

# RADIO TEST REPORT FCC ID: HBOSB2225

 Product:
 2.0 LED Soundbar

 Trade Mark:
 onn.

 Model No.:
 100075108

 Family Model:
 N/A

 Report No.:
 S21112400602001

 Issue Date:
 Dec 08. 2021

# **Prepared for**

SHENZHEN FENDA TECHNOLOGY CO., LTD. Fenda Hi-Tech Park,Zhoushi Road,Shiyan Town,Baoan District, Shenzhen City,Guangdong,China

# Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I



# TABLE OF CONTENTS

| 1 TE                      | ST RESULT CERTIFICATION                               | 3  |  |  |
|---------------------------|-------------------------------------------------------|----|--|--|
| 2 SUMMARY OF TEST RESULTS |                                                       |    |  |  |
| 3 FA                      | 3 FACILITIES AND ACCREDITATIONS                       |    |  |  |
| 3.1                       | FACILITIES                                            |    |  |  |
| 3.2                       | LABORATORY ACCREDITATIONS AND LISTINGS                |    |  |  |
| 3.3                       | MEASUREMENT UNCERTAINTY                               |    |  |  |
| 4 GE                      | NERAL DESCRIPTION OF EUT                              | 6  |  |  |
| 5 DE                      | SCRIPTION OF TEST MODES                               | 8  |  |  |
| 6 SE'                     | FUP OF EQUIPMENT UNDER TEST                           | 9  |  |  |
| 6.1                       | BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM            | 9  |  |  |
| 6.2                       | SUPPORT EQUIPMENT                                     | 10 |  |  |
| 6.3                       | EQUIPMENTS LIST FOR ALL TEST ITEMS                    |    |  |  |
| 7 TE                      | ST REQUIREMENTS                                       | 13 |  |  |
| 7.1                       | CONDUCTED EMISSIONS TEST                              |    |  |  |
| 7.2                       | RADIATED SPURIOUS EMISSION                            |    |  |  |
| 7.3                       | NUMBER OF HOPPING CHANNEL                             |    |  |  |
| 7.4                       | HOPPING CHANNEL SEPARATION MEASUREMENT                |    |  |  |
| 7.5<br>7.6                | AVERAGE TIME OF OCCUPONN. Y (DWELL TIME)              |    |  |  |
| 7.0                       | PEAK OUTPUT POWER                                     |    |  |  |
| 7.8                       | CONDUCTED BAND EDGE MEASUREMENT                       | 31 |  |  |
| 7.9                       | SPURIOUS RF CONDUCTED EMISSION                        |    |  |  |
| 7.10                      | ANTENNA APPLICATION                                   |    |  |  |
| 7.11 F                    | REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS |    |  |  |
| 8 TE                      | ST RESULTS                                            | 35 |  |  |
| 8.1                       | Dwell Time                                            |    |  |  |
| 8.2                       | MAXIMUM CONDUCTED OUTPUT POWER                        |    |  |  |
| 8.3                       | Occupied Channel Bandwidth                            |    |  |  |
| 8.4                       | CARRIER FREQUENCIES SEPARATION                        |    |  |  |
| 8.5                       | NUMBER OF HOPPING CHANNEL                             |    |  |  |
| 8.6                       | BAND EDGE                                             |    |  |  |
| 8.7                       | CONDUCTED RF SPURIOUS EMISSION                        | 69 |  |  |



# 1 TEST RESULT CERTIFICATION

| Applicant's name             | SHENZHEN FENDA TECHNOLOGY CO., LTD.                                                          |
|------------------------------|----------------------------------------------------------------------------------------------|
| Address                      | Fenda Hi-Tech Park,Zhoushi Road,Shiyan Town,Baoan District,<br>Shenzhen City,Guangdong,China |
| Manufacturer's Name:         | SHENZHEN FENDA TECHNOLOGY CO., LTD.                                                          |
| Address                      | Fenda Hi-Tech Park,Zhoushi Road,Shiyan Town,Baoan District,<br>Shenzhen City,Guangdong,China |
| Product description          |                                                                                              |
| Product name:                | 2.0 LED Soundbar                                                                             |
| Model and/or type reference: | 100075108                                                                                    |
| Family Model:                | N/A                                                                                          |

# Measurement Procedure Used:

# APPLICABLE STANDARDS STANDARD/ TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013 This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Testing Engineer

(Mary Hu)

Authorized Signatory

Nov 24. 2021~ Dec 08, 2021

HU

(Alex Li)



| 2 SUMMARY OF TEST RESULTS      |                                |         |        |
|--------------------------------|--------------------------------|---------|--------|
| FCC Part15 (15.247), Subpart C |                                |         |        |
| Standard Section               | Test Item                      | Verdict | Remark |
| 15.207                         | Conducted Emission             | PASS    |        |
| 15.209 (a)<br>15.205 (a)       | Radiated Spurious Emission     | PASS    |        |
| 15.247(a)(1)                   | Hopping Channel Separation     | PASS    |        |
| 15.247(b)(1)                   | Peak Output Power              | PASS    |        |
| 15.247(a)(iii)                 | Number of Hopping Frequency    | PASS    |        |
| 15.247(a)(iii)                 | Dwell Time                     | PASS    |        |
| 15.247(a)(1)                   | Bandwidth                      | PASS    |        |
| 15.247 (d)                     | Band Edge Emission             | PASS    |        |
| 15.247 (d)                     | Spurious RF Conducted Emission | PASS    |        |
| 15.203                         | Antenna Requirement            | PASS    |        |

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.



# 3 FACILITIES AND ACCREDITATIONS

# 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

# 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                    |
|------------------|--------------------------------------------------------------------|
| CNAS-Lab.        | : The Certificate Registration Number is L5516.                    |
| IC-Registration  | The Certificate Registration Number is 9270A.                      |
|                  | CAB identifier:CN0074                                              |
| FCC- Accredited  | Test Firm Registration Number: 463705.                             |
|                  | Designation Number: CN1184                                         |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                     |
|                  | This laboratory is accredited in accordance with the recognized    |
|                  | International Standard ISO/IEC 17025:2005 General requirements for |
|                  | the competence of testing and calibration laboratories.            |
|                  | This accreditation demonstrates technical competence for a defined |
|                  | scope and the operation of a laboratory quality management system  |
|                  | (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).     |
|                  | : Shenzhen NTEK Testing Technology Co., Ltd.                       |
| Site Location    | : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang   |
|                  | Street, Bao'an District, Shenzhen 518126 P.R. China.               |

# 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature                         | ±0.5°C      |
| 8   | Humidity                            | ±2%         |
| 9   | All emissions, radiated(9KHz~30MHz) | ±6dB        |

# **NTEK** 北测 Certificate #4298.01 **GENERAL DESCRIPTION OF EUT** 4

® ilac

ACC

| Product Feature and Specification |                             |  |
|-----------------------------------|-----------------------------|--|
| Equipment                         | 2.0 LED Soundbar            |  |
| Trade Mark                        | onn.                        |  |
| FCC ID                            | HBOSB2225                   |  |
| Model No.                         | 100075108                   |  |
| Family Model                      | N/A                         |  |
| Model Difference                  | N/A                         |  |
| Operating Frequency               | 2402MHz~2480MHz             |  |
| Modulation                        | GFSK, π/4-DQPSK, 8-DPSK     |  |
| Number of Channels                | 79 Channels                 |  |
| Antenna Type                      | PCB Antenna                 |  |
| Antenna Gain                      | 1.5 dBi                     |  |
| Power supply                      | Input:100-240V 50/60Hz 0.3A |  |
| Adapter                           | N/A                         |  |
| Battery                           | N/A                         |  |
| HW Version                        | N/A                         |  |
| SW Version                        | N/A                         |  |

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode, the power level is the software default value.



| Certificate #4298.01<br>Revision History |         |                         |              |
|------------------------------------------|---------|-------------------------|--------------|
| Report No.                               | Version | Description             | Issued Date  |
| S21112400602001                          | Rev.01  | Initial issue of report | Dec 08, 2021 |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          | _       |                         |              |
|                                          | _       |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |
|                                          |         |                         |              |



# 5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for  $\pi/4$ -DQPSK modulation) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

| Channel | Frequency(MHz) |
|---------|----------------|
| 0       | 2402           |
| 1       | 2403           |
|         |                |
| 39      | 2441           |
| 40      | 2442           |
|         |                |
| 77      | 2479           |
| 78      | 2480           |

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

| For AC Conducted Emission   |                  |  |
|-----------------------------|------------------|--|
| Final Test Mode Description |                  |  |
| Mode 1                      | normal link mode |  |

Note: AC power line Conducted Emission was tested under maximum output power.

| For Radiated Test Cases |                      |  |
|-------------------------|----------------------|--|
| Final Test Mode         | Description          |  |
| Mode 1 normal link mode |                      |  |
| Mode 2                  | Mode 2 CH00(2402MHz) |  |
| Mode 3 CH39(2441MHz)    |                      |  |
| Mode 4 CH78(2480MHz)    |                      |  |

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

| For Conducted Test Cases    |  |  |  |
|-----------------------------|--|--|--|
| Final Test Mode Description |  |  |  |
| CH00(2402MHz)               |  |  |  |
| CH39(2441MHz)               |  |  |  |
| CH78(2480MHz)               |  |  |  |
| Hopping mode                |  |  |  |
|                             |  |  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

| NTEK 北测 <sup>®</sup>                                                   | Certificate #4298.01                                            | Report No.: S21112400602001                             |
|------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|
| 6 SETUP OF EQUIPMENT<br>6.1 BLOCK DIAGRAM CONFIGU                      | IRATION OF TEST SYSTEM                                          | I                                                       |
| For AC Conducted Emission Mode                                         | C-1<br>AE-1<br>Adapter                                          | AC PLUG                                                 |
| For Radiated Test Cases                                                |                                                                 |                                                         |
| EUT                                                                    |                                                                 |                                                         |
| For Conducted Test Cases                                               |                                                                 |                                                         |
| Measurement<br>Instrument                                              | JT                                                              |                                                         |
| Note: 1. The temporary antenna co<br>and this temporary antenna connec | nnector is soldered on the Po<br>ctor is listed in the equipmen | CB board in order to perform conducted tests<br>t list. |



# 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Model/Type No. | Series No. | Note        |
|------|-----------|----------------|------------|-------------|
| AE-1 | Adapter   | N/A            | N/A        | Peripherals |
|      |           |                |            |             |
|      |           |                |            |             |
|      |           |                |            |             |

| Item | Cable Type  | Shielded Type | Ferrite Core | Length |
|------|-------------|---------------|--------------|--------|
| C-1  | Power Cable | NO            | NO           | 0.8m   |
| C-2  | RF Cable    | YES           | NO           | 0.1m   |
|      |             |               |              |        |
|      |             |               |              |        |
|      |             |               |              |        |

# Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



# 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

# Radiation& Conducted Test equipment

| uuuuu | Ina Conducted I                             | estequipment    |                 |                   |                  |                     |                           |
|-------|---------------------------------------------|-----------------|-----------------|-------------------|------------------|---------------------|---------------------------|
| Item  | Kind of<br>Equipment                        | Manufacturer    | Type No.        | Serial No.        | Last calibration | Calibrated<br>until | Calibrati<br>on<br>period |
| 1     | Spectrum<br>Analyzer                        | Aglient         | E4407B          | MY45108040        | 2021.04.27       | 2022.04.26          | 1 year                    |
| 2     | Spectrum<br>Analyzer                        | Agilent         | N9020A          | MY49100060        | 2021.04.27       | 2022.04.26          | 1 year                    |
| 3     | Spectrum<br>Analyzer                        | R&S             | FSV40           | 101417            | 2021.04.27       | 2022.04.26          | 1 year                    |
| 4     | Test Receiver                               | R&S             | ESPI7           | 101318            | 2021.04.27       | 2022.04.26          | 1 year                    |
| 5     | Bilog Antenna                               | TESEQ           | CBL6111D        | 31216             | 2021.03.29       | 2022.03.28          | 1 year                    |
| 6     | 50Ω Coaxial<br>Switch                       | Anritsu         | MP59B           | 6200983705        | 2020.05.11       | 2023.05.10          | 3 year                    |
| 7     | Horn Antenna                                | EM              | EM-AH-1018<br>0 | 2011071402        | 2021.03.29       | 2022.03.28          | 1 year                    |
| 8     | Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK | BBHA 9170       | 803               | 2021.07.01       | 2022.06.30          | 1 year                    |
| 9     | Amplifier                                   | EMC             | EMC051835<br>SE | 980246            | 2021.07.01       | 2022.06.30          | 1 year                    |
| 10    | Active Loop<br>Antenna                      | SCHWARZBE<br>CK | FMZB 1519<br>B  | 055               | 2021.07.01       | 2022.06.30          | 1 year                    |
| 11    | Power Meter                                 | DARE            | RPR3006W        | 15I00041SN<br>084 | 2021.07.01       | 2022.06.30          | 1 year                    |
| 12    | Test Cable<br>(9KHz-30MHz)                  | N/A             | R-01            | N/A               | 2019.08.06       | 2022.08.05          | 3 year                    |
| 13    | Test Cable<br>(30MHz-1GHz)                  | N/A             | R-02            | N/A               | 2019.08.06       | 2022.08.05          | 3 year                    |
| 14    | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-03            | N/A               | 2019.06.28       | 2022.06.27          | 3 year                    |
| 15    | Filter                                      | TRILTHIC        | 2400MHz         | 29                | 2021.07.01       | 2022.06.30          | 1 year                    |
| 16    | temporary<br>antenna<br>connector<br>(Note) | NTS             | R001            | N/A               | N/A              | N/A                 | N/A                       |

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

| AC Co | AC Conduction Test equipment   |                 |           |            |                  |                     |                    |
|-------|--------------------------------|-----------------|-----------|------------|------------------|---------------------|--------------------|
| Item  | Kind of<br>Equipment           | Manufacturer    | Type No.  | Serial No. | Last calibration | Calibrated<br>until | Calibration period |
| 1     | Test Receiver                  | R&S             | ESCI      | 101160     | 2021.04.27       | 2022.04.26          | 1 year             |
| 2     | LISN                           | R&S             | ENV216    | 101313     | 2021.04.27       | 2022.04.26          | 1 year             |
| 3     | LISN                           | SCHWARZBE<br>CK | NNLK 8129 | 8129245    | 2021.04.27       | 2022.04.26          | 1 year             |
| 4     | 50Ω Coaxial<br>Switch          | ANRITSU<br>CORP | MP59B     | 6200983704 | 2020.05.11       | 2023.05.10          | 3 year             |
| 5     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C01       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |
| 6     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C02       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |
| 7     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C03       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

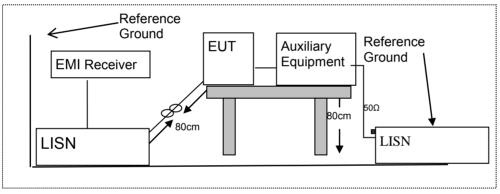


# 7 TEST REQUIREMENTS

# 7.1 CONDUCTED EMISSIONS TEST

# 7.1.1 Applicable Standard

According to FCC Part 15.207(a)


# 7.1.2 Conformance Limit

|                | Conducted Emission Limit |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | Quasi-peak               | Average |  |
| 0.15-0.5       | 66-56*                   | 56-46*  |  |
| 0.5-5.0        | 56                       | 46      |  |
| 5.0-30.0       | 60                       | 50      |  |

Note: 1. \*Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
  - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

# 7.1.3 Test Configuration



# 7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
  may be terminated, if required, using the correct terminating impedance. The overall length shall not
  exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

# 7.1.5 Test Results

Pass



# 7.1.6 Test Results

| EUT:           | 2.0 LED Soundbar | Model Name :       | 100075108         |
|----------------|------------------|--------------------|-------------------|
| Temperature:   | 21.6℃            | Relative Humidity: | 56%               |
| Pressure:      | 1010hPa          | Phase :            | L                 |
| Test Voltage : | AC 120V/60Hz     | Test Mode:         | 3Mbps 8-DPSK CH39 |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Domork |
|-----------|---------------|----------------|--------------|--------|--------|--------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark |
| 0.1524    | 35.93         | 9.72           | 45.65        | 65.86  | -20.21 | AVG    |
| 0.1524    | 21.84         | 9.72           | 31.56        | 55.86  | -24.30 | QP     |
| 0.1739    | 33.50         | 9.68           | 43.18        | 64.77  | -21.59 | AVG    |
| 0.1739    | 18.11         | 9.68           | 27.79        | 54.77  | -26.98 | QP     |
| 0.1940    | 33.56         | 9.64           | 43.20        | 63.86  | -20.66 | AVG    |
| 0.1940    | 15.70         | 9.64           | 25.34        | 53.86  | -28.52 | QP     |
| 0.3619    | 30.53         | 9.64           | 40.17        | 58.68  | -18.51 | QP     |
| 0.3619    | 28.97         | 9.64           | 38.61        | 48.68  | -10.07 | AVG    |
| 0.5180    | 28.80         | 9.65           | 38.45        | 56.00  | -17.55 | QP     |
| 0.5180    | 24.85         | 9.65           | 34.50        | 46.00  | -11.50 | AVG    |
| 0.6979    | 22.26         | 9.74           | 32.00        | 56.00  | -24.00 | AVG    |
| 0.6979    | 19.70         | 9.74           | 29.44        | 46.00  | -16.56 | QP     |

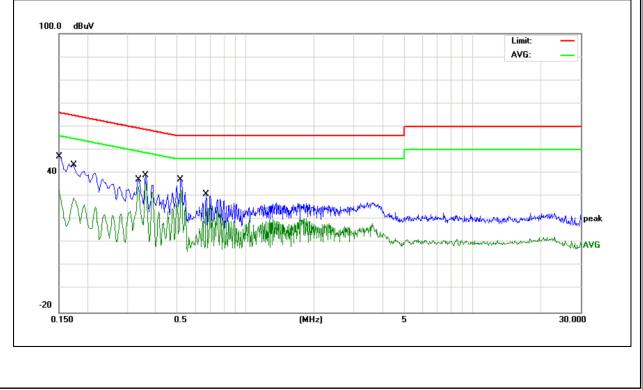
# Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.






| EUT:           | 2.0 LED Soundbar | Model Name :       | 100075108         |
|----------------|------------------|--------------------|-------------------|
| Temperature:   | <b>21.6</b> ℃    | Relative Humidity: | 56%               |
| Pressure:      | 1010hPa          | Phase :            | N                 |
| Test Voltage : | AC 120V/60Hz     | Test Mode:         | 3Mbps 8-DPSK CH39 |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Domorly |
|-----------|---------------|----------------|--------------|--------|--------|---------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark  |
| 0.1524    | 37.17         | 9.63           | 46.80        | 65.86  | -19.06 | QP      |
| 0.1524    | 20.87         | 9.63           | 30.50        | 55.86  | -25.36 | AVG     |
| 0.1740    | 33.94         | 9.63           | 43.57        | 64.76  | -21.19 | QP      |
| 0.1740    | 19.61         | 9.63           | 29.24        | 54.76  | -25.52 | AVG     |
| 0.3379    | 27.32         | 9.68           | 37.00        | 59.25  | -22.25 | QP      |
| 0.3379    | 24.47         | 9.68           | 34.15        | 49.25  | -15.10 | AVG     |
| 0.3620    | 29.18         | 9.69           | 38.87        | 58.68  | -19.81 | AVG     |
| 0.3620    | 26.93         | 9.69           | 36.62        | 48.68  | -12.06 | QP      |
| 0.5180    | 27.52         | 9.73           | 37.25        | 56.00  | -18.75 | QP      |
| 0.5180    | 23.01         | 9.73           | 32.74        | 46.00  | -13.26 | AVG     |
| 0.6700    | 21.17         | 9.65           | 30.82        | 56.00  | -25.18 | AVG     |
| 0.6700    | 15.09         | 9.65           | 24.74        | 46.00  | -21.26 | QP      |

# Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.





# 7.2 RADIATED SPURIOUS EMISSION

# 7.2.1 Applicable Standard

# According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

# 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| Recording to FOC Part 15.205, Restricted bands |                     |               |             |  |
|------------------------------------------------|---------------------|---------------|-------------|--|
| MHz                                            | MHz                 | MHz           | GHz         |  |
| 0.090-0.110                                    | 16.42-16.423        | 399.9-410     | 4.5-5.15    |  |
| 0.495-0.505                                    | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |
| 2.1735-2.1905                                  | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |
| 4.125-4.128                                    | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |
| 4.17725-4.17775                                | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |
| 4.20725-4.20775                                | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |
| 6.215-6.218                                    | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |
| 6.26775-6.26825                                | 123-138             | 2200-2300     | 14.47-14.5  |  |
| 8.291-8.294                                    | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |
| 8.362-8.366                                    | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |
| 8.37625-8.38675                                | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |
| 8.41425-8.41475                                | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |
| 12.29-12.293                                   | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |
| 12.51975-12.52025                              | 240-285             | 3345.8-3358   | 36.43-36.5  |  |
| 12.57675-12.57725                              | 322-335.4           | 3600-4400     | (2)         |  |
| 13.36-13.41                                    |                     |               |             |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 24000/F(KHz)          | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                    | 29.5                    | 30                   |
| 30-88                        | 100                   | 40                      | 3                    |
| 88-216                       | 150                   | 43.5                    | 3                    |
| 216-960                      | 200                   | 46                      | 3                    |
| Above 960                    | 500                   | 54                      | 3                    |

Limits of Radiated Emission Measurement(Above 1000MHz)

| Eroquonov(MHz) | Class B (dBuV/m) (at 3M) |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | PEAK                     | AVERAGE |  |
| Above 1000     | 74                       | 54      |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

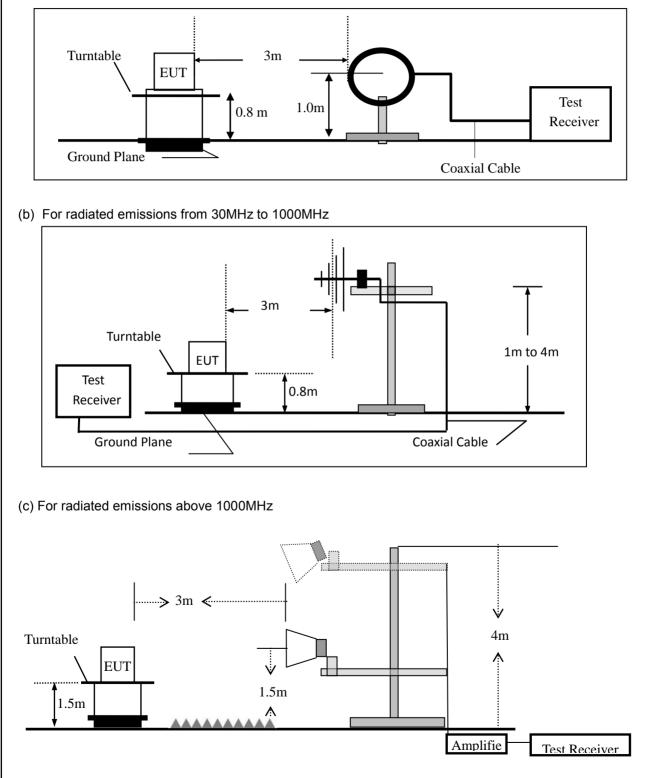
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

# NTEK 北测<sup>®</sup>


# 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

# 7.2.4 Test Configuration

# (a) For radiated emissions below 30MHz





# 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                           |
|---------------------------------------|---------------------------------------------------|
| Attenuation                           | Auto                                              |
| Start Frequency                       | 1000 MHz                                          |
| Stop Frequency                        | 10th carrier harmonic                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
  - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported



| During the radiated emission to | During the radiated emission test, the Spectrum Analyzer was set with the following configurations: |                      |                 |  |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------|--|--|--|--|--|--|
| Frequency Band (MHz)            | Function                                                                                            | Resolution bandwidth | Video Bandwidth |  |  |  |  |  |  |
| 30 to 1000                      | QP                                                                                                  | 120 kHz              | 300 kHz         |  |  |  |  |  |  |
| Ab                              | Peak                                                                                                | 1 MHz                | 1 MHz           |  |  |  |  |  |  |
| Above 1000                      | Average                                                                                             | 1 MHz                | 1 MHz           |  |  |  |  |  |  |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

