

	Test Details							
Manufacturer	Chamberlain Group, Inc.							
EUT	Falcon DC GDO Logic Board							
Model No.	GDO 003-0454-8 Rev B							
Serial No.	Sample 1							
Mode	TX							
Frequency Tested	902.25MHz							
Result	Duty Cycle Factor = -8.18dB							
	Duty Cycle Factor Calculation:							
Notes	Duty Cycle Factor = $20 \log \left(\frac{39 \text{ms}}{100 \text{ms}}\right) = -8.18 dB$							

Date: 3.MAY.2022 15:52:03

29. Case Spurious Radiated Emissions

EUT Information							
Manufacturer Chamberlain Group, Inc.							
Product	Falcon DC GDO Logic Board						
Model No.	GDO 003-0454-8 Rev B						
Serial No.	Sample 1						
Mode	TX						

Test Setup Details						
Setup Format	Tabletop					
Height of Support	N/A					
Type of Test Site	Semi-Anechoic Chamber					
Test Site Used	R29F					
Type of Antennas Lised	Below 1GHz: Bilog (or equivalent)					
Type of Antennas Osed	1 – 10GHz: Double-Ridged Waveguide (or equivalent)					
Notes	None					

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Procedure

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 10.0GHz was investigated using a peak detector function.

The final open field emission tests were then manually performed over the frequency range of 30MHz to 10.0GHz.

- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
 - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components

were measured.

- iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
- iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
- d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in §15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in §15.209(a), then the emissions are remeasured using a quasi-peak detector.
- e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).
- f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.

If the dwell time per channel of the hopping signal is less than 100msec, then the reading obtained with the 10Hz video bandwidth may be further adjusted by a duty cycle correction factor derived from 20*log(dwell time/100msec). These readings must be no greater than the limits specified in §15.209(a).

	Picture removed for short term confidentiality purposes.
Test Setup fo	or Spurious Radiated Emissions, 30MHz – 1GHz – Antenna Polarization Horizontal
	Picture removed for short term confidentiality purposes.
	Picture removed for short term confidentiality purposes.
	Picture removed for short term confidentiality purposes.
	Picture removed for short term confidentiality purposes.
	Picture removed for short term confidentiality purposes.

Picture removed for short term confidentiality purposes.
Test Setup for Spurious Radiated Emissions, 1 – 10GHz – Antenna Polarization Horizontal
Picture removed for short term confidentiality purposes.
Test Setup for Spurious Radiated Emissions, 1 – 10GHz – Antenna Polarization Vertical

Test Details								
Manufacturer	hamberlain Group, Inc.							
EUT	Falcon DC GDO Logic Board							
Model No.	GDO 003-0454-8 Rev B							
Serial No.	Sample 1							
Mode	TX							
Frequency Tested	902.25MHz							
Notes	Peak Measurements in the Restricted Bands							

Freq	Ant Pol	Meter Reading (dBu\/)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBu)//m)	Peak Total at 3m (u\//m)	Peak Limit at 3m	Margin (dBm)
(10112)	H	52.2	7 (110)011	2.8	33.6	-40.2	48.4	263.0	5000.0	-25.6
2706.75	V	53.8		2.8	33.6	-40.2	50.0	316.2	5000.0	-24.0
	Н	50.4	Ambient	3.2	34.1	-39.5	48.3	258.9	5000.0	-25.7
3609.00	V	49.7	Ambient	3.2	34.1	-39.5	47.6	238.8	5000.0	-26.4
4511.25	Н	49.6	Ambient	3.6	35.8	-39.6	49.4	294.0	5000.0	-24.6
	V	50.2	Ambient	3.6	35.8	-39.6	50.0	315.1	5000.0	-24.0
E412 E0	Н	59.8		3.9	36.8	-39.5	61.1	1132.0	5000.0	-12.9
5415.50	V	56.2		3.9	36.8	-39.5	57.5	747.9	5000.0	-16.5
9100.05	Н	48.2	Ambient	4.9	38.6	-39.6	52.2	405.5	5000.0	-21.8
0120.25	V	47.0	Ambient	4.9	38.6	-39.6	51.0	353.1	5000.0	-23.0
0022 50	Н	47.6	Ambient	4.9	39.3	-39.4	52.4	416.5	5000.0	-21.6
9022.50	V	48.0	Ambient	4.9	39.3	-39.4	52.8	436.2	5000.0	-21.2

Test Details						
Manufacturer	Chamberlain Group, Inc.					
EUT	Falcon DC GDO Logic Board					
Model No.	GDO 003-0454-8 Rev B					
Serial No.	Sample 1					
Mode	TX					
Frequency Tested	902.25MHz					
Notes	Average Measurements in the Restricted Bands					

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (μV/m)	Average Limit at 3m (μV/m)	Margin (dB)
2706 75	Н	37.70		2.8	33.6	-40.2	-8.2	25.7	19.3	500.0	-28.3
2700.75	V	39.40		2.8	33.6	-40.2	-8.2	27.4	23.5	500.0	-26.6
2600.00	Н	35.10	Ambient	3.2	34.1	-39.5	-8.2	24.8	17.3	500.0	-29.2
3009.00	V	34.10	Ambient	3.2	34.1	-39.5	-8.2	23.8	15.5	500.0	-30.2
1511 25	Н	34.60	Ambient	3.6	35.8	-39.6	-8.2	26.2	20.4	500.0	-27.8
4011.20	V	34.30	Ambient	3.6	35.8	-39.6	-8.2	25.9	19.7	500.0	-28.1
5412 50	Н	41.80		3.9	36.8	-39.5	-8.2	34.9	55.6	500.0	-19.1
5415.50	V	40.30		3.9	36.8	-39.5	-8.2	33.4	46.8	500.0	-20.6
0120.25	Н	32.50	Ambient	4.9	38.6	-39.6	-8.2	28.3	25.9	500.0	-25.7
0120.25	V	32.10	Ambient	4.9	38.6	-39.6	-8.2	27.9	24.8	500.0	-26.1
0022 50	Н	32.50	Ambient	4.9	39.3	-39.4	-8.2	29.1	28.6	500.0	-24.9
9022.50	V	32.60	Ambient	4.9	39.3	-39.4	-8.2	29.2	28.9	500.0	-24.8

