 303
Contact Chatter	MIL-STD-202, Method 310; SAE/USCAR-2, Revision 6, Section 5.1.9
	SALFOSCAR-2, Revision 0, Section 5.1.9
Voltage Drop	SAE/USCAR-2, Revision 6, Section 5.3.2; USCAR21-3 Section 4.5.6

Ann Page 2 of 8

Test Technology:	Test Method(s) ¹ :
Emissions Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz)	47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KN 11; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KN 32
Current Harmonics	IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2
Flicker and Fluctuations	IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3
Immunity Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; IEEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; IEEE C37.90.2 2004
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; IEEE C37.90.1 2012

Ann Page 3 of 8

Test Technology:	Test Method(s) ¹ :
Immunity (cont'd) Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6
Power Frequency Magnetic Field Immunity	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12
Generic and Product Specific EMC Standards	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; EN 50130-4; IEC 61326-1; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-52;
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 301 413; ETSI EN 302 502

Ann Page 4 of 8

Test Technology:	Test Method(s) ¹ :
Canadian Radio Tests	RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-246; RSS-247; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008; NOM-208-SCFI
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101; ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015;
OTA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/ac	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

M Page 5 of 8

A AC 150/5345-10H A AC 150/5345-43J A AC 150/5345-44K A AC 150/5345-46E A AC 150/5345-47C A EB 67D

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA *R101* - *General Requirements* - *Accreditation of ISO-IEC* 17025 Laboratories.

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000
Unlicensed Personal Communication Systems Devices Part 15D	ANSI C63.17:2013	40000
(A21 A Cert No. 1786.01) Revised 01/10/2020	An	Page 6 of 8

(A2LA Cert. No. 1786.01) Revised 01/10/2020

Page 6 of 8

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
U-NII without DFS Intentional Radiators Part 15E	ANSI C63.10:2013	40000
U-NII with DFS Intentional Radiators Part 15E	FCC KDB 905462 D02 (v02)	40000
UWB Intentional Radiators Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
<u>Commercial Mobile Services (FCC Licensed</u> <u>Radio Service Equipment)</u> Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
General Mobile Radio Services (FCC Licensed Radio Service Equipment) Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Part 96 <u>Maritime and Aviation Radio Services</u>	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
Microwave and Millimeter Bands Radio Services Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
	Λ	

Ann Page 7 of 8

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Signal Boosters Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

²Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

An Page 8 of 8

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated April 2017).

Presented this 8th day of August 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.