# 7.2.6 Test Results

| EUT:         | 2.0 LED Soundbar  | Model No.:         | 100075108 |
|--------------|-------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu   |

| Freq. | Ant.Pol. | Emission L | evel(dBuV/m) | Limit 3 | m(dBuV/m) | Over(dB) |    |  |
|-------|----------|------------|--------------|---------|-----------|----------|----|--|
| (MHz) | H/V      | PK         | AV           | PK      | AV        | PK       | AV |  |
|       |          |            |              |         |           |          |    |  |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: 2.0 LED Soundbar Model Name : 100075108 Temperature: **25.3℃** Relative Humidity: 51% Test Mode: Pressure: 1010hPa 3Mbps 8-DPSK CH39 AC 120V/60Hz Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 40.5591 12.99 18.53 31.52 40.00 -8.48 QP 98,4866 16.32 27.82 43.50 -15.68 QP V 11.50 V QP 132.6850 10.67 18.18 28.85 43.50 -14.65 QP V 327.8873 8.65 21.70 30.35 46.00 -15.65 7.69 46.00 QP V 658.8361 29.18 36.87 -9.13 V 768.7481 8.18 30.62 46.00 -7.20 QP 38.80 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Limit: Margin: X 32 -8 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000



| Polar<br>(H/V)         Frequency         Meter<br>Reading<br>(dBuV)         Factor         Emission<br>Level         Limits           H         102.0014         9.85         16.65         26.50         43.50           H         137.4202         11.31         18.62         29.93         43.50           H         173.2051         12.77         16.56         29.33         43.50           H         656.5299         8.23         29.13         37.36         46.00           H         771.4486         8.74         30.65         39.39         46.00           H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit         72.0         dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Margin<br>(dB)<br>-17.00<br>-13.57<br>-14.17<br>-8.64<br>-6.61<br>-6.08 | Remark<br>QP<br>QP<br>QP<br>QP<br>QP<br>QP |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|
| H         102.0014         9.85         16.65         26.50         43.50           H         137.4202         11.31         18.62         29.93         43.50           H         173.2051         12.77         16.56         29.33         43.50           H         656.5299         8.23         29.13         37.36         46.00           H         771.4486         8.74         30.65         39.39         46.00           H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -17.00<br>-13.57<br>-14.17<br>-8.64<br>-6.61<br>-6.08                   | QP<br>QP<br>QP<br>QP<br>QP                 |
| H         102.0014         9.85         16.65         26.50         43.50           H         137.4202         11.31         18.62         29.93         43.50           H         173.2051         12.77         16.56         29.33         43.50           H         656.5299         8.23         29.13         37.36         46.00           H         771.4486         8.74         30.65         39.39         46.00           H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -17.00<br>-13.57<br>-14.17<br>-8.64<br>-6.61<br>-6.08                   | QP<br>QP<br>QP<br>QP                       |
| H         137.4202         11.31         18.62         29.93         43.50           H         173.2051         12.77         16.56         29.33         43.50           H         656.5299         8.23         29.13         37.36         46.00           H         771.4486         8.74         30.65         39.39         46.00           H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -13.57<br>-14.17<br>-8.64<br>-6.61<br>-6.08                             | QP<br>QP<br>QP<br>QP                       |
| H         173.2051         12.77         16.56         29.33         43.50           H         656.5299         8.23         29.13         37.36         46.00           H         771.4486         8.74         30.65         39.39         46.00           H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.17<br>-8.64<br>-6.61<br>-6.08                                       | QP<br>QP<br>QP                             |
| H         771.4486         8.74         30.65         39.39         46.00           H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -6.61<br>-6.08                                                          | QP                                         |
| H         900.1473         7.32         32.60         39.92         46.00           Remark:         Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6.08                                                                   |                                            |
| Remark:<br>Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit:                                                                  | QP                                         |
| Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | <u>_</u>                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                       | 6<br>****                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | und marine herry                                                        | value -                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
| 32<br>How have been all and the second |                                                                         |                                            |
| The work where a set was a set of the set of   |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                            |
| -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                            |
| 30.000 40 50 60 70 80 (MHz) 300 400 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600 700                                                                 | 1000.000                                   |



| Spurious Emission Above 1GHz (1GHz to 25GHz)                                         |                |               |                   |                  |                   |       |        |        |      |    |            |
|--------------------------------------------------------------------------------------|----------------|---------------|-------------------|------------------|-------------------|-------|--------|--------|------|----|------------|
| EUT: 2.0 LED Soundbar Model No.: 100075108                                           |                |               |                   |                  |                   |       |        |        |      |    |            |
| Temperature                                                                          | : <b>20</b> °C | 2             |                   | Relativ          | ve Humidity       | :     | 48%    |        |      |    |            |
| Test Mode:                                                                           | Mod            | e2/Mode       | 3/Mode4           | Test B           | -                 |       | Mary I | Hu     |      |    |            |
| All the modulation modes have been tested, and the worst result was report as below: |                |               |                   |                  |                   |       |        |        |      |    |            |
|                                                                                      |                |               |                   |                  |                   |       |        |        |      |    |            |
| Frequency                                                                            | Read<br>Level  | Cable<br>loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Li    | mits   | Margin | Rema | rk | Comment    |
| (MHz)                                                                                | (dBµV)         | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dB   | µV/m)  | (dB)   |      |    |            |
|                                                                                      |                | L             | ow Channe         | I (2402 M⊦       | lz)( 8-DPSK       | ()Ab  | ove 1G | i      |      |    |            |
| 4804.9016                                                                            | 64.97          | 5.21          | 35.59             | 44.30            | 61.47             | 74    | 4.00   | -12.53 | Pk   |    | Vertical   |
| 4804.9016                                                                            | 43.97          | 5.21          | 35.59             | 44.30            | 40.47             | 54    | 4.00   | -13.53 | AV   |    | Vertical   |
| 7206.9396                                                                            | 64.15          | 6.48          | 36.27             | 44.60            | 62.30             | 74    | 4.00   | -11.70 | Pk   |    | Vertical   |
| 7206.9396                                                                            | 43.49          | 6.48          | 36.27             | 44.60            | 41.64             | 54    | 4.00   | -12.36 | AV   |    | Vertical   |
| 4804.8831                                                                            | 64.57          | 5.21          | 35.55             | 44.30            | 61.03             | 74    | 4.00   | -12.97 | Pk   | H  | lorizontal |
| 4804.8831                                                                            | 40.87          | 5.21          | 35.55             | 44.30            | 37.33             | 54    | 4.00   | -16.67 | AV   | H  | lorizontal |
| 7206.036                                                                             | 62.73          | 6.48          | 36.27             | 44.52            | 60.96             | 74    | 4.00   | -13.04 | Pk   | H  | lorizontal |
| 7206.036                                                                             | 41.00          | 6.48          | 36.27             | 44.52            | 39.23             | 54    | 4.00   | -14.77 | AV   | H  | lorizontal |
| Mid Channel (2441 MHz)( 8-DPSK)Above 1G                                              |                |               |                   |                  |                   |       |        |        |      |    |            |
| 4882.5866                                                                            | 67.34          | 5.21          | 35.66             | 44.20            | 64.01             | 74    | 4.00   | -9.99  | Pk   |    | Vertical   |
| 4882.5866                                                                            | 43.42          | 5.21          | 35.66             | 44.20            | 40.09             | 54    | 4.00   | -13.91 | AV   |    | Vertical   |
| 7323.6985                                                                            | 63.68          | 7.10          | 36.50             | 44.43            | 62.85             | 74    | 4.00   | -11.15 | Pk   |    | Vertical   |
| 7323.6985                                                                            | 43.07          | 7.10          | 36.50             | 44.43            | 42.24             | 54    | 4.00   | -11.76 | AV   |    | Vertical   |
| 4882.2092                                                                            | 61.04          | 5.21          | 35.66             | 44.20            | 57.71             | 74    | 4.00   | -16.29 | Pk   | H  | lorizontal |
| 4882.2092                                                                            | 41.71          | 5.21          | 35.66             | 44.20            | 38.38             | 54    | 4.00   | -15.62 | AV   | H  | lorizontal |
| 7324.6433                                                                            | 62.30          | 7.10          | 36.50             | 44.43            | 61.47             | 74    | 4.00   | -12.53 | Pk   | H  | lorizontal |
| 7324.6433                                                                            | 42.88          | 7.10          | 36.50             | 44.43            | 42.05             |       | 4.00   | -11.95 | AV   | H  | lorizontal |
|                                                                                      |                | H             | igh Channe        | I (2480 M⊢       | lz)( 8-DPSK       | () Ab | ove 10 | 6      |      |    |            |
| 4959.6966                                                                            | 65.17          | 5.21          | 35.52             | 44.21            | 61.69             | 74    | 4.00   | -12.31 | Pk   |    | Vertical   |
| 4959.6966                                                                            | 43.50          | 5.21          | 35.52             | 44.21            | 40.02             | 54    | 4.00   | -13.98 | AV   |    | Vertical   |
| 7439.5856                                                                            | 64.30          | 7.10          | 36.53             | 44.60            | 63.33             | 74    | 4.00   | -10.67 | Pk   |    | Vertical   |
| 7439.5856                                                                            | 42.94          | 7.10          | 36.53             | 44.60            | 41.97             | 54    | 4.00   | -12.03 | AV   |    | Vertical   |
| 4960.6486                                                                            | 64.71          | 5.21          | 35.52             | 44.21            | 61.23             | 74    | 4.00   | -12.77 | Pk   | F  | lorizontal |
| 4960.6486                                                                            | 41.45          | 5.21          | 35.52             | 44.21            | 37.97             | 54    | 4.00   | -16.03 | AV   | H  | lorizontal |
| 7440.1719                                                                            | 63.55          | 7.10          | 36.53             | 44.60            | 62.58             | 74    | 4.00   | -11.42 | Pk   | H  | lorizontal |
| 7440.1719                                                                            | 42.61          | 7.10          | 36.53             | 44.60            | 41.64             | 54    | 4.00   | -12.36 | AV   | H  | lorizontal |

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.