Test Details								
Manufacturer	Chamberlain Group, Inc.							
EUT	Falcon DC GDO Logic Board							
Model No.	GDO 003-0454-8 Rev B							
Serial No.	Sample 1							
Mode	TX							
Frequency Tested	902.25MHz							
Notes	Peak Measurements in Non-Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
002.25	Н	82.50		1.5	26.5	0.0	110.5	335889.0	NA	NA
902.25	V	77.80		1.5	26.5	0.0	105.8	195522.1	NA	NA
1001 50	Н	64.60		2.2	31.4	-40.1	58.2	808.5	33588.9	-32.4
1604.50	V	63.70		2.2	31.4	-40.1	57.3	728.9	33588.9	-33.3
6215 75	Н	42.70		4.3	38.4	-39.6	45.8	195.4	33588.9	-44.7
0315.75	V	45.40		4.3	38.4	-39.6	48.5	266.6	33588.9	-42.0
7010.00	Н	48.00		4.6	37.7	-39.7	50.7	343.4	33588.9	-39.8
1218.00	V	44.40		4.6	37.7	-39.7	47.1	226.9	33588.9	-43.4

	Test Details							
Manufacturer	Chamberlain Group, Inc.							
EUT	Falcon DC GDO Logic Board							
Model No.	GDO 003-0454-8 Rev B							
Serial No.	Sample 1							
Mode	TX							
Frequency Tested	914.75MHz							
Notes	Peak Measurements in the Restricted Bands							

Freq	Ant	Meter Reading	Ameliant	Cable Factor	Antenna Factor	Pre Amp	Peak Total at 3m	Peak Total at 3m	Peak Limit at 3m	Margin
(IVIHZ)	Pol	(авµv)	Amplent	(GB)		(ab)	(aBµv/m)	(µv/m)	(µv/m)	
2744 25	н	52.8		2.8	33.8	-40.2	49.2	290.1	5000.0	-24.7
2711.20	V	54.1		2.8	33.8	-40.2	50.5	336.9	5000.0	-23.4
2650.00	Н	53.1		3.3	34.6	-39.5	51.4	372.8	5000.0	-22.5
3059.00	V	52.0		3.3	34.6	-39.5	50.3	328.5	5000.0	-23.6
4573 75	Н	49.5	Ambient	3.6	36.1	-39.7	49.5	297.6	5000.0	-24.5
4373.73	V	49.8	Ambient	3.6	36.1	-39.7	49.8	308.1	5000.0	-24.2
7218.00	Н	50.1	Ambient	4.7	37.8	-39.6	53.0	446.5	5000.0	-21.0
7510.00	V	48.7	Ambient	4.7	37.8	-39.6	51.6	380.0	5000.0	-22.4
0000 75	Н	48.2	Ambient	4.9	38.5	-39.5	52.2	405.4	5000.0	-21.8
0232.75	V	48.3	Ambient	4.9	38.5	-39.5	52.3	410.1	5000.0	-21.7
0147 50	Н	49.9	Ambient	5.0	39.3	-39.4	54.8	550.7	5000.0	-19.2
5147.50	V	50.0	Ambient	5.0	39.3	-39.4	54.9	557.1	5000.0	-19.1

Test Details							
Manufacturer	Chamberlain Group, Inc.						
EUT	Falcon DC GDO Logic Board						
Model No.	GDO 003-0454-8 Rev B						
Serial No.	Sample 1						
Mode	TX						
Frequency Tested	914.75MHz						
Notes	Average Measurements in the Restricted Bands						

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (μV/m)	Average Limit at 3m (μV/m)	Margin (dB)
0744.05	Н	39.10		2.8	33.8	-40.2	-8.2	27.4	23.4	500.0	-26.6
2744.25	V	39.50		2.8	33.8	-40.2	-8.2	27.8	24.5	500.0	-26.2
2650.00	Н	38.70		3.3	34.6	-39.5	-8.2	28.8	27.7	500.0	-25.1
3059.00	V	38.00		3.3	34.6	-39.5	-8.2	28.1	25.6	500.0	-25.8
4572 75	Н	34.20	Ambient	3.6	36.1	-39.7	-8.2	26.0	19.9	500.0	-28.0
4575.75	V	34.40	Ambient	3.6	36.1	-39.7	-8.2	26.2	20.4	500.0	-27.8
7219.00	Н	35.60	Ambient	4.7	37.8	-39.6	-8.2	30.3	32.8	500.0	-23.7
1310.00	V	34.00	Ambient	4.7	37.8	-39.6	-8.2	28.7	27.3	500.0	-25.3
0000 75	Н	32.30	Ambient	4.9	38.5	-39.5	-8.2	28.1	25.3	500.0	-25.9
0232.75	V	32.40	Ambient	4.9	38.5	-39.5	-8.2	28.2	25.6	500.0	-25.8
0147 50	Н	33.90	Ambient	5.0	39.3	-39.4	-8.2	30.6	34.0	500.0	-23.3
9147.30	V	35.30	Ambient	5.0	39.3	-39.4	-8.2	32.0	40.0	500.0	-21.9

	Test Details							
Manufacturer	Chamberlain Group, Inc.							
EUT	Falcon DC GDO Logic Board							
Model No.	GDO 003-0454-8 Rev B							
Serial No.	Sample 1							
Mode	TX							
Frequency Tested	914.75MHz							
Notes	Peak Measurements in Non-Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
014 75	Н	80.20		1.6	26.3	0.0	108.1	253279.3	NA	NA
914.75	V	79.90		1.6	26.3	0.0	107.8	244680.7	NA	NA
1920 50	Н	58.90		2.2	31.6	-40.1	52.7	430.4	25327.9	-35.4
1029.00	V	58.20		2.2	31.6	-40.1	52.0	397.1	25327.9	-36.1
E100 E0	Н	52.30		3.9	36.7	-39.4	53.5	473.4	25327.9	-34.6
5466.50	V	52.80		3.9	36.7	-39.4	54.0	501.4	25327.9	-34.1
6402.25	Н	42.50	Ambient	4.3	38.3	-39.5	45.5	189.4	25327.9	-42.5
0403.25	V	44.50		4.3	38.3	-39.5	47.5	238.4	25327.9	-40.5

