

Engineering Test Report No. 2301031-03					
Report Date	July 18, 2023				
Manufacturer Name	The Chamberlain Group, Inc.				
Manufacturer Address	300 Windsor Dr Oak Brook, IL 60523				
Product Name Model No.	Industrial DC Operator JHDC7S1BMC, JHDC7S4BMC, JHDC12	S1BMC, JHDC12S4BMC			
Date Received	June 1, 2023				
Assessment Dates	June 5 – July 11, 2023				
Specifications	FCC 47 CFR Part 1 §1.1310 & Part 2 §2.1091 and §2.1093 KDB 447498 D01 OET Bulletin 65:1997 RSS-102 Issue 5, Amend. 1				
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515 FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107				
Signature	Tylar Joylyk				
Tested by	Tylar Jozefczyk				
Signature	Kaymond J Klouda,				
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894				
PO Number	4900090806				

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Table of Contents

1.	Report Revision History	3
2.	Introduction	
3.	Subject of Investigation	
4.	Standards and Requirements	
5.	Sample Calculation's	
6.	Photographs of EUT	6
7.	Limits and Requirements	
7.1.	Requirements mandated by the FCC	
7.2.	Requirements mandated by Innovation, Science and Economic Development Canada	
8.	Assessment Results	13
8.1.	RF Exposure Evaluation Relevant to the Requirements of the FCC	13
8.2.	RF Exposure Evaluation Relevant to the Requirements of the ISED	14
8.2.1.	Assessment Results for General/Uncontrolled Environments	14
9.	Statement of Compliance	15

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description		
- 19 JUL 2023		Initial Release of Engineering Test Report No. 2301031-03		

2. Introduction

The FCC, Innovation, Science and Economic Development Canada, European Union and Australia/New Zealand publish standards regarding the evaluation of the RF Exposure hazard of radio communications devices. An evaluation has been performed on The Chamberlain Group, Inc. Industrial DC Operator (Model No. JHDC7S1BMC, JHDC7S4BMC, JHDC12S1BMC, and JHDC12S4BMC) pursuant to the relevant requirements.

3. Subject of Investigation

This document presents the demonstration of RF Exposure compliance on an Industrial DC Operator, (hereinafter referred to as the Equipment under Test (EUT)). The EUT was identified as follows:

EUT Identification					
Description	Description Industrial DC Operator				
	JHDC7S1BMC, JHDC7S4BMC, JHDC12S1BMC, JHDC12S4BMC				
Model/Part No.					
	(Note: JHDC12S1BMC was used for evaluation; the same board is used in all models.)				
	Below 1GHz FHSS				
Radio Access Technology	802.11b/g/n				
	Bluetooth Low Energy				
Panda of Operation	900 – 928MHz				
Bands of Operation	2400 – 2483.5MHz				
	900MHz: 0.02089W (13.2dBm)				
Conducted Output Power	Wi-Fi: 802.11g – 0.1513W (21.8dBm) (highest power overall)				
	BLE: 0.0015W (1.8dBm)				
Antenna Gain	900MHz: 3.5dBi				
Antenna Gam	Wi-Fi/BLE: 5dBi				
Note 1 – The Wi-Fi and BLE cannot transmit simultaneously, so each combination will be evaluated separately.					

Note 2 – The logic control board used is PCB # 003-0635-1.

4. Standards and Requirements

The tests were performed to selected portions of, and in accordance with the following specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 1, Subpart I, §1.1310 "Radiofrequency radiation exposure limits"
- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 2, Subpart J, §2.1091 "Radiofrequency radiation exposure evaluation: mobile devices"
- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 2, Subpart J, §2.1093 "Radiofrequency radiation exposure evaluation: portable devices"
- KDB 447498 D01 General RF Exposure Guidance v06 "RF Exposure Procedures and Equipment Authorization Polices for Mobile and Portable Devices"
- OET Bulletin 65 Edition 97-01:1997 "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields"
- ANSI/IEEE C95.1:1992 "Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"

Note 3 – This report also covers the following model numbers: JDC7S1BMC, JDC7S4BMC, TDC7S1BMC, TDC7S4BMC, JHDC12X1BMC, JHDC12X4BMC, TDC12S1BMC, TDC12S4BMC, TDC12X1BMC, and TDC12X4BMC.