| <ul> <li>Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz</li> <li>EUT: 2.0 LED Soundbar Model No.: 100075108</li> </ul> |                                                                                      |               |                   |                  |                   |      |            |        |          |            |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|-------------------|------------------|-------------------|------|------------|--------|----------|------------|
| _                                                                                                                                            |                                                                                      | Sunabar       |                   |                  |                   |      |            |        |          |            |
| Temperature                                                                                                                                  | : <b>20</b> ℃                                                                        |               |                   | Relati           | ve Humidity       | /:   | 48%        |        |          |            |
| Test Mode:                                                                                                                                   | st Mode: Mode2/ Mode4 Test By: Mary Hu                                               |               |                   |                  |                   |      |            |        |          |            |
| All the modu                                                                                                                                 | All the modulation modes have been tested, and the worst result was report as below: |               |                   |                  |                   |      |            |        |          |            |
| Frequency                                                                                                                                    | Meter<br>Reading                                                                     | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Lir  | nits       | Margin | Detector | Comment    |
| (MHz)                                                                                                                                        | (dBµV)                                                                               | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dBµ | uV/m)      | (dB)   | Туре     |            |
|                                                                                                                                              |                                                                                      |               |                   | 3Mbps-           | Non-hopping       |      |            |        |          |            |
| 2310.00                                                                                                                                      | 55.38                                                                                | 2.97          | 27.80             | 43.80            | 42.35             |      | <b>'</b> 4 | -31.65 | Pk       | Horizontal |
| 2310.00                                                                                                                                      | 41.50                                                                                | 2.97          | 27.80             | 43.80            | 28.47             | -    | 54         | -25.53 | AV       | Horizontal |
| 2310.00                                                                                                                                      | 50.31                                                                                | 2.97          | 27.80             | 43.80            | 37.28             |      | 74         | -36.72 | Pk       | Vertical   |
| 2310.00                                                                                                                                      | 41.36                                                                                | 2.97          | 27.80             | 43.80            | 28.33             | 5    | 54         | -25.67 | AV       | Vertical   |
| 2390.00                                                                                                                                      | 51.80                                                                                | 3.14          | 27.21             | 43.80            | 38.35             | 7    | 74         | -35.65 | Pk       | Vertical   |
| 2390.00                                                                                                                                      | 40.46                                                                                | 3.14          | 27.21             | 43.80            | 27.01             | 5    | 54         | -26.99 | AV       | Vertical   |
| 2390.00                                                                                                                                      | 54.68                                                                                | 3.14          | 27.21             | 43.80            | 41.23             |      | 74         | -32.77 | Pk       | Horizontal |
| 2390.00                                                                                                                                      | 42.36                                                                                | 3.14          | 27.21             | 43.80            | 28.91             | -    | 54         | -25.09 | AV       | Horizontal |
| 2483.50                                                                                                                                      | 54.28                                                                                | 3.58          | 27.70             | 44.00            | 41.56             |      | 74         | -32.44 | Pk       | Vertical   |
| 2483.50                                                                                                                                      | 42.67                                                                                | 3.58          | 27.70             | 44.00            | 29.95             | 5    | 54         | -24.05 | AV       | Vertical   |
| 2483.50                                                                                                                                      | 54.28                                                                                | 3.58          | 27.70             | 44.00            | 41.56             |      | 74         | -32.44 | Pk       | Horizontal |
| 2483.50                                                                                                                                      | 44.60                                                                                | 3.58          | 27.70             | 44.00            | 31.88             | 5    | 54         | -22.12 | AV       | Horizontal |
|                                                                                                                                              |                                                                                      |               |                   | 3Mbps            | hopping           |      |            |        |          |            |
| 2310.00                                                                                                                                      | 50.19                                                                                | 2.97          | 27.80             | 43.80            | 37.16             |      | .00        | -36.84 | Pk       | Vertical   |
| 2310.00                                                                                                                                      | 43.49                                                                                | 2.97          | 27.80             | 43.80            | 30.46             | 54   | .00        | -23.54 | AV       | Vertical   |
| 2310.00                                                                                                                                      | 54.96                                                                                | 2.97          | 27.80             | 43.80            | 41.93             | 74   | .00        | -32.07 | Pk       | Horizontal |
| 2310.00                                                                                                                                      | 44.36                                                                                | 2.97          | 27.80             | 43.80            | 31.33             |      | .00        | -22.67 | AV       | Horizontal |
| 2390.00                                                                                                                                      | 52.82                                                                                | 3.14          | 27.21             | 43.80            | 39.37             |      | .00        | -34.63 | Pk       | Vertical   |
| 2390.00                                                                                                                                      | 42.77                                                                                | 3.14          | 27.21             | 43.80            | 29.32             |      | .00        | -24.68 | AV       | Vertical   |
| 2390.00                                                                                                                                      | 50.82                                                                                | 3.14          | 27.21             | 43.80            | 37.37             |      | .00        | -36.63 | Pk       | Horizontal |
| 2390.00                                                                                                                                      | 42.67                                                                                | 3.14          | 27.21             | 43.80            | 29.22             |      | .00        | -24.78 | AV       | Horizontal |
| 2483.50                                                                                                                                      | 54.98                                                                                | 3.58          | 27.70             | 44.00            | 42.26             | 74   | .00        | -31.74 | Pk       | Vertical   |
| 2483.50                                                                                                                                      | 43.04                                                                                | 3.58          | 27.70             | 44.00            | 30.32             | 54   | .00        | -23.68 | AV       | Vertical   |
| 2483.50                                                                                                                                      | 51.75                                                                                | 3.58          | 27.70             | 44.00            | 39.03             |      | .00        | -34.97 | Pk       | Horizontal |
| 2483.50                                                                                                                                      | 40.91                                                                                | 3.58          | 27.70             | 44.00            | 28.19             | 54   | .00        | -25.81 | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



| EUT:         | 2.0 LED Soundbar |               |               |                   | Model            | 100075108              |       |         |           |          |           |
|--------------|------------------|---------------|---------------|-------------------|------------------|------------------------|-------|---------|-----------|----------|-----------|
| Temperature: |                  | <b>20</b> ℃   |               |                   | Relativ          | Relative Humidity: 48% |       |         |           |          |           |
| Test Mode:   | Mode2/ Mode4     |               |               | Test B            | Test By: Mary Hu |                        |       |         |           |          |           |
| All the modu | lation           | modes         | s have b      | een testeo        | d, and the       | worst resu             | lt wa | s repoi | t as belo | W:       |           |
| Frequency    |                  | ading<br>evel | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level      | Li    | mits    | Margin    | Detector | Comment   |
| (MHz)        | (dl              | 3μV)          | (dB)          | dB/m              | (dB)             | (dBµV/m)               | (dB   | μV/m)   | (dB)      | Туре     |           |
| 3260         | 60               | ).78          | 4.04          | 29.57             | 44.70            | 49.69                  |       | 74      | -24.31    | Pk       | Vertical  |
| 3260         | 45               | 5.08          | 4.04          | 29.57             | 44.70            | 33.99                  |       | 54      | -20.01    | AV       | Vertical  |
| 3260         | 57               | 7.20          | 4.04          | 29.57             | 44.70            | 46.11                  |       | 74      | -27.89    | Pk       | Horizonta |
| 3260         | 43               | 3.19          | 4.04          | 29.57             | 44.70            | 32.10                  |       | 54      | -21.90    | AV       | Horizonta |
| 3332         | 64               | 4.68          | 4.26          | 29.87             | 44.40            | 54.41                  |       | 74      | -19.59    | Pk       | Vertical  |
| 3332         | 44               | 4.33          | 4.26          | 29.87             | 44.40            | 34.06                  |       | 54      | -19.94    | AV       | Vertical  |
| 3332         | 64               | 4.43          | 4.26          | 29.87             | 44.40            | 54.16                  |       | 74      | -19.84    | Pk       | Horizonta |
| 3332         | 4                | 5.76          | 4.26          | 29.87             | 44.40            | 35.49                  |       | 54      | -18.51    | AV       | Horizonta |
| 17797        | 48               | 3.06          | 10.99         | 43.95             | 43.50            | 59.50                  |       | 74      | -14.50    | Pk       | Vertical  |
| 17797        | 36               | 5.09          | 10.99         | 43.95             | 43.50            | 47.53                  |       | 54      | -6.47     | AV       | Vertical  |
| 17788        | 54               | 4.63          | 11.81         | 43.69             | 44.60            | 65.53                  |       | 74      | -8.47     | Pk       | Horizonta |
| 17788        | 38               | 3.45          | 11.81         | 43.69             | 44.60            | 49.35                  |       | 54      | -4.65     | AV       | Horizonta |

Note: (1) All other emissions more than 20dB below the limit.



# 7.3 NUMBER OF HOPPING CHANNEL

# 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

# 7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

# 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak

Trace = max hold

#### 7.3.6 Test Results

| EUT:         | 2.0 LED Soundbar | Model No.:            | 100075108                   |
|--------------|------------------|-----------------------|-----------------------------|
| Temperature: | 20 (             | Relative<br>Humidity: | 100075108<br>48%<br>Mary Hu |
| Test Mode:   | Mode 5(1Mbps)    | Test By:              | Mary Hu                     |



# 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

# 7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

# 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

#### 7.4.6 Test Results

| EUT:         | 2.0 LED Soundbar  | Model No.:         | 100075108<br>48%<br>Mary Hu |
|--------------|-------------------|--------------------|-----------------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%                         |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu                     |



# 7.5 AVERAGE TIME OF OCCUPONN.Y (DWELL TIME)

# 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

# 7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

# 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW  $\geq$  1MHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.



#### 7.5.6 Test Results

| EUT:         | 2.0 LED Soundbar  | Model No.:         | 100075108 |  |
|--------------|-------------------|--------------------|-----------|--|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%       |  |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu   |  |

Test data reference attachment.

Note:

A Period Time = (channel number)\*0.4

DH1 Dwell time: Reading \* (1600/2)\*31.6/(channel number) DH3 Dwell time: Reading \* (1600/4)\*31.6/(channel number) DH5 Dwell time: Reading \* (1600/6)\*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to  $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$  hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



# 7.6 20DB BANDWIDTH TEST

# 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.6.2 Conformance Limit

No limit requirement.

#### 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.6.6 Test Results

| EUT:         | 2.0 LED Soundbar  | Model No.:         | 100075108 |
|--------------|-------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu   |



# 7.7 **PEAK OUTPUT POWER**

# 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

# 7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

# 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW  $\geq$  the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak Trace = max hold

# 7.7.6 Test Results

| EUT:         | 2.0 LED Soundbar  | Model No.:         | 100075108 |
|--------------|-------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu   |



# 7.8 CONDUCTED BAND EDGE MEASUREMENT

# 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

#### 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

# 7.8.6 Test Results

| EUT:         | 2.0 LED Soundbar     | Model No.:         | 100075108 |
|--------------|----------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃          | Relative Humidity: | 48%       |
| Test Mode:   | Mode2 /Mode4/ Mode 5 | Test By:           | Mary Hu   |



# 7.9 SPURIOUS RF CONDUCTED EMISSION

# 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

# 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

# 7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

# 7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



# 7.10 ANTENNA APPLICATION

# 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

# 7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 1.5 dBi). It comply with the standard requirement.



#### 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

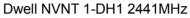
# 7.11.2 Frequency Hopping System

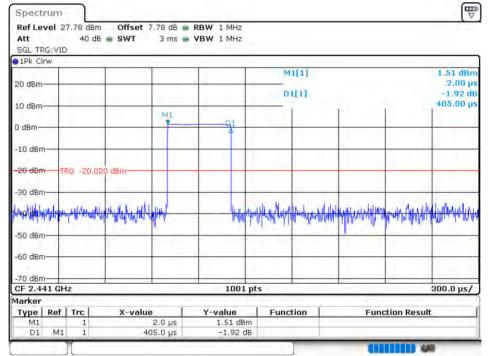
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

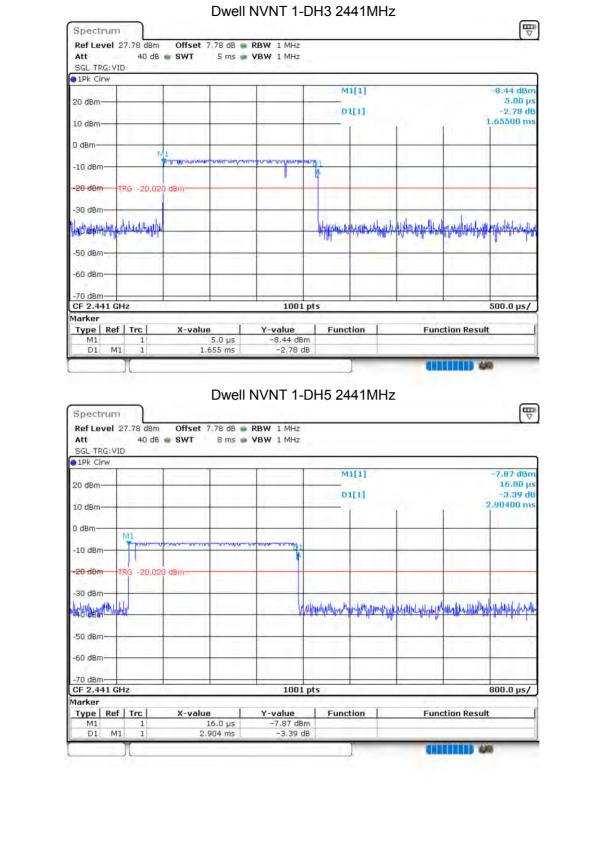
# 7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

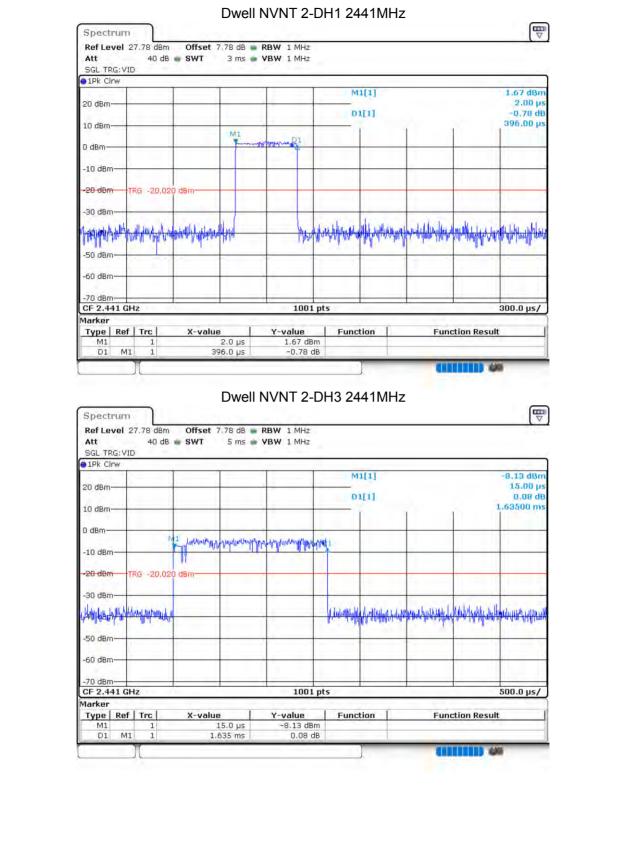

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.