	Test Details							
Manufacturer	Chamberlain Group, Inc.							
EUT	Falcon DC GDO Logic Board							
Model No.	GDO 003-0454-8 Rev B							
Serial No.	Sample 1							
Mode	TX							
Frequency Tested	926.75MHz							
Notes	Peak Measurements in the Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (μV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
2700.25	Н	53.8		2.8	33.7	-40.1	50.2	322.0	5000.0	-23.8
2700.25	V	55.7		2.8	33.7	-40.1	52.1	400.8	5000.0	-21.9
2707.00	Н	51.5	Ambient	3.3	34.4	-39.5	49.7	306.1	5000.0	-24.3
3707.00	V	50.4	Ambient	3.3	34.4	-39.5	48.6	269.7	5000.0	-25.4
4622 75	Н	49.2	Ambient	3.6	36.3	-39.6	49.5	299.3	5000.0	-24.5
4033.75	V	48.9	Ambient	3.6	36.3	-39.6	49.2	289.1	5000.0	-24.8
7414.00	Н	49.2	Ambient	4.7	37.9	-39.6	52.2	407.7	5000.0	-21.8
7414.00	V	48.7	Ambient	4.7	37.9	-39.6	51.7	384.9	5000.0	-22.3
0240 75	Н	48.7	Ambient	4.9	38.7	-39.5	52.9	439.8	5000.0	-21.1
0340.75	V	48.9	Ambient	4.9	38.7	-39.5	53.1	450.1	5000.0	-20.9

	Test Details						
Manufacturer	Chamberlain Group, Inc.						
EUT	Falcon DC GDO Logic Board						
Model No.	GDO 003-0454-8 Rev B						
Serial No.	Sample 1						
Mode	TX						
Frequency Tested	926.75MHz						
Notes	Average Measurements in the Restricted Bands						

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (μV/m)	Average Limit at 3m (μV/m)	Margin (dB)
2780.25	Н	39.40		2.8	33.7	-40.1	-8.2	27.6	23.9	500.0	-26.4
2700.25	V	40.90		2.8	33.7	-40.1	-8.2	29.1	28.4	500.0	-24.9
2707.00	Н	37.20	Ambient	3.3	34.4	-39.5	-8.2	27.2	23.0	500.0	-26.7
3707.00	V	34.80	Ambient	3.3	34.4	-39.5	-8.2	24.8	17.5	500.0	-29.1
4622 75	Н	33.60	Ambient	3.6	36.3	-39.6	-8.2	25.7	19.4	500.0	-28.2
4033.75	V	33.80	Ambient	3.6	36.3	-39.6	-8.2	25.9	19.8	500.0	-28.0
7414.00	Н	33.80	Ambient	4.7	37.9	-39.6	-8.2	28.6	27.0	500.0	-25.4
7414.00	V	33.40	Ambient	4.7	37.9	-39.6	-8.2	28.2	25.8	500.0	-25.8
9240 75	Н	32.60	Ambient	4.9	38.7	-39.5	-8.2	28.6	26.9	500.0	-25.4
0340.75	V	33.30	Ambient	4.9	38.7	-39.5	-8.2	29.3	29.1	500.0	-24.7

	Test Details						
Manufacturer	Chamberlain Group, Inc.						
EUT	Falcon DC GDO Logic Board						
Model No.	GDO 003-0454-8 Rev B						
Serial No.	Sample 1						
Mode	TX						
Frequency Tested	926.75MHz						
Notes	Peak Measurements in Non-Restricted Bands						

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (μV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
026 75	Н	81.70		1.6	26.7	0.0	109.9	313520.1	NA	NA
920.75	V	80.50		1.6	26.7	0.0	108.7	273064.6	NA	NA
1052 50	Н	59.10		2.3	31.9	-40.1	53.1	452.0	31352.0	-36.8
1000.00	V	56.80		2.3	31.9	-40.1	50.8	346.8	31352.0	-39.1
	Н	49.60		4.0	36.9	-39.4	51.0	354.6	31352.0	-38.9
5500.50	V	48.70		4.0	36.9	-39.4	50.1	319.7	31352.0	-39.8
6407.05	Н	42.30		4.3	38.2	-39.5	45.3	184.7	31352.0	-44.6
0407.25	V	42.80		4.3	38.2	-39.5	45.8	195.6	31352.0	-44.1
0067 50	Н	37.90	Ambient	5.0	39.2	-39.4	42.8	137.3	31352.0	-47.2
9207.50	V	37.90	Ambient	5.0	39.2	-39.4	42.8	137.3	31352.0	-47.2

30. Band-Edge Compliance

EUT Information				
Manufacturer	Chamberlain Group, Inc.			
Product	Falcon DC GDO Logic Board			
Model No.	GDO 003-0454-8 Rev B			
Serial No.	Sample 1			
Mode	TX			

Test Setup Details				
Setup Format	Tabletop			
Height of Support	N/A			
Measurement Method	Antenna Conducted			
Type of Test Site	Elite Test Bench			
Type of Antennas Used	N/A			
Notes	None			

Measurement Uncertainty	
	Expanded
Measurement Type	Measurement
	Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test	10
site) (30 MHz – 1000 MHz)	4.5
Radiated disturbance (electric field strength on an open area test site or alternative test	2.1
site) (1 GHz – 6 GHz)	3.1

Procedure

1) Low Band Edge:

- a) The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation.
- b) The EUT was set to transmit continuously at the channel closest to the low band-edge hopping function disabled.
- c) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - Center Frequency = 902MHz (low band-edge frequency).
 - Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - Resolution Bandwidth (RBW) = \geq 1% of the span.
 - 'Max-Hold' function was engaged.
- d) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
- e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)
- f) The analyzer's display was then screenshot and saved.
- g) Steps (d) through (f) were repeated with the frequency hopping function enabled.
- 2) High Band Edge:
 - a) The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation.

- b) The EUT was set to transmit continuously at the channel closest to the high band-edge.
- c) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - Center Frequency = 928MHz (high band-edge frequency).
 - Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - Resolution Bandwidth (RBW) = \geq 1% of the span.
 - 'Max-Hold' function was engaged.
- d) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
- e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)
- f) The analyzer's display was then screenshot and saved.
- g) Steps (d) through (f) were repeated with the frequency hopping function enabled.