 RSS-102, Issue 5, Amendment 1 (February 2, 2021) – "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)"

5. Sample Calculations

The far field power density can be calculated using the following formula:

$$S = \frac{PG}{4\pi R^2} \tag{1}$$

Where:

P = transmit output power (mW)

G = maximum antenna gain relative to an isotropic antenna (linear)

R = evaluation distance (cm).

In cases where multiple antennas are utilized for a single signal, the following formula is applied to calculate the maximum antenna gain:

$$Gain (dBi) = G + 10 \log N \tag{2}$$

Where:

N = number of antennas,

G = gain of a single antenna.

A minimum separation distance can be calculated using the following formulas

$$Minimum Seperation Distance = \sqrt{\frac{PG}{4\pi(Power Density Limit)}}$$
 (3)

Where:

P = transmit output power (mW)

G = maximum antenna gain relative to an isotropic antenna (linear).

For sources with frequencies < 30MHz

Separation Distance =
$$R \left(10^{\frac{(FS_{Limit} - FS_R)}{40}} \right)^{-1}$$
 (4)

For sources with frequencies > 30MHz

Separation Distance =
$$R \left(10^{\frac{(FS_{Limit} - FS_R)}{20}} \right)^{-1}$$
 (5)

Where:

R = measurement distance

FS_{Limit} = field strength limit

 FS_R = measured field strength at distance R.

6. Photographs of EUT

Removed for short term confidentiality reasons
Removed for short term confidentiality reasons

Removed for short term confidentiality reasons
Sub 1GHz Antenna with mount and extension cable
Sub TGHZ Afficilità with mount and extension cable
Removed for short term confidentiality reasons
Wi-Fi/BLE Antenna
WIT I/DEE AHOIHIG

7. Limits and Requirements

7.1. Requirements mandated by the FCC

Equipment pursuing compliance to the requirements with respect to the limits of human exposure to RF provided in FCC 1.1310, need follow the criteria in FCC 1.1307(b)(1).

Equipment exemption qualification must be demonstrated pursuant to FCC 1.1307(b)(3).

For single RF sources (i.e., any single portable device, mobile device, or fixed RF source): A single RF source is exempt if:

- FCC 1.1307(b)(3)(i)(A): The available maximum time-averaged power is no more than 1mW, regardless of separation distance.
- FCC 1.1307(b)(3)(i)(B): The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th}(mW) = \begin{cases} ERP_{20cm} \left(\frac{d}{20cm}\right)^{x} & d \le 20cm \\ ERP_{20cm} & 20cm < d \le 40cm \end{cases}$$

With

$$x = -\log_{10}\left(\frac{60}{ERP_{20cm}\sqrt{f}}\right)$$

Where f is in GHz, and

$$ERP_{20cm}(mW) = \begin{cases} 2040f & 0.3GHz \le f < 1.5GHz \\ 3060 & 1.5GHz \le f < 6GHz \end{cases}$$

• FCC 1.1307(b)(3)(i)(C): Using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least λ/2π, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of λ/4 or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source Frequency	Threshold ERP		
(MHz)	(watts)		
0.3 – 1.34	1920 R ²		
1.34 – 30	3450 R ² / f ²		
30 – 300	3.83 R ²		
300 – 1,500	0.0128 R ²		
1,500 – 100,000	19.2 R ²		

Multiple RF sources are exempt if:

- FCC 1.1307(b)(3)(ii)(A): The available maximum time-averaged power of each source is no more than 1mW and there is a separation distance of two centimeters between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1mW during the time-averaging period, in which case they may be treated as a single source (separation is not required).
- FCC 1.1307(b)(3)(ii)(B): In the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

Where:

a = number of fixed, mobile, or portable RF sources claiming exemption using paragraph (b)(3)(i)(B) for P_{th} , including existing exempt transmitters and those being added. b = number of fixed, mobile, or portable RF sources claiming exemption using paragraph (b)(3)(i)(C) for Threshold ERP, including existing exempt transmitters and those being added.

c = number of existing fixed, mobile, or portable RF sources with known evaluation for the specified minimum distance, including existing evaluated transmitters.

P_i = available maximum time-averaged power or the ERP (whichever is greater) for fixed, mobile, or portable RF source i at a distance between 0.5 – 40cm (inclusive).

 $P_{th,i}$ = exemption threshold power (P_{th}) according to paragraph (b)(3)(i)(B) for fixed, mobile, or portable RF source i.

ERP_i = ERP of fixed, mobile, or portable RF source j.