# 8 TEST RESULTS


#### 8.1 **DWELL TIME**

| Mada  | Frequency                                                   | Pulse                                                                                                                                                                                                                                                      | Total Dwell                                                                                                                       | Period                                                                                                                                                                                 | Limit                                                                                                                                                                                                                                                        | Verdict                                                                                                                                                                                                                                                             |
|-------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode  | (MHz)                                                       | Time (ms)                                                                                                                                                                                                                                                  | Time (ms)                                                                                                                         | Time (ms)                                                                                                                                                                              | (ms)                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |
| 1-DH1 | 2441                                                        | 0.405                                                                                                                                                                                                                                                      | 129.6                                                                                                                             | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 1-DH3 | 2441                                                        | 1.655                                                                                                                                                                                                                                                      | 264.8                                                                                                                             | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 1-DH5 | 2441                                                        | 2.904                                                                                                                                                                                                                                                      | 309.76                                                                                                                            | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 2-DH1 | 2441                                                        | 0.396                                                                                                                                                                                                                                                      | 126.72                                                                                                                            | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 2-DH3 | 2441                                                        | 1.635                                                                                                                                                                                                                                                      | 261.6                                                                                                                             | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 2-DH5 | 2441                                                        | 2.872                                                                                                                                                                                                                                                      | 306.347                                                                                                                           | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 3-DH1 | 2441                                                        | 0.39                                                                                                                                                                                                                                                       | 124.8                                                                                                                             | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 3-DH3 | 2441                                                        | 1.635                                                                                                                                                                                                                                                      | 261.6                                                                                                                             | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
| 3-DH5 | 2441                                                        | 2.888                                                                                                                                                                                                                                                      | 308.053                                                                                                                           | 31600                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                                |
|       | 1-DH3<br>1-DH5<br>2-DH1<br>2-DH3<br>2-DH5<br>3-DH1<br>3-DH3 | Mode         (MHz)           1-DH1         2441           1-DH3         2441           1-DH5         2441           2-DH1         2441           2-DH3         2441           2-DH5         2441           3-DH1         2441           3-DH3         2441 | Mode(MHz)Time (ms)1-DH124410.4051-DH324411.6551-DH524412.9042-DH124410.3962-DH324411.6352-DH524412.8723-DH124410.393-DH324411.635 | Mode(MHz)Time (ms)Time (ms)1-DH124410.405129.61-DH324411.655264.81-DH524412.904309.762-DH124410.396126.722-DH324411.635261.62-DH524412.872306.3473-DH124410.39124.83-DH324411.635261.6 | Mode(MHz)Time (ms)Time (ms)Time (ms)1-DH124410.405129.6316001-DH324411.655264.8316001-DH524412.904309.76316002-DH124410.396126.72316002-DH324411.635261.6316002-DH524410.39126.72316003-DH124410.39124.8316003-DH124410.39124.8316003-DH324411.635261.631600 | Mode(MHz)Time (ms)Time (ms)Time (ms)(ms)1-DH124410.405129.6316004001-DH324411.655264.8316004001-DH524412.904309.76316004002-DH124410.396126.72316004002-DH324411.635261.6316004002-DH524412.872306.347316004003-DH124410.39124.8316004003-DH324411.635261.631600400 |













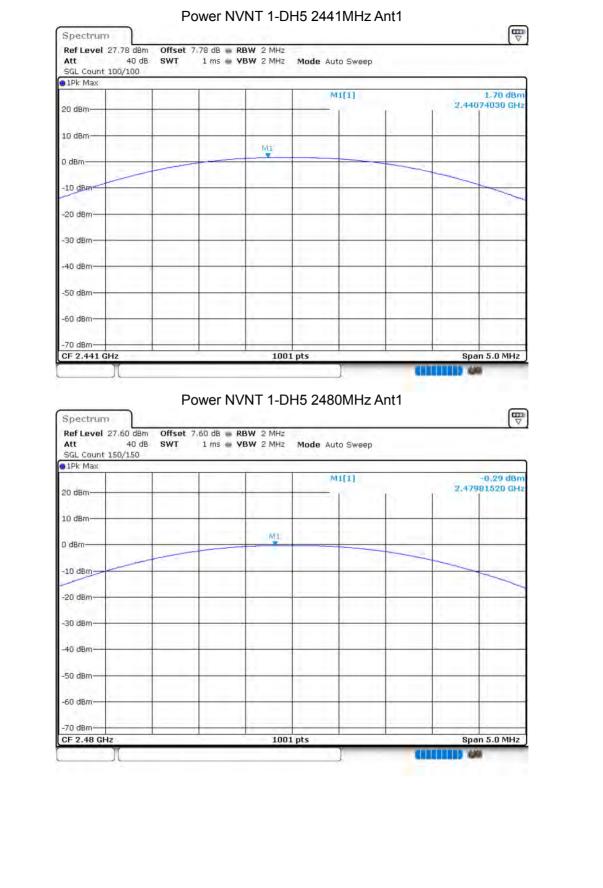



| ●1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                        |                          |                      |                                                |                       | 7 40 40                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|-----------------------|-----------------------------------------------|
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          | 11[1]                |                                                |                       | -7.48 dBm<br>16.00 µs                         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          | 1[1]                 |                                                | 2                     | 3.32 dB<br>2.87200 ms                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          |                      |                                                |                       |                                               |
| D dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second and the second and the second s | annar an annar annar annar annar                         | D1                       | i i con i            |                                                |                       | 1111                                          |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          |                      |                                                |                       |                                               |
| -20 dBm TRG -20,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                          |                      | -                                              |                       |                                               |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          | 1                    | 1                                              |                       |                                               |
| dan Walthinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | - that the state of the  | ppelpelpelpel        | and have been been been been been been been be | Howay hand            | Mandaulla Joras                               |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          | P                    |                                                |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          |                      |                                                |                       |                                               |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11                                                     | 1.                       | 11.11                | 1                                              | 11 - 11               |                                               |
| -70 dBm<br>CF 2.441 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | 1001 pts                 | -                    |                                                |                       | 800.0 µs/                                     |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                          |                      |                                                |                       | 1                                             |
| Type Ref Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-va                                                     |                          | ction                | Fund                                           | tion Result           |                                               |
| M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | .48 dBm                  |                      |                                                |                       |                                               |
| D1 M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ms                                                       | 3.32 dB                  |                      |                                                |                       |                                               |
| D1 M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ? ms                                                     | 3,32 dB                  | r                    | 0                                              | ()))) (i              | 8                                             |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | well NVN                                                 | T 3-DH1 24               | )<br>441MHz          | -                                              | <del>ن</del> ې (۱۱۱۱۱ |                                               |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>m Offset 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | T 3-DH1 24               | ]<br>441MHz          | -                                              |                       | (U)                                           |
| Spectrum<br>Ref Level 27.78 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D<br>m Offset 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | T 3-DH1 24<br>MH2<br>MH2 |                      | -                                              |                       |                                               |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG:VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D<br>m Offset 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | T 3-DH1 24<br>MH2<br>MH2 | ]<br>441MHz<br>11[1] |                                                |                       | -7.35 dBm<br>2.00 µs                          |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG:VID<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D<br>m Offset 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | T 3-DH1 24<br>MHz<br>MHz |                      |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0,51 dB              |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG:VID<br>• 1PK Cirw<br>20 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D<br>m Offset 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | T 3-DH1 24<br>MHz<br>MHz | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs                          |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG:VID<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D<br>m Offset 7.7/<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B dB RBW 1<br>8 ms VBW 1                                 | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0,51 dB              |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG:VID<br>• 1PK Cirw<br>20 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D<br>m Offset 7.77<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B dB RBW 1<br>8 ms VBW 1                                 | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0,51 dB              |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG:VID<br>1Pk Clrw<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D<br>m Offset 7.77<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B dB RBW 1<br>8 ms VBW 1                                 | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0,51 dB              |
| Spectrum           Ref Level 27.78 dB           Att 40 c           SGL TRG: VID           © IPk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>m Offset 7.77<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B dB RBW 1<br>8 ms VBW 1                                 | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0,51 dB              |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG: VID<br>1Pk Clrw<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D<br>m Offset 7.77<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B dB RBW 1<br>8 ms VBW 1                                 | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 μs<br>-0,51 dB<br>390.00 μs |
| Spectrum           Ref Level 27.76 dB           Att         40 c           SGL TRG: VID           ● IPK Cirw           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D<br>m Offset 7.77<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0,51 dB              |
| Spectrum<br>Ref Level 27.78 dB<br>Att 40 c<br>SGL TRG: VID<br>IPk Cirw<br>20 dBm<br>10 dBm<br>10 dBm<br>-18 dBm<br>TRG -10,0<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D<br>m Offset 7.79<br>B SWT 3<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 μs<br>-0,51 dB<br>390.00 μs |
| Spectrum           Ref Level 27.78 dB           Att 40 c           SGL TRG: VID           • IPk Cirw           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>m Offset 7.79<br>B SWT 3<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 μs<br>-0,51 dB<br>390.00 μs |
| Spectrum           Ref Level 27.78 dB           Att         40 c           SGL TRG: VID           ● 1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D<br>m Offset 7.79<br>B SWT 3<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 μs<br>-0,51 dB<br>390.00 μs |
| Spectrum           Ref Level 27.78 dB           Att         40 c           SGL TRG: VID           • IPk Clrw           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.441 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D<br>m Offset 7.79<br>B SWT 3<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 μs<br>-0,51 dB<br>390.00 μs |
| Spectrum           Ref Level 27.78 dB           Att         40 c           SGL TRG: VID           • IPk Clrw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D<br>m Offset 7.77<br>B SWT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          | T 3-DH1 24               |                      |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0.51 dB<br>390.00 µs |
| Spectrum           Ref Level 27.78 dB           Att         40 c           SGL TRG: VID           • IPK CIrw           20 dBm           10 dBm           10 dBm           -20 dBm           -30 dBm           -60 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           Type         Ref           Type         Ref           M1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D<br>m Offset 7.79<br>B SWT 3<br>020 dBm<br>020 dBm<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1 | T 3-DH1 24               | 11[1]                |                                                |                       | -7.35 dBm<br>2.00 µs<br>-0.51 dB<br>390.00 µs |
| Spectrum           Ref Level 27.78 dB           Att         40 c           SGL TRG: VID           IPk Clrw           20 dBm           10 dBm           10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm <td>D<br/>m Offset 7.77<br/>B SWT 3<br/>320 dBm<br/>120 dBm</td> <td>M1<br/>M1<br/>M1<br/>M1<br/>M1<br/>M1<br/>M1<br/>M1<br/>M1<br/>M1</td> <td>T 3-DH1 24</td> <td></td> <td>Fun</td> <td></td> <td>-7.35 dBm<br/>2.00 µs<br/>-0.51 dB<br/>390.00 µs</td> | D<br>m Offset 7.77<br>B SWT 3<br>320 dBm<br>120 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1 | T 3-DH1 24               |                      | Fun                                            |                       | -7.35 dBm<br>2.00 µs<br>-0.51 dB<br>390.00 µs |