Test Details				
Manufacturer	Chamberlain Group, Inc.			
EUT	Falcon DC GDO Logic Board			
Model No.	GDO 003-0454-8 Rev B			
Serial No.	Sample 1			
Mode	TX			
Frequency Tested	902.25MHz			
Notes	Low Band Edge			

									\$
MultiView	Receiver	×	Spectrum	×					•
Ref Level 136 Att Input	5.95 dBµV Off 10 dB ● SW 1 AC PS	set 29.95 d T 5 n	B ● RBW 100 kHz ns ● VBW 300 kHz On Notch Off	Mode Auto Sw	veep		Frequ	ency 902.0	000000 MHz
1 Frequency Sv	weep	r	an anananan anan	E.		.		,	o 1Pk Max
130 dBµV								M1[1]	125.53 dBµV 02.18980 MHz
120 dBµV	;				\uparrow				
110 dBµV	e1 105.750 dB	0.00		0 0					
100 dBµV				8	<u> </u>	a			
90 dBµV					\				
				1		1			
80 dBµV				and the second s					
70 dBµV			man and grande	0	2		and the second s	a manana an	Anaperation in
	administration of the	and provident and		0	0				Marriel Verse
50 dBµ∨									
40 dBµV				53 988 I	Sin the second				
CF 902.0 MHz		1	1001 pt	S	50	00.0 kHz/	1		Span 5.0 MHz
	-				Measuring	g 	10.05.2	022 Ref Level	RBW

15:04:03 10.05.2022

Test Details				
Manufacturer	Chamberlain Group, Inc.			
EUT	Falcon DC GDO Logic Board			
Model No.	GDO 003-0454-8 Rev B			
Serial No.	Sample 1			
Mode	TX			
Frequency Tested	926.75MHz			
Notes	High Band Edge			

MultiView	Receiver	× Sp	ectrum	×						
Ref Level 13 Att Input	6.95 dBµV Off 10 dB ● SW 1 AC PS	f set 29.95 dB ● /T 5 ms ● On	RBW 100 kHz VBW 300 kHz Notch Off	Mode Auto Sw	veep		Freq	uency	928.00	000000 MHz
1 Frequency S	weep	T. Contraction of the second	r and a second							o1Pk Max
130 dBuV-									M1[1]	125.76 dBµV 26.78120 MHz
100 0007		M1								
120 dBµV			-		12		2		, ,	
110 dBµV	41 105 750 de			n.				30		
100 dвµV		Į į		10						
	15	(
90 dBµ∨			1					-		
80 dBµV	1			man						
70 dBµV				ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	minun		-			
man manufacture					a marine wh	a war har har ward	my mon	New York	K -2-	
60 dBµV			¢		6		- May	a markerbak	- Marting	Martin Martin
50 dBuV			×							
and a second second second										
40 dBµV				§1 978 -	All the second	5			-	
CF 928.0 MHz		1	1001 pt	S	50	0.0 kHz/	1	_		Span 5.0 MHz
	-				Measuring		10.05 15:	02:35	Ref Level	RBW

15:02:36 10.05.2022

Test Details				
Manufacturer	Chamberlain Group, Inc.			
EUT	Falcon DC GDO Logic Board			
Model No.	GDO 003-0454-8 Rev B			
Serial No.	Sample 1			
Mode	TX - Hopping			
Frequency Tested	902.25MHz			
Notes	Low Band Edge			

										\$
MultiView	Receiver	× Spe	ectrum	×						
Ref Level 136. Att Input	.95 dBµV Off 10 dB ● SW 1 AC PS	set 29.95 dB ● /T 5 ms ● On	RBW 100 kHz VBW 300 kHz Notch Off	Mode Auto Sw	veep		Fn	equency	902.00	00000 MHz
1 Frequency Sw	veep			P-		n u y				o 1 Pk Max
130 dBµV									M1[1] 9	125.49 dBµV 02.18980 MHz
					MI	\sim	\cap		\frown	\cap
120 dBµV		-								\uparrow
110 dBµV	an the zeria	100		17 0.						
100 dBµV	22 100 100 100			8		$\downarrow $				\downarrow
								V		
Jo dop i				. (1		-		-V		
80 dBµV				- Martin	-					
70 dBµV			. In his		2			e.		
60 dвµV	and de t	M. M. M.	Mannahar	V				0		
And Market	Manut, within	alled in New 2								
50 dBµV										
40 dBµV				83. 9 80 s	ino see					
CF 902.0 MHz			1001 pts	s	50	0.0 kHz/				Span 5.0 MHz
					Measuring		10	.05.2022 15:05:20	Ref Level	RBW

15:05:21 10.05.2022

Test Details				
Manufacturer	Chamberlain Group, Inc.			
EUT	Falcon DC GDO Logic Board			
Model No.	GDO 003-0454-8 Rev B			
Serial No.	Sample 1			
Mode	TX - Hopping			
Frequency Tested	926.75MHz			
Notes	High Band Edge			

15:01:31 10.05.2022

31. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: <u>ofanning@elitetest.com</u> Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163 Email: <u>blugo@elitetest.com</u> Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123 <u>Email: reking@elitetest.com</u> Website: www.elitetest.com

Valid To: June 30, 2023

ELECTRICAL

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

<u>Test Technology:</u>	Test Method(s) ¹ :
Transiens Immunity	ISO 7637-2 (including emissions); ISO 7637-3; ISO 16750-2:2012, Sections 4.6.3 and 4.6.4; CS-11979, Section 6.4; CS.00054, Section 5.9; EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222); GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12; ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD)	TSO 10605 (2001, 2008); CS-11979 Section 7.0; CS.00054, Section 5.10; EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3; CISPR 25 (2016), Sections 6.3 and 6.4; CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2; EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310); ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband)

(A2LA Cert. No. 1786.01) Revised 12/17/2021

Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u>	Test Method(s) 1:
Vehicle Radiated Emissions	CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BC))	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Radiated Immunity Anechoic (Including Radar Pulse)	ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RII14); FMC1278 (RII14); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity	ISO 11452-9;
(Portable Transmitters)	EMC-CS-2009.1 (RII15); FMC1278 (RII15)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Vehicle Product Specific EMC Standards	EN 14982; EN ISO 13309, ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012
Electrical Loads	ISO 16750-2
Emissions Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz)	47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 14
Cellular Radiated Spurious Emissions	ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124
(A2LA Cert. No. 1786.01) Revised 12/17/	2021 Page 2 of 8