ERP_{th,j} = exemption threshold ERP for fixed, mobile, or portable RF source j, at a distance of at least $\lambda/2\pi$ according to the applicable formula of paragraph (b)(3)(i)(C).

Evaluated $_k$ = maximum reported SAR or MPE of fixed, mobile, or portable RF source k either in the device or at the transmitter site from an existing evaluation at the location of exposure.

Exposure Limit_k = either the general population/uncontrolled maximum permissible exposure (MPE) or specific absorption rate (SAR) limit for each fixed, mobile, or portable RF source k, as applicable from §1.1310.

If it is determined that the equipment under investigation is not exempt from routine evaluation an assessment must be performed to determine compliance in regard to the RF exposure limits by means of measurement or calculation of the electric field, magnetic field, or power density. It may be the case that a minimum separation distance will need to be calculated or measured and maintained from the source of RF to meet the basic restrictions.

In environments where the possibility of simultaneous exposure to fields on different frequencies exists, the exposure shall be considered to be additive. The fraction of the recommended limit incurred within each frequency should be determined, and the sum of all fractional contributions should not exceed 1.0.

Per 1.1310(e)(1), the power density shall not exceed the levels below:

Limits for Occupational/Controlled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)		
0.3 - 3.0	614	1.63	100 *		
3.0 - 30	1842 / f	4.89 / f	900 / f ² *		
30 – 300	61.4	0.163	1.0		
300 – 1,500			f / 300		
1,500 — 100,000			5		
	Limits for General/Ui	ncontrolled Exposure			
Frequency Range (MHz)	Electric Field Strength (V/m)	Field Field Strength Strength			
0.3 – 1.34	614	1.63	100 *		
1.34 – 30	842 / f	2.19 / f	180 / f ² *		
30 – 300	30 – 300 27.5		0.2		
300 – 1,500	300 – 1,500 —		f / 1500		
1,500 - 100,000	1.0				
f = frequency in MHz * = Plane wave Equivalent Po	ower Density				

7.2. Requirements mandated by Innovation, Science and Economic Development Canada

The RF exposure level shall be determined by either measurement or by calculating the power density at a minimum evaluation distance of 0.2m, as specified by ANSI/IEEE C95.1-1992.

If it is found that the product meets the low power exclusion level criteria listed in RSS 102 Section 2.5.2, no further RF exposure evaluation is required. The low power exclusion level criteria are given in the following table (*f* is given in MHz):

RF Source Frequency	Threshold ERP		
(MHz)	(watts)		
f < 20 MHz	x ≤ 1		
$20 \text{ MHz} \le f < 48 \text{ MHz}$	$x \le \frac{4.49}{f^{0.5}}$		
$48 \text{ MHz} \le f < 300 \text{ MHz}$	x ≤ 0.6		
$300 \text{ MHz} \le f < 6 \text{ GHz}$	$x \le (1.31 * 10^{-2}) * f^{0.6834}$		
6 GHz ≤ f	x ≤ 5		

If it is determined that the measured or calculated power density does not meet the basic restrictions, a separation distance must be measured or calculated such that the basic restrictions are met.

In environments where the possibility of simultaneous exposure to fields on different frequencies exists, the exposure shall be considered to be additive. The fraction of the recommended limit incurred within each frequency should be determined, and the sum of all fractional contributions should not exceed 1.0. The following formula shall apply:

$$\sum_{i=1}^{n} \frac{S_{C,1}}{S_{L,1}} + \frac{S_{C,2}}{S_{L,2}} + \frac{S_{C,3}}{S_{L,3}} + \dots + \frac{S_{C,n}}{S_{L,n}} \le 1$$
 (6)

where:

 S_C = measured/calculated power density.

 $S_L = RF$ exposure limit.