| 1                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · ·       |                                   | 1                                             | M                           | [1]                   |                   |                | -8.19 dBm                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------------------------------------------|-----------------------------|-----------------------|-------------------|----------------|-----------------------------------------------|
| 20 dBm                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                   | -                                             | 01                          | [1]                   |                   |                | 10.00 µs<br>0.12 dB                           |
| 10 dBm                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -               |                                   | -                                             |                             |                       | 1                 | 0              | 1.63500 ms                                    |
| 0 dBm                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Mallibardar   |                                   |                                               |                             | -                     |                   |                |                                               |
| -10 dBm                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | any Me Mouris   | J. W. Wall Marcher and            | united and and and and and and and and and an | 101                         |                       | -                 |                |                                               |
| -20 dbm                                                                                                                                                                                                                                                                                           | TRG -20,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) dBm           |                                   |                                               | _                           |                       |                   |                |                                               |
| -30 dBm                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                   |                                               |                             |                       |                   |                |                                               |
| haw here the                                                                                                                                                                                                                                                                                      | Hidented April 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                   |                                               | astal and                   | and the second second | Ladpen grathicas  | Alfahl Ay 10 A | Mand History Palast                           |
| -50 dBm                                                                                                                                                                                                                                                                                           | and all the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                   | 2                                             | 1-31-31                     | 1                     | 1                 | a service of   |                                               |
| -60 dBm                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                   |                                               |                             |                       |                   |                |                                               |
| -70 dBm                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                   | 1 1.                                          |                             | 1 1                   |                   |                | 1                                             |
| CF 2.441 (                                                                                                                                                                                                                                                                                        | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                   | 1001                                          | pts                         |                       |                   |                | 500.0 µs/                                     |
| Marker<br>Type Re                                                                                                                                                                                                                                                                                 | f   Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X-value         | a                                 | Y-value                                       | Funct                       | ion                   | Fund              | tion Result    |                                               |
| M1<br>D1 M                                                                                                                                                                                                                                                                                        | 1<br>11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | 10.0 µs<br>635 ms                 | -8.19 dBr<br>0.12 d                           |                             |                       |                   |                |                                               |
|                                                                                                                                                                                                                                                                                                   | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                   |                                               |                             | 1                     |                   |                | 8                                             |
| Att<br>SGL TRG: V                                                                                                                                                                                                                                                                                 | 27.78 dBm<br>40 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Offset 7<br>sWT | 7.78 dB 🝙 R                       | NVNT 3-I<br>RBW 1 MHz<br>VBW 1 MHz            | DH5 24                      | 41MHz                 | 2                 |                |                                               |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                  | 27.78 dBm<br>40 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 7.78 dB 🝙 R                       | RBW 1 MHz                                     |                             |                       | 2                 |                |                                               |
| Ref Level<br>Att<br>SGL TRG: V                                                                                                                                                                                                                                                                    | 27.78 dBm<br>40 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 7.78 dB 🝙 R                       | RBW 1 MHz                                     | MJ                          | 41MHz                 | 2                 |                |                                               |
| Ref Level<br>Att<br>SGL TRG: V<br>1Pk Clrw                                                                                                                                                                                                                                                        | 27.78 dBm<br>40 dB<br>/ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₩ SWT           | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MHz<br>/BW 1 MHz                        | MJ                          | u[1]                  | <u>z</u>          |                | 1.57 dBm<br>8.00 µs                           |
| Ref Level<br>Att<br>SGL TRG:V<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                               | 27.78 dBm<br>40 dB<br>/ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₩ SWT           | 7.78 dB 🝙 🖡                       | RBW 1 MHz<br>/BW 1 MHz                        | MJ                          | u[1]                  | <u>z</u>          |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB               |
| Ref Level<br>Att<br>SGL TRG:V<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                               | 27.78 dBm<br>40 dB<br>/ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₩ SWT           | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MHz<br>/BW 1 MHz                        | MJ                          | u[1]                  | <u>z</u>          |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB               |
| Ref Level<br>Att<br>SGL TRG:V<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                               | 27.78 dBm<br>40 dB<br>/ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MHz<br>/BW 1 MHz                        | MJ                          | u[1]                  |                   |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB               |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                                                                                                            | 27.78 dBm<br>40 dB<br>/ID<br>M1<br>*-etherwore<br>+TRG -20.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MH2<br>/BW 1 MH2                        | DI                          | u[1]<br>[1]           |                   |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level<br>Att<br>SGL TRG:V<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                               | 27.78 dBm<br>40 dB<br>/ID<br>M1<br>*-etherwore<br>+TRG -20.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MH2<br>/BW 1 MH2                        | DI                          | u[1]<br>[1]           |                   |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                                                                                                            | 27.78 dBm<br>40 dB<br>/ID<br>M1<br>*-etherwore<br>+TRG -20.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MH2<br>/BW 1 MH2                        | DI                          | u[1]<br>[1]           |                   |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -30 dBm                                                                                                                            | 27.78 dBm<br>40 dB<br>/ID<br>M1<br>*-etherwore<br>+TRG -20.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MH2<br>/BW 1 MH2                        | DI                          | u[1]<br>[1]           |                   |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                                                                                                          | 27.78 dBm<br>40 dB<br>/ID<br>M1<br>*-etherwore<br>+TRG -20.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MH2<br>/BW 1 MH2                        | DI                          | u[1]<br>[1]           |                   |                | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm                                                                                      | 27.78 dBm<br>40 dB<br>/ID<br>M1<br>Fsheetoorto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWT             | 7.78 dB 🗰 🖡<br>8 ms 🗰 V           | RBW 1 MH2<br>/BW 1 MH2                        | MI<br>DI<br>MILYydd Jary Lu | u[1]<br>[1]           |                   | Alex Manutain  | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.441 C           Marker           Type                 | 27.78 dBm<br>40 dB<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID<br>//ID | SWT             | 7.78 dB <b>F</b><br>8 ms <b>F</b> | 2BW 1 MHz<br>/BW 1 MHz                        | pts                         | 1[1]<br>;[1]          | irgi rijdeniderte | Alex Manutain  | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |
| Ref Level           Att           SGL TRG:V           1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.441 C           Marker           Type Re           M1 | 27.78 dBm<br>40 dB<br>//ID<br>//ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SWT             | 7.78 dB F R                       | RBW 1 MHz<br>/BW 1 MHz                        | pts                         | 1[1]<br>;[1]          | Func              | Ale Manutain   | 1.57 dBm<br>8.00 µs<br>-0.05 dB<br>2.88800 ms |




### 8.2 MAXIMUM CONDUCTED OUTPUT POWER

|           |       | ••              |         |             |             |         |
|-----------|-------|-----------------|---------|-------------|-------------|---------|
| Condition | Mode  | Frequency (MHz) | Antenna | Power (dBm) | Limit (dBm) | Verdict |
| NVNT      | 1-DH5 | 2402            | Ant 1   | 0.74        | 30          | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | 1.70        | 30          | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | -0.29       | 30          | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | 3.19        | 20.97       | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | 4.12        | 20.97       | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | 2.54        | 20.97       | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | 3.73        | 20.97       | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | 4.56        | 20.97       | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | 3.30        | 20.97       | Pass    |

#### Power NVNT 1-DH5 2402MHz Ant1

| 1Pk Max |   |     | 1             |     |                         |
|---------|---|-----|---------------|-----|-------------------------|
|         |   |     | M1[1]         | 2.4 | 0.74 dBn<br>0181520 GH: |
| 20 dBm- |   |     |               |     |                         |
| S. 17   |   |     |               |     |                         |
| 10 dBm  |   |     |               |     |                         |
| 0 dBm   |   | M1. |               |     |                         |
|         |   |     |               |     |                         |
| -10 dBm |   |     |               |     | -                       |
| -20 dBm | _ |     |               |     |                         |
|         |   |     |               |     |                         |
| -30 dBm |   |     |               |     |                         |
| -40 dBm |   |     | 1 1 1 1 1 1 1 |     |                         |
| io acin |   |     |               |     |                         |
| -50 dBm |   | -   |               |     |                         |
| -60 dBm |   |     |               |     |                         |
|         |   |     |               |     |                         |



















# 8.3 OCCUPIED CHANNEL BANDWIDTH

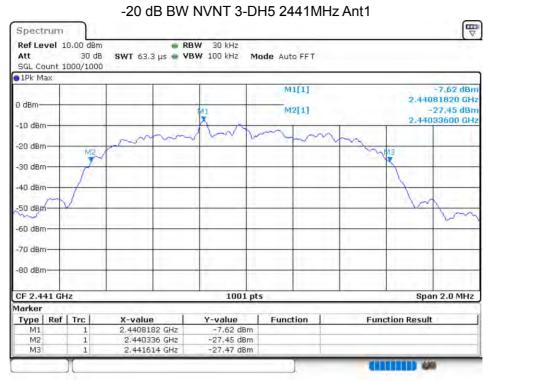
|           | -     |                 |         |                        |         |
|-----------|-------|-----------------|---------|------------------------|---------|
| Condition | Mode  | Frequency (MHz) | Antenna | -20 dB Bandwidth (MHz) | Verdict |
| NVNT      | 1-DH5 | 2402            | Ant 1   | 0.944                  | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | 0.928                  | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | 0.948                  | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | 1.324                  | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | 1.324                  | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | 1.324                  | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | 1.282                  | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | 1.278                  | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | 1.284                  | Pass    |