<u>Test Technology:</u>	Test Method(s) 1:
Emissions (cont'd)	
Current Harmonics	IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11
Flicker and Fluctuations	TEC 61000-3-3; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12
Immunity	
Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001
Radiated Immunity	 TEC 61000-4-3 (1995) + A1(1998) + A2(2000); TEC 61000-4-3, Ed. 3.0 (2006-02); TEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); TEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; KS C 9610-4-3; TEEE C37.90.2 2004
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	TEC 61000-4-5 (1995) + A1(2000); TEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16
Conducted Immunity	TEC 61000-4-6 (1996) + A1(2000); TEC 61000-4-6, Ed 2.0 (2006-05); TEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); TEC 61000-4-6; EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6

Ann Page 3 of 8

Immunity (cont*d)IEC 61000-4.8 (1993) + A1(2000); IEC 61000-4.8 (2009); IEC 61000-4.8 (1994) + A1(2000); IEC 61000-4.8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4.8; EN 61000-4.8; KN 61000-4.8; KS C 9610-4.8Voltage Dips, Short Interrupts, and Line Voltage VariationsIEC 61000-4.11; Ed 2 (2004-03); KN 61000-4.11; EN 61000-4.11; KS C 9610-4.11; EC 61000-4.11; EN 61000-4.11; KS C 9610-4.11; EC 61000-4.11; EN 61000-4.11; KS C 9610-4.11; EN 61000-4.11; EN 61000-4.12; IEC 61000-4.12; ED 61000-4.12; IEC 61000-4.12; EN 61000-4.12; IEC 61000-4.12; EN 61000-4.12; KS C 9610-4.11Ring WaveIEC 61000-4.12, Ed. 2 (2006-09); EN 61000-4.12; EN 61000-4.12; IEE STD C62.41.2 2002Generic and Product Specific EMCIEC/EN 61000-6-1; ASNZS 61000-6-1; KN 61000-6-1; KS C 9610-6.1; EC/EN 61000-6-2; AS/NZS 61000-6-3; ASNZS 61000-6-2; KN 61000-6-3; IEC/EN 61000-6-2; EC/EN 61000-6-3; IEC/EN 61000-6-4; KS C 9610-6.4; EN 50130-4; EN 61326-1; EN 50191-3; EN 5205; EN 50270; EN 50491-1; EN 50491-3; EN 5205; EN 50270; EN 50491-1; EN 50191-2; EN 55015; EN 6070; IEN 61090-5; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2TxRx EMC RequirementsEN 301 489-1; EN 301 489-3; EN 301 489-17; EN 301 489-19; EN 301 489-19; EN 301 489-20European Radio Test StandardsETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 220-2; ETSI EN 300 220-3; ETSI EN 300 220-3; ETSI EN 300 220-2; ETSI EN 300 220-3; ETSI EN 300 220-2; ETSI EN 300 220-2; ETSI EN 300 220-2; ETSI EN 300 420-2; ETSI EN 300 420-2; ET	<u>Test Technology:</u>	Test Method(s) ¹ :
Power Frequency Magnetic Field IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); Intimunity (Down to 3 Alm) EN 61000-4-8 (1994) + A1(2000); Voltage Dips, Short Interrupts, and Line EC 61000-4-8; (IN 61000-4-8; IN 61000-4-8; IN 51000-4-8; IN 51000-4-8; IN 61000-4-8; IN 61000-4-8; IN 61000-4-8; IN 61000-4-8; IN 61000-4-10; EC 61000-4-11; EN 61000-4-10; EN 61000-4-11; KN 61000-4-12; EC 61000-4-12; ED 61000-4-12; ED 61000-4-12; ED 61000-4-12; ED 61000-4-12; ED 6241.2 2002 Generic and Product Specific EMC EC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KN 61000-6-1; KN 61000-6-2; EC/EN 61000-6-2; EC/EN 61000-6-2; EC/EN 61000-6-2; EC/EN 61000-6-2; EN S010-6-3; IEC/EN 61000-6-4; KN 5100-6-3; IEC/EN 61000-6-4; KN 5100-6-3; IEC/EN 61000-6-4; KN 5100-6-3; IEC/EN 5010-6-3; CC/EN 61000-3; IEC/CISPR 14-2; EN S0121-3-2; EN 15835; EN 50730-1; EN 50491-1; EN 50491-2; EN 50191-3; EN 5305; EN 60730-1; EN 60945; IEC 6033; EN 5012-2; EN 51052-2; EN 5100-53; KN 35; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-17; EN 301 489-19; EN 301 489-19; EN 301 489-10; EN 300 240-2; ETSI EN 300 220-2; ET	Immunity (cont'd)	
Intimutity (Lown to 3 A/m) EN 61000-48 (1994) + A1(2000); KN 61000-48 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4.8; EN 61000-4.8; KN 61000-4.8; KS C 9610-4.8 Voltage Dips, Short Interrupts, and Line IEC 61000-4.11, Ed. 2 (2004-03); KN 61000-4.11, Ed. 2 (2004-03); KN 61000-4.11; EN 61000-4.11; KN 61000-4.11; KS C 9610-4.11 Ring Wave IEC 61000-4.12, Ed. 2 (2006-09); IEC 61000-4.12; EN 61000-4.12; KN 61000-4.12; IEC 61000-4.12; EN 61000-4.12; KN 61000-4.12; IEE 61000-4.12; EN 61000-6.1; KN 61000-6-1; KS C 9610-6.1; IEC/EN 61000-6.2; KS C 9610-6-2; KS C 9610-6.4; IEC/EN 61000-6.2; KS C 9610-6-2; KS C 9610-6.4; IEC/EN 61000-6.2; KS C 9610-6-2; KS C 9610-6.4; IEC/EN 61000-6.2; KS C 9610-6.2; IEC/EN 61000-6.2; KS C 9610-6.2; IEC/EN 61000-6.4; KS C 9610-6.4; EN/NZS 61000-6.3; KS C 9610-6.2; IEC/EN 61000-6.2; KS C 9610-6.2; IEC/EN 61000-6.4; KS C 9610-6.4; EN 50130-4; EN 61326-1; EN 50121-3.2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945-1; EN 500491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945-1; EN 500491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945-1; EN 500491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945-1; EN 50130-4; EN 5013-4; AS/NZS CISPR 14.2; KN 14.2; KS C 981-2; EN 55015; EN 60730-1; EN 50491-1; EN 50491-3; EN 5015; EN 60730-1; EN 50491-2; EN 55014-2; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 202-3; ETSI EN 300 220-3-1; ETSI EN 300 220-3; ETSI EN 300 220-3-1; ETSI EN 300 220-3; ETSI EN 300 240-1; ETSI EN 300 240-2; ETSI EN 300 240-1; ETSI EN 300 440-2; ETSI EN 300 242-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI	Power Frequency Magnetic Field	TEC 61000-4-8 (1993) + A1(2000); TEC 61000-4-8 (2009);
KN 61000-4:8; 2008-3); RRL Notice No. 2008-4 (May 20, 2008); EC 61000-4:8; EN 61000-4:8; KN 61000-4:8; KS C 9610-4:8 Voltage Dips, Short Interrupts, and Line EC 61000-4:11; Ed. 2 (2004-03); KN 61000-4:11; EN 61000-4:11; KN 61000-4:11; KN 61000-4:11; EN 61000-4:11; KN 61000-4:11; KN 61000-4:11; EN 61000-4:11; KN 61000-4:11; KS C 9610-4:11 Ring Wave IEC 61000-4:12; EN 61000-4:12; KN 61000-4:12; IEC 61000-4:12; EN 61000-4:12; KN 61000-4:12; IEC 61000-4:12; EN 61000-4:12; KN 61000-4:12; IEC 61000-4:12; EN 61000-6:1; AS/NZS 61000-6-1; Standards KS C 9610-6-1; EC/EN 61000-6:1; KN 61000-6:1; KS C 9610-6-2; TEC/EN 61000-6:3; KS C 9610-6-3; EC/EN 61000-6:4; KN 61000-6:4; KN 61000-6:4; KS C 9610-6-4; EN 50130-4; EN 61326:1; EN 50121:3-2; EN 5015; EN 60730-1; EN 50945; IEC 60533; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17;	Immunity (Down to 3 A/m)	EN $61000-4-8$ (1994) + $A1(2000)$;
RCL F000-4:8; EN 61000-4:8; KN 61000-4:8; KS C 9610-4:8 Voltage Dips, Short Interrupts, and Line IEC 61000-4:11; Ed 2 (2004-03); KN 61000-4:11; EN 61000-4:1; KN 61000-4:8; KS C 9610-4:8 KN 61000-4:11; EN 61000-4:11; KN 61000-4:11; KN 61000-4:11; KS 9610-4:11 Ring Wave IEC 61000-4:12; EN 61000-4:12; KN 61000-4:12; EN 61000-4:12; EN 61000-4:12; KN 61000-4:12; IEE 61000-4:12; EN 61000-4:12; KN 61000-4:12; IEE STD C62:41.2 2002 Generic and Product Specific EMC Standards IEC/EN 61000-6:1; AS/NZS 61000-6-1; KN 61000-6-2; KN 61000-6:2; KS C 9610-6-2; IEC/EN 61000-6-2; KN 61000-6:2; KS C 9610-6-2; EN 6000-6-4; Standards IEC/EN 61000-6:3; KS C 9610-6:3; IEC/EN 61000-6-4; KS C 9610-6:4; EN 50130-4; EN 61326-1; EN 50121-3:2; EN 50270; EN 50491-1; EN 50491-2; EN 5014-2; AS/NZS CISPR 3; EN 50370; EN 50491-1; EN 50491-2; EN 5014-2; AS/NZS CISPR 3; EN 50370; EN 5035; KN 35; EC/CISPR 24; AS/NZS CISPR 35; EN 55035; KN 34; EC/CISPR 24; AS/NZS CISPR 35; EN 5035; KN 34; IEC/CISPR 3; AS/NZS CISPR 35; EN 5014:2; AS/NZS CISPR 35; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17; <t< td=""><td></td><td>KN 61000-4-8 (2008-5); DDI Motion No. 2008 4 (Mart 20. 2008);</td></t<>		KN 61000-4-8 (2008-5); DDI Motion No. 2008 4 (Mart 20. 2008);