Per RSS 102 Section 4, the power density shall not exceed the levels below:

Limits for Occupational/Controlled Exposure					
Frequency Range	Electric Field Strength	n Magnetic Field Strength Power Density			
(MHz)	(V/m)	(A/m)	(W/m²)		
0.003 – 10 *	170	180	-		
0.1 – 10 *	_	1.6 / f	_		
1.29 – 10 *	193 / f ^{0.5}				
10 – 20	61.4	0.163	10		
20 – 48	129.8 / f ^{0.25}	0.3444 / f ^{0.25}	44.72 / f ^{0.5}		
48 – 100	49.33	0.1309	6.455		
100 – 6000	15.60 f ^{0.25}	0.04138 f ^{0.25}	0.6455 f ^{0.5}		
6000 – 15000	137	0.364	50		
15000 – 150000	137	0.364	50		
150000 – 300000		9.40x10 ⁻⁴ f ^{0.5}	3.33x10 ⁻⁴ f		
	Limits for General/Ui	ncontrolled Exposure			
Frequency Range	Electric Field Strength	Magnetic Field Strength	Power Density		
(MHz) (V/m)		(A/m)	(W/m²)		
0.003 - 10 *	83				
0.1 – 10 *	_	— 0.73 / f —			
1.1 – 10 *	87 / f ^{0.5}	_	-		
10 – 20	27.46	0.0728	2		
20 – 48			8.944 / f ^{.05}		
48 – 300	22.06				
300 – 6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}		
6000 – 15000	61.4	0.163	10		
15000 – 150000	61.4	0.163	10		
150000 – 300000	0.158 f ^{0.5}	4.21x10 ⁻⁴ f ^{0.5} 6.67x10 ⁻⁵ f			
f = frequency in MHz					

f = frequency in MHz

^{*} Limits only apply to Specific Absorption Rate and Nerve Stimulation requirements.

8. Assessment Results

8.1. RF Exposure Evaluation Relevant to the Requirements of the FCC

Radio Access Technology	f Transmit Frequency (MHz)	ERP/P (dBm)	ERP/P (mW)	
Wi-Fi	2462	30.59	1145.512941	
900MHz	926.75	13.56	22.69864852	

Ad	Radio ccess hnology	f Transmit Frequency (MHz)	ERP/P (mW)	Power Threshold (mW)	Calculated Power Density (mW/cm²)	Power Density Limit (mW/cm²)	Fractional Contributions	Σ Fractional Contributions
V	Vi-Fi	2462			0.227892559	1.00	0.2279	0.225
90	0MHz	926.75			0.004515753	0.62	0.0073	0.235

Radio Access Technology	f Transmit Frequency (MHz)	ERP/P (dBm)	ERP/P (mW)
BLE	2402	1.8	1.513561248
900MHz	926.75	13.2	20.89296131

Radio Access Technology	f Transmit Frequency (MHz)	ERP/P (mW)	Power Threshold (mW)	Calculated Power Density (mW/cm²)	Power Density Limit (mW/cm²)	Fractional Contributions	Σ Fractional Contributions
BLE	2402			0.000301113	1.00	0.0003	0.007
900MHz	926.75			0.004156523	0.62	0.0067	0.007

The equipment under investigation is determined to be exempt from routine evaluation.

8.2. RF Exposure Evaluation Relevant to the Requirements of the ISED

Radio Access Technology	f Transmit Frequency (MHz)	EIRP (dBm)	EIRP (W)
Wi-Fi	2462	21.8	0.151
900MHz	926.75	13.2	0.021

Radio Access Technology	f Transmit Frequency (MHz)	EIRP (dBm)	EIRP (W)	
BLE	2402	1.8	0.002	
900MHz	926.75	13.2	0.021	

8.2.1. Assessment Results for General/Uncontrolled Environments

Based on the initial assessment above, the EUT is required to meet the limits for General Population/Uncontrolled exposure.

Details of the final assessment can be seen below:

Radio Access Technology	f Transmit Frequency (MHz)	S _C Calculated Power Density (W/m²)	S _L Power Density Limit (W/m²)	S _C :S∟ Ratio	Σ S _C :S _L Ratio
Wi-Fi	2462	0.301113413	5.441789657	0.055333527	0.07
900MHz	926.75	0.041565222	2.790986499	0.014892663	0.07

Radio Access Technology	f Transmit Frequency (MHz)	S _C Calculated Power Density (W/m²)	S _L Power Density Limit (W/m²)	S _C :S∟ Ratio	∑ S _C :S _L Ratio
BLE	2402	0.003011134	5.350804563	0.000562744	0.02
900MHz	926.75	0.041565222	2.790986499	0.014892663	0.02

9. Statement of Compliance

The Chamberlain Group, Inc. Industrial DC Operator (Model No. JHDC7S1BMC, JHDC7S4BMC, JHDC12S1BMC, and JHDC12S4BMC) is in compliance with the FCC and Innovation, Science and Economic Development Canada requirements for RF Exposure.