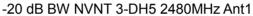
### -20 dB BW NVNT 1-DH5 2402MHz Ant1











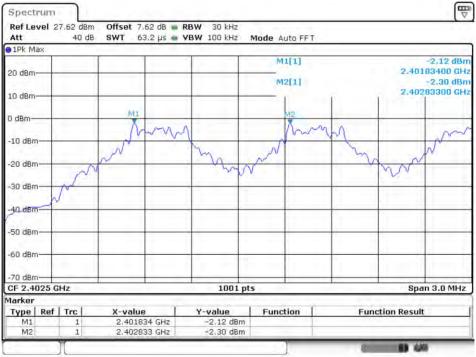




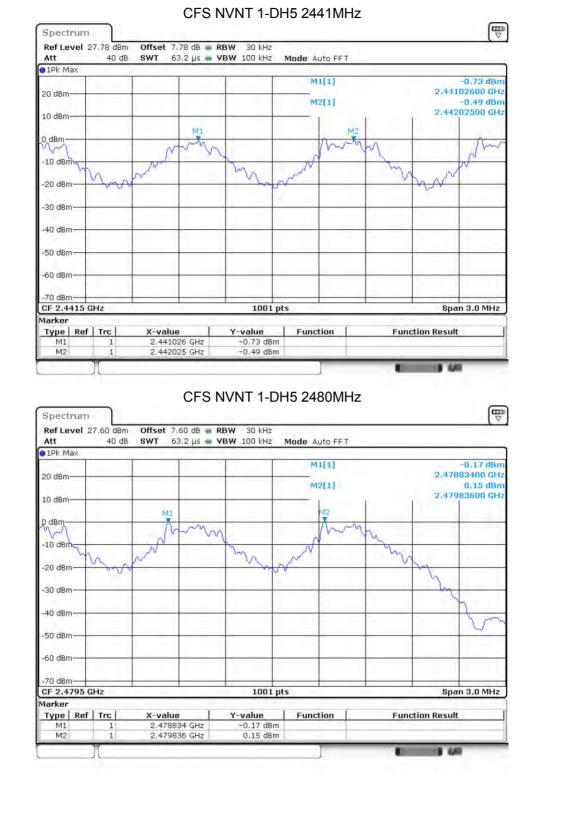




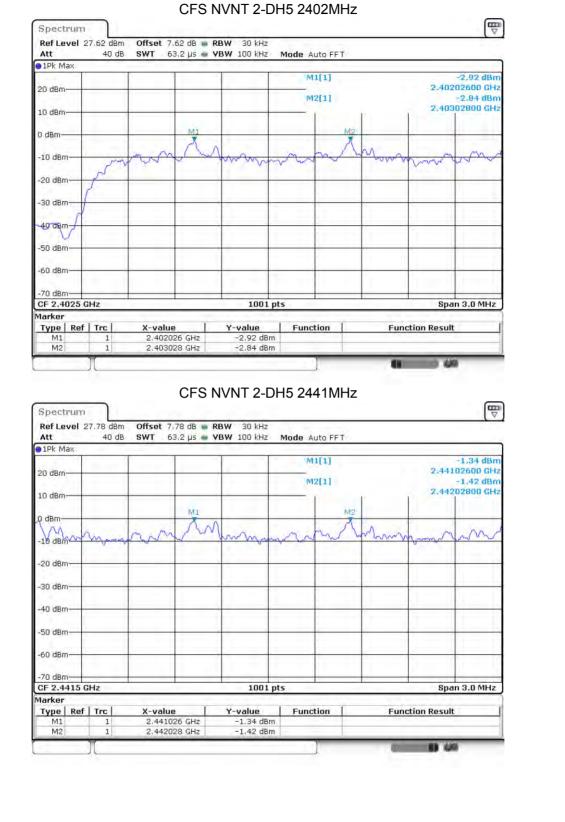




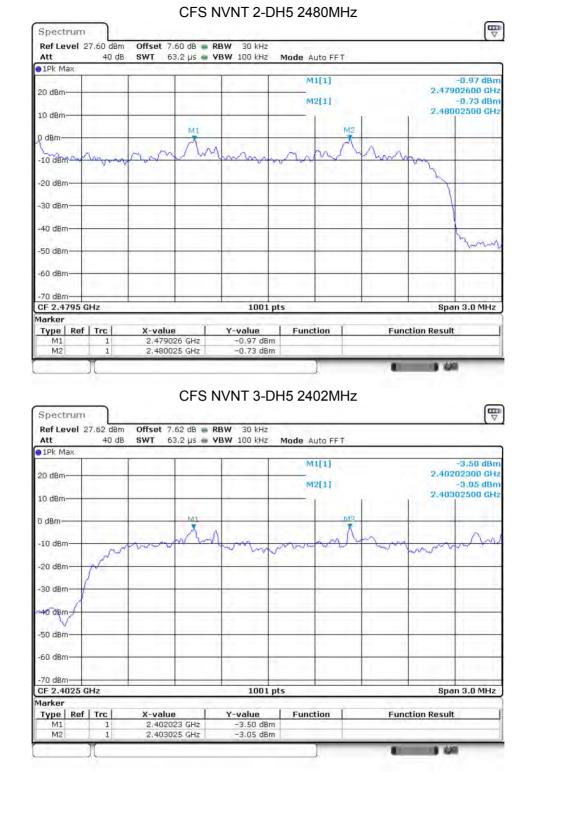




### 8.4 CARRIER FREQUENCIES SEPARATION

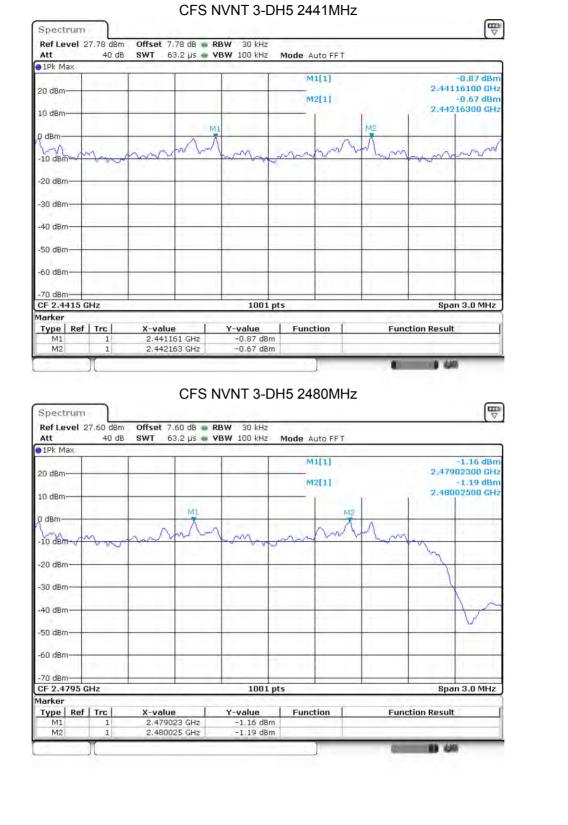
| U.T CARRIER | INEQUEN | CIES DEFARATION |               |       |       |         |
|-------------|---------|-----------------|---------------|-------|-------|---------|
| Condition   | Mode    | Hopping Freq1   | Hopping Freq2 | HFS   | Limit | Verdict |
| Condition   | MOUE    | (MHz)           | (MHz)         | (MHz) | (MHz) | veruici |
| NVNT        | 1-DH5   | 2401.834        | 2402.833      | 0.999 | 0.944 | Pass    |
| NVNT        | 1-DH5   | 2441.026        | 2442.025      | 0.999 | 0.928 | Pass    |
| NVNT        | 1-DH5   | 2478.834        | 2479.836      | 1.002 | 0.948 | Pass    |
| NVNT        | 2-DH5   | 2402.026        | 2403.028      | 1.002 | 0.883 | Pass    |
| NVNT        | 2-DH5   | 2441.026        | 2442.028      | 1.002 | 0.883 | Pass    |
| NVNT        | 2-DH5   | 2479.026        | 2480.025      | 0.999 | 0.883 | Pass    |
| NVNT        | 3-DH5   | 2402.023        | 2403.025      | 1.002 | 0.855 | Pass    |
| NVNT        | 3-DH5   | 2441.161        | 2442.163      | 1.002 | 0.852 | Pass    |
| NVNT        | 3-DH5   | 2479.023        | 2480.025      | 1.002 | 0.856 | Pass    |


#### CFS NVNT 1-DH5 2402MHz











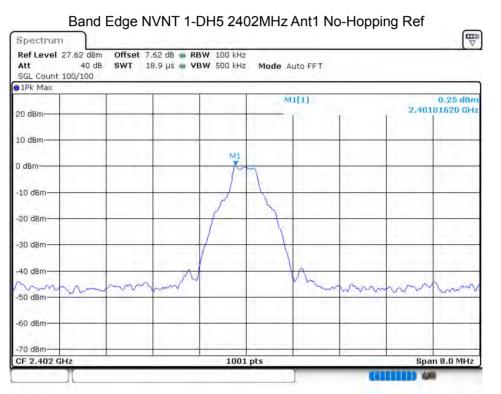








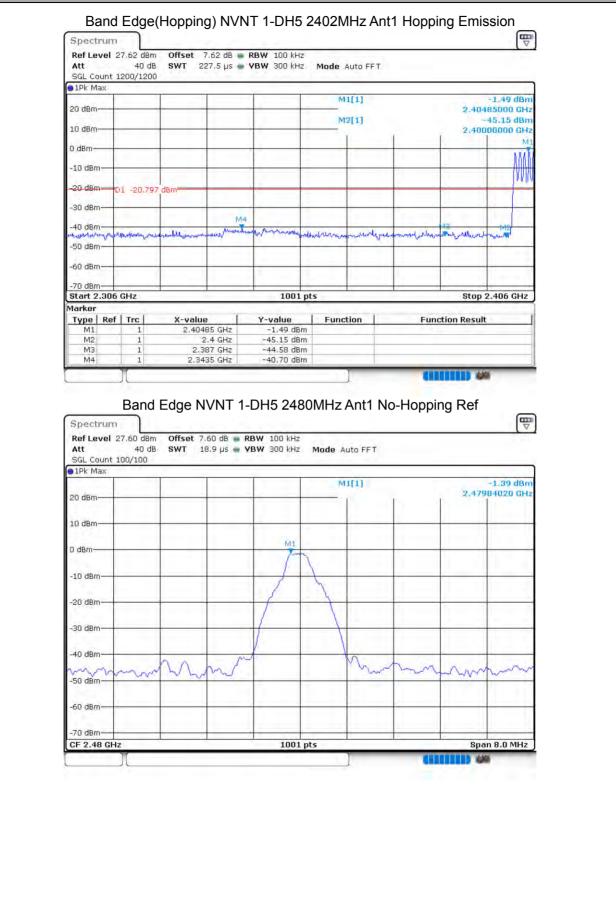

#### 8.5 NUMBER OF HOPPING CHANNEL


| ſ | Condition | Mode  | Hopping Number | Limit | Verdict |
|---|-----------|-------|----------------|-------|---------|
|   | NVNT      | 1-DH5 | 79             | 15    | Pass    |

| Ref Level 2<br>Att<br>SGL Count 7 | 40 dB   | Offset 7.62 dB<br>SWT 1 ms | RBW 100 kHz<br>VBW 300 kHz |                   | Sweep  |         |             |                                     |            |
|-----------------------------------|---------|----------------------------|----------------------------|-------------------|--------|---------|-------------|-------------------------------------|------------|
| 01Pk Max                          |         |                            | 1                          |                   | 1      |         |             |                                     | -          |
| 20 dBm                            |         |                            |                            | M1[1<br>M2[1      |        |         |             | -1.02 (<br>18370<br>0.33 (<br>02435 | GHz<br>IBm |
| MI                                |         |                            |                            | in a start of the |        |         |             | M                                   | 2          |
| 0 28 m<br>-10 28 m                |         | MANANANANAN                |                            |                   | MAM    | MANA    |             |                                     |            |
| -20 dBm                           | 1010707 | and a frank first          | aakillaant                 |                   | alatra | AAAAAAA | Riadaun     | 0.000                               | _          |
| -30 dBm                           | _       |                            |                            | -                 | -      |         |             | -                                   |            |
| 740 dBm                           | -       |                            |                            |                   |        |         |             |                                     | hur        |
| -50 dBm                           |         |                            |                            |                   |        |         |             | -                                   |            |
| -60 dBm                           |         |                            | -                          |                   | _      | _       |             | -                                   |            |
| -70 dBm                           |         |                            |                            |                   |        |         |             |                                     |            |
| Start 2.4 GH                      | z       |                            | 1001                       | pts               | -      |         | Stop 2      | .4835 G                             | Hz         |
| Marker<br>Type   Ref              | Tre     | X-value                    | Y-value                    | Function          | r 1    | Euno    | tion Result |                                     | 1          |
| M1                                | 1       | 2.401837 GHz               | -1.02 dB                   |                   |        | Tant    | alon Kesun  |                                     | -          |