Voltage Dips, Short Interrupts, and Line IEC 61000-4-11, Ed. 2 (2004-03); Voltage Variations KN 61000-4-11 (2008-5); RRL Notice No. 2008.4 (May 20, 2008); IEC 61000-4-11; Ring Wave IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; Ring Wave IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002 Generic and Product Specific EMC IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-2; Standards KS C 9610-6-1; IEC/EN 61000-6-2; EC/EN 61000-6-2; KN 61000-6-2; KS C 9610-6-3; IEC/EN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-3; KS C 9610-6-4; Standards KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 1000-62; KS C 9610-64; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 1305; EN 50730-1; EN 50491-1; EN 50491-3; EV/EN 61000-64; AS/NZS CISPR 14.2; KN 14-2; ES 0012-3-2; EN 1285; EN S0270; EN 50491-1; EN 50121-3-2; EN 1302-2; EN 55014-2; AS/NZS CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-1; EN 300 143-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 086-2; ETSI EN 300 220-2; <td></td> <td>TEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8</td>		TEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Variations KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KS C 9610-4-11 Ring Wave IEC 61000-4-12; EA 2 (2006-09); EN 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEE STD C62.41.2 2002 Generic and Product Specific EMC IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-4; AS/NZS 61000-6-4; KS C 9610-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 5135; EN 60730-1; EN 60945; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 24; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 <i>TxRx EMC Requirements</i> EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 <i>European Radio Test Standards</i> ETSI EN 300 086-1; ETSI EN 300 20-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 440-1; ETSI EN 300 220-3; ETSI EN 300 440-1; ETSI EN 300 220-3; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 301 449-19; ETSI EN 300 489-1; ETSI EN 301 492-10	Voltage Dips Short Interrupts and Line	TEC 61000-4-11 Ed 2 (2004-03)·
RRL Notice No. 2008 4: (May 20, 2008); REC Notice No. 2008 4: (May 20, 2008); EC 61000 4: 11; EN 61000 4: 11; KN 61000 4: 11; KS C 9610 4: 11 Ring Wave EC 61000 4: 12; EN 61000 4: 12; KN 61000 4: 12; IEE 61000 4: 12: 2006; EC 6000 4: 12: EN 61000 4: 12; KN 61000 4: 12; IEE 61000 4: 12: 2002 Generic and Product Specific EMC Standards IEC/EN 61000 6: 1; KS C 9610 6: 2; KN 61000 6: 2; AS/NZS 61000 6: 2; KS C 9610 6: 2; AS/NZS 61000 6: 4; KN	Voltage Variations	KN 61000-4-11 (2008-5)
IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11 Ring Wave IEC 61000-4-12; Ed. 2 (2006-09); EN 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEC 61000-4-12; EN 61000-6-1; KN 61000-4-12; IEE STD C62.41.2 2002 Generic and Product Specific EMC Standards IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-2; KN 61000-6-2; KS C 9610-6-1; EC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61020-6-4; KS C 9610-6-4; EN 50130-4; EN 61020-6-4; KS C 9610-6-4; EN 50130-4; EN 60130-6; EC/EN 61000-6-4; AS/NZS 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 60130-4; EC/EN 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 50121-3-2; EN 12895; EN 5070; EN 50491-1; EN 50491-2; EN 50491-3; EN 5015; EN 60730-1; EN 60045; IEC 60533; EN 12825; EN 50730-1; EN 50491-1; EN 5014-2; AS/NZS CISPR 14-2; EN 55014-2; AS/NZS CISPR 14-2; EN 55014-2; AS/NZS CISPR 14-2; EN 50041-2; Trace Kequirements EN 301 489-1; EN 301 489-3; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-19; EN 301 489-20 Europe	, anage , ananana	RRL Notice No. 2008-4 (May 20, 2008):
KS C 9610-4-11 Ring Wave IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12; 2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002 Generic and Product Specific EMC IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-2; KS C 9610-6-2; IEC/EN 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 6130-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 6130-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; KN 50041-2; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; KN 55014-2; AS/NZS CISPR 35; AS/NZS CISPR 35; EN 55035; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 200-3: I; ETSI EN 300 200-3: ETSI EN 300 200-3: I; ETSI EN 300 200-3; ETSI EN 300 300-1; ETSI EN 300 200-3; ETSI EN 300 420-1; ETSI EN 300 200-3; ETSI EN 300 420-1; ETSI EN 300 200-3; ETSI EN 300 420-1; ETSI EN 300 420-2; ETSI EN 300 420-1; ETSI EN 300 988-1; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 300 328; ETSI EN 301 893; <td></td> <td>TEC 61000-4-11: EN 61000-4-11: KN 61000-4-11:</td>		TEC 61000-4-11: EN 61000-4-11: KN 61000-4-11:
Ring Wave IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEC 61000-4-12; EN 61000-6-1; KN 61000-6-1; Generic and Product Specific EMC IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; Standards IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-2; KN 61000-6-2; KN 61000-6-2; KS C 9610-6-2; EC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; IEC/EN 61000-6-4; KN 61000-6-3; IEC/EN 61000-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 5015; EN 50270; EN 50470; I: EN 50491-3; EN 55015; EN 50070; EN 60730-1; EN 60945; IEC 60533; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14-2; KN 14-2; KS C 9814-2; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS 70601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; European Radio Test Standards ETSI EN 300 026-1; ETSI EN 300 026-2; ETSI EN 300 220-1; ETSI EN 300 130-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-2; ETSI EN 300 420-1; ETSI EN 300 220-3-2; ETSI EN 300 420-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300		KS C 9610-4-11
EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEE STD C62.41.2 2002 Generic and Product Specific EMC Standards IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-2; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; KS C 9610-6-3; AS/NZS 61000-6-4; AS/NZS 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61020-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61026-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 60130-4; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14-2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 0220-1; ETSI EN 300 0220-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 220-3; ETSI EN 300 220-3; ETSI EN 300 422-1; ETSI EN	Ring Wave	TEC 61000-4-12, Ed. 2 (2006-09);
IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002 Generic and Product Specific EMC Standards IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; KS C 9610-6-2; IEC/EN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2; EN 61800-3; IEC/CISPR 14-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 220-3; ETSI EN 300 220-3-2; ETSI EN 300 220-4; ETSI EN 300 220-3-2; ETSI EN 300 220-4; ETSI EN 300 220-3-2; ETSI EN 300 220-4; ETSI EN 300 220-3-2; ETSI EN 300 320; ETSI EN 300 320-2; ETSI EN 300 320; ETSI EN 300 440-2; ETS		EN 61000-4-12:2006;
IEEE STD C62.41.2 2002 Generic and Product Specific EMC Standards IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-2; KN C 9610-6-2; KN C 9610-6-2; KN C 9610-6-3; KN C 1000-6-3; KN C 1000-6-3; KN C 1000-6-4; KN 61000-6-4; KN 50130-4; EN 601326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2; EN 51202 CISPR 14-2; EN 55014-2; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 24; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 440-2; ETSI EN 300 440-2; ETSI EN 300 440-2; ETSI EN 300 440-2; ETSI EN 300 330-2; ETSI EN 300 328; ETSI EN 301 489; ETSI EN 301 422-2; ETSI EN 300 328; ETSI EN 301 422-2; ETSI EN 301 320; ETSI EN 301 30-20; ETSI EN 301 34-13; ETSI EN 301 34-13; ETSI EN 301 34-13; ETSI EN 301 34-13; ETSI EN 301 30-2;		IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;
Generic and Product Specific EMC Standards IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-3; AS/NZS 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 981-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 24; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 <i>TxRx EMC Requirements</i> EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 <i>European Radio Test Standards</i> ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 086-2; ETSI EN 300 210-1; ETSI EN 300 113-2; ETSI EN 300 210-3; IETSI EN 300 220-3-2; ETSI EN 300 220-3-2; ETSI EN 300 220-3-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI		IEEE STD C62.41.2 2002
Standards KS C 9610-6-1; TEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; TEC/EN 61000-6-3; AS/NZS 61000-6-2; KS C 9610-6-3; TEC/EN 61000-6-4; AS/NZS 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 5014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; EC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; TEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; TEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 422-1; ETSI EN 300 220-3; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 422-1; ETSI EN 300 422	Generic and Product Specific EMC	TEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;
KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 35; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-1; EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 020-1; ETSI EN 300 220-3:2; ETSI EN 300 220-3:1; ETSI EN 300 220-3:2; ETSI EN 300 320-1; ETSI EN 300 220-3:2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 301 489; ETSI EN 300 232; ETSI EN 301 489; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 893; ETSI EN 302 511; ETSI EN 302 502	Standards	KS C 9610-6-1; TEC/EN 61000-6-2; AS/NZS 61000-6-2;
AS/NZS 61000-6-3; KN 61000-6-4; KN C 9610-6-4; IEC/EN 61000-6-4; EN 50100-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 300 086-2; ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 086-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 220-3; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 328; ETSI EN 301 489; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 300 328; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502;		KN 61000-6-2; KS C 9610-6-2; TEC/EN 61000-6-3;
EC/EN 61000-6-4; X5/N2S 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-1; EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 0220-1; ETSI EN 300 113-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 220-3-1; ETSI EN 300 440-2; ETSI EN 300 328; ETSI EN 301 4893; ETSI EN 300 328; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1;		AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3;
KS C 9610-5-4; EN 30130-4; EN 50130-4; EN 50491-2; EN 50491-3; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 020-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 440-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 301 493; ETSI EN 300 422-1; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 302 413; ETSI EN 302 908-13; ETSI EN 303 413; ETSI EN 302 502;		IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;
EN 12937, EN 30770, EN 30491-1, EN 30491-2, EN 30491-3, EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 020-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 220-3-1; ETSI EN 300 220-3; ETSI EN 300 220-3-1; ETSI EN 300 220-3; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 301 4893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 41; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502-		NS C 9010-0-4; EN 30130-4; EN 01320-1; EN 30121-3-2;
EIN 61326-2-6; EN 61800-3; IEC (ZISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 0220-1; ETSI EN 300 113-2; ETSI EN 300 220-3:1; ETSI EN 300 220-3:2; ETSI EN 300 220-3:1; ETSI EN 300 220-3:2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 32; ETSI EN 300 440-2; ETSI EN 300 32; ETSI EN 300 422-2; ETSI EN 300 32; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 413; ETSI EN 302 502;		EN 55015. EN 60730-1. EN 60045. TEC 60533.
AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 113-2; ETSI EN 300 220-3:1; ETSI EN 300 220-3:2; ETSI EN 300 220-3:1; ETSI EN 300 220-3:2; ETSI EN 300 440-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502;		EN 61326-2-6: EN 61800-3: IEC/CISPR 14-2: EN 55014-2:
IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 220-3; ETSI EN 300 220-3; ETSI EN 300 330-1; ETSI EN 300 320-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 328; ETSI EN 301 4893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502;		AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2;
IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-3; ETSI EN 300 220-3:1; ETSI EN 300 220-3; ETSI EN 300 330-1; ETSI EN 300 320-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 328; ETSI EN 301 4893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502;		IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;
KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502;		IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35;
TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 086-2; ETSI EN 300 220-1; ETSI EN 300 113-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 301 402-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502-		KS C 9835; TEC 60601-1-2; JIS T0601-1-2
European Radio Test Standards EUROPEan Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502-	TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17;
European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 328; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 303 413; ETSI EN 302 502;		EN 301 489-19; EN 301 489-20
ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;	European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2;
ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 300 113-1; ETSI EN 300 113-2;
ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 300 220-1; ETSI EN 300 220-2;
ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 300 220-3-1; ETSI EN 300 220-3-2;
ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 200 440 1, ETSI EN 200 440 2.
ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1. ETSI EN 300 422-2.
ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 300 328. ETSI EN 301 893.
ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502;		ETSI EN 301 511: ETSI EN 301 908-1
ETSI EN 303 413 ETSI EN 302 502		ETSI EN 908-2; ETSI EN 908-13;
and a second state of the second		ETSI EN 303 413; ETSI EN 302 502;
EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4		EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4

Ann Page 4 of 8

<u>Test Technology:</u>	Test Method(s) ¹ :
Canadian Radio Tesss	RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008-2015; NOM-208-SCFI-2016
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002 (July 15, 2020)
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125; KS X 3130; KS X 3126; KS X 3129
Vietnam Radio Test Standards	QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT; QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT
Vietnam EMC Test Standards	QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT; QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Roon.)	47 CFR FCC Part ISC, ISD, ISE, ISF, ISG, ISH (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TTA-603-E, TTA-102.CAAA- E, ANSI C63.26:2015)

Ann Page 5 of 8

Test Technology:

Test Method(s) 1:

OTA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT MI A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/a

Electrical Measurements and Simulation

Simulation	
AC Voltage / Current	
(lmV to SkV) 60 Hz	FAA AC 150/5345-10H
(0.1V to 250V) up to 500 MHz	FAA AC 150/5345-43J
(1µA to 150A) 60 Hz	FAA AC 150/5345-44K
DC Voltage / Current	FAA AC 150/5345-46E
(lmV to 15-kV) / (lµA to 10A)	FAA AC 150/5345-47C
Power Factor / Efficiency / Crest Factor	FAA EB 67D
(Power to 30kW)	
Resistance	
(1mΩ to 4000MΩ)	
Surge	
(Up to 10 kV / 5 kA) (Combination	
Wave and Ring Wave)	

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA *R101* - General Requirements-Accreditation of ISO-IEC 17025 Laboratories.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part ISB	ANSI C63.4:2014	40000
(A2LA Cert. No. 1786.01) Revised 12/17/2021		Ann Page 6 of 8

CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u> Part LSC	ANSI C63.10:2013	40000
Unlicensed Personal Communication Systems Devices Part 15D	ANSI C63.17:2013	40000
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013	40000
U-NII with DFS Intentional Radiators Part LSE	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
<u>BPL Intentional Radiators</u> Part LSG	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
Commercial Mobile Services (FCC Licensed Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC</u> <u>Licensed Radio Service Equipment</u>) Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

Ann Page 7 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Maritime and Aviation Radio Services		
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio</u> Services		
Parts 25, 30, 74, 90 (above 3 GHz), 97	ANSI/TIA-603-E;	40000
(above 3 GHz), and 101	TTA-102.CAAA-E; ANSI C63.26:2015	
Broadcast Radio Services		
Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Signal Boosters		
Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

² Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Ann Page 8 of 8

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of festing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 19th day of May 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.