### 8.6 BAND EDGE


| GE    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode  | Frequency<br>(MHz)                                                                             | Antenna                                                                                                                                                                                                                                                                                                                                                                                     | Hopping<br>Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max Value<br>(dBc)                                                                                                                                                                                                                                                                                                                                       | Limit<br>(dBc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-DH5 | 2402                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -40.26                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-DH5 | 2402                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -39.9                                                                                                                                                                                                                                                                                                                                                    | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-DH5 | 2480                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -42.47                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-DH5 | 2480                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -42.42                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2-DH5 | 2402                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -38.17                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2-DH5 | 2402                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -39.64                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2-DH5 | 2480                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -40.7                                                                                                                                                                                                                                                                                                                                                    | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2-DH5 | 2480                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -42.93                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3-DH5 | 2402                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -41.13                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3-DH5 | 2402                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -39.67                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3-DH5 | 2480                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -40.38                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3-DH5 | 2480                                                                                           | Ant 1                                                                                                                                                                                                                                                                                                                                                                                       | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -43.15                                                                                                                                                                                                                                                                                                                                                   | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Mode<br>1-DH5<br>1-DH5<br>1-DH5<br>2-DH5<br>2-DH5<br>2-DH5<br>2-DH5<br>3-DH5<br>3-DH5<br>3-DH5 | Mode         Frequency<br>(MHz)           1-DH5         2402           1-DH5         2402           1-DH5         2402           1-DH5         2480           2-DH5         2402           2-DH5         2402           2-DH5         2402           2-DH5         2480           2-DH5         2480           3-DH5         2402           3-DH5         2402           3-DH5         2480 | Mode         Frequency<br>(MHz)         Antenna           1-DH5         2402         Ant 1           1-DH5         2402         Ant 1           1-DH5         2402         Ant 1           1-DH5         2480         Ant 1           1-DH5         2480         Ant 1           1-DH5         2480         Ant 1           2-DH5         2402         Ant 1           2-DH5         2402         Ant 1           2-DH5         2480         Ant 1           2-DH5         2480         Ant 1           3-DH5         2402         Ant 1 | ModeFrequency<br>(MHz)AntennaHopping<br>Mode1-DH52402Ant 1No-Hopping1-DH52402Ant 1Hopping1-DH52402Ant 1Hopping1-DH52480Ant 1No-Hopping1-DH52480Ant 1Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52480Ant 1Hopping2-DH52480Ant 1Hopping3-DH52402Ant 1Hopping3-DH52402Ant 1Hopping3-DH52480Ant 1Hopping3-DH52480Ant 1Hopping | Mode         Frequency<br>(MHz)         Antenna         Hopping<br>Mode         Max Value<br>(dBc)           1-DH5         2402         Ant 1         No-Hopping         -40.26           1-DH5         2402         Ant 1         Hopping         -39.9           1-DH5         2402         Ant 1         Hopping         -42.47           1-DH5         2480         Ant 1         No-Hopping         -42.47           1-DH5         2480         Ant 1         Hopping         -38.17           2-DH5         2402         Ant 1         No-Hopping         -38.17           2-DH5         2402         Ant 1         No-Hopping         -38.17           2-DH5         2402         Ant 1         No-Hopping         -39.64           2-DH5         2480         Ant 1         Hopping         -40.7           2-DH5         2480         Ant 1         No-Hopping         -40.7           2-DH5         2480         Ant 1         Hopping         -42.93           3-DH5         2402         Ant 1         Hopping         -39.67           3-DH5         2480         Ant 1         Hopping         -39.67           3-DH5         2480         Ant 1         No-Hopping | Mode         Frequency<br>(MHz)         Antenna         Hopping<br>Mode         Max Value<br>(dBc)         Limit<br>(dBc)           1-DH5         2402         Ant 1         No-Hopping         -40.26         -20           1-DH5         2402         Ant 1         Hopping         -39.9         -20           1-DH5         2402         Ant 1         Hopping         -39.9         -20           1-DH5         2480         Ant 1         No-Hopping         -42.47         -20           1-DH5         2480         Ant 1         Hopping         -42.42         -20           1-DH5         2480         Ant 1         Hopping         -42.42         -20           2-DH5         2402         Ant 1         No-Hopping         -38.17         -20           2-DH5         2402         Ant 1         Hopping         -39.64         -20           2-DH5         2480         Ant 1         No-Hopping         -40.7         -20           2-DH5         2480         Ant 1         No-Hopping         -41.13         -20           3-DH5         2402         Ant 1         No-Hopping         -41.13         -20           3-DH5         2402         Ant 1         Hopping         < |





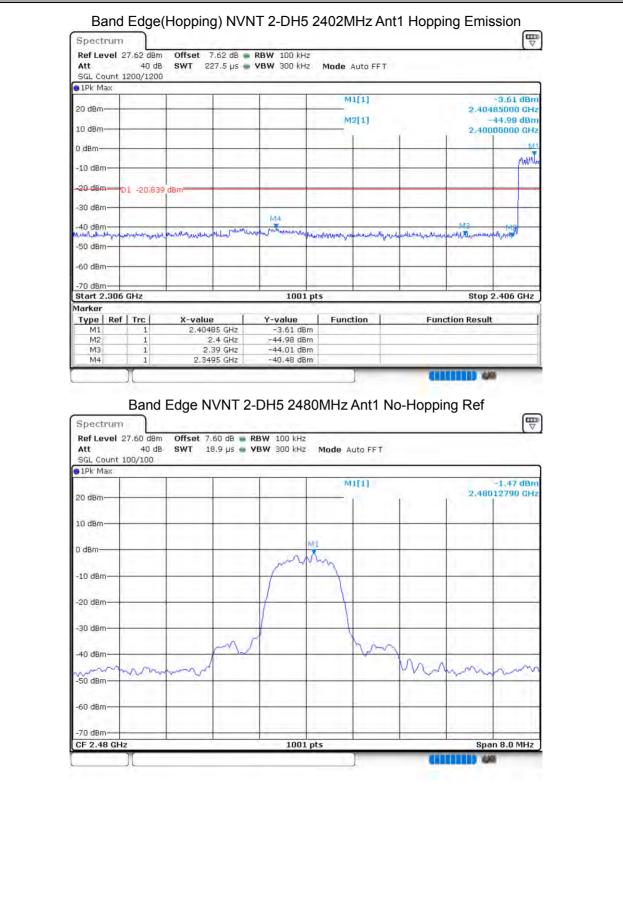
| 1Pk Max                                                                                                                                           |                                           |                        |                              | -                      | M             | 1[1]                 |                               |            | -0.39 dBn                | ]      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|------------------------------|------------------------|---------------|----------------------|-------------------------------|------------|--------------------------|--------|
| 20 dBm                                                                                                                                            |                                           | _                      |                              |                        |               |                      |                               | 2.40       | 195000 GH                | z      |
| 10 dBm                                                                                                                                            | -                                         | _                      |                              | -                      | M             | 2[1]                 | 6                             | 2.40       | -45.74 dBn               |        |
| 0 dBm                                                                                                                                             |                                           |                        |                              | -                      |               |                      |                               | -          | MI                       | -      |
| -10 dBm                                                                                                                                           | -                                         | -                      |                              | -                      |               |                      | -                             | -          |                          | -      |
| -20 dBm-D                                                                                                                                         | 1 -19,755 d                               | Bm                     | -                            |                        |               | -                    | (                             |            | + 1                      |        |
| -30 dBm                                                                                                                                           |                                           |                        | -                            | M4                     |               |                      |                               | -          |                          |        |
| -40 dBm                                                                                                                                           | militanteling                             | undrustry Mr.          | handner                      | antonio Martineter     | horpolicement | 1 Act 10 - Row of De | The life and the shire the of | MB         | which read have          |        |
| -50 dBm                                                                                                                                           | officers and to finite a                  | ALC: NOT ON THE OWNER. | and a                        | -                      | a hier a de   | And an analyse       | and a to be available         |            |                          |        |
| -60 dBm                                                                                                                                           |                                           |                        |                              | 1                      |               |                      |                               | 1          |                          |        |
| -70 dBm                                                                                                                                           | GHz                                       |                        |                              | 1001                   | pts           | -                    |                               | Stor       | 2.406 GHz                |        |
| Marker<br>Type   Ref                                                                                                                              | Tree                                      | X-value                | 1                            | Y-value                | Funct         | lan I                |                               | -Ven De se | 14                       | 1      |
| M1<br>M2                                                                                                                                          | 1                                         | 2.4019                 | 95 GHz                       | -0.39 dB               | Sm            | .1011                | Fun                           | ction Resu | iit.                     | -      |
| M3<br>M4                                                                                                                                          | 1                                         | 2.3                    | .4 GHz<br>39 GHz<br>27 GHz   | -46.64 dB<br>-40.01 dB | Sm            |                      |                               |            |                          |        |
| WI <del>Y</del>                                                                                                                                   |                                           |                        |                              |                        |               |                      |                               |            |                          | 10     |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max                                                                                        | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | Mode Au       |                      | Ant1 Ho                       |            | -0,80 dBn                |        |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm                                                                              | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | √                        | n<br>z |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                         | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm                                                                              | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                         | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm                                                                              | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm                                                                              | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 2:<br>Att<br>SGL Count 80<br>PIPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm            | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 2:<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                      | nd Edge                                   | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | :<br>Mode Au  | uto FFT              | Ant1 Ho                       |            | -0.80 dBn<br>1583620 GH: | n<br>z |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>PIPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm | nd Edge<br>7.62 dBm<br>40 dB<br>3000/8000 | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | 3W 100 kHz             | Mode Au       | uto FFT              | Ant1 Ho                       | 2.44       | -0.80 dBn<br>1583620 GH: |        |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>PIPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm | nd Edge<br>7.62 dBm<br>40 dB<br>3000/8000 | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | <b>3W</b> 100 kHz      | Mode Au       | uto FFT              | Ant1 Ho                       | 2.44       | -0.80 dBn<br>1583620 GH: |        |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>PIPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm | nd Edge<br>7.62 dBm<br>40 dB<br>3000/8000 | e(Hopp                 | Ding) N\<br>62 dB <b></b> RE | 3W 100 kHz             | Mode Au       | uto FFT              | Ant1 Ho                       | 2.44       | -0.80 dBn<br>1583620 GH: |        |







| SGL Count 1<br>1Pk Max                                                                                                                           | 00/100                        | -                 |                    |                            |                    |             |                |                   |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|--------------------|----------------------------|--------------------|-------------|----------------|-------------------|---------------------------------------|
|                                                                                                                                                  |                               |                   | -                  | 1                          | M                  | 1[1]        |                | Gua               | -1.40 dBm                             |
| 20 dBm                                                                                                                                           |                               |                   |                    | 1                          | M                  | 2[1]        |                |                   | 995000 GHz<br>-46.32 dBm              |
| 10 dBm                                                                                                                                           |                               |                   |                    |                            |                    | 1           | 1              |                   | 350000 GHz                            |
| 0 d8m                                                                                                                                            | _                             | 1                 | -                  | -                          |                    | -           | -              | -                 |                                       |
| -10 dBm                                                                                                                                          |                               |                   | -                  |                            |                    | -           | -              | -                 |                                       |
| -20,cBm-0                                                                                                                                        | 1 -21.390                     | dBm               |                    |                            |                    |             | 1              | 1                 | 1                                     |
| -30 gBm-                                                                                                                                         |                               |                   |                    |                            |                    | -           |                |                   |                                       |
| -40 dBm                                                                                                                                          | C.                            | 4                 |                    | 1                          | -                  | 1           | 1              | 1                 | 1223                                  |
| -50 dBm                                                                                                                                          | railwayen (frank)             | break the balance | Maria Marialla     | unerthant sound            | attacklassmallplan | andaland    | negotalenutran | mentan mentanimus | ant water and the second              |
| -60 dBm                                                                                                                                          |                               | -                 |                    |                            |                    |             |                | 1                 | 1 1                                   |
|                                                                                                                                                  |                               |                   | - II               |                            | £                  | · · · · · · | - Fii          | 1                 | · · · · · · · · · · · · · · · · · · · |
| -70 dBm<br>Start 2.476                                                                                                                           | GHz                           |                   | 1                  | 100:                       | l pts              |             |                | Stop              | 2.576 GHz                             |
| Marker<br>Type   Ref                                                                                                                             | Trol                          | X-valu            | - T                | Y-value                    | Func               | tion 1      | Euro           | tion Resul        |                                       |
| M1                                                                                                                                               | 1                             | 2.479             | 995 GHz            | -1.40 dE                   | 3m                 | uun         | Fund           | alon kesu         |                                       |
| M2<br>M3                                                                                                                                         | 1                             |                   | 335 GHz<br>2.5 GHz | -46.32 de<br>-45.78 de     |                    |             |                |                   |                                       |
| M4                                                                                                                                               | 1                             | 2.49              | 962 GHz            | -43.87 dE                  | 3m                 |             | -              |                   |                                       |
|                                                                                                                                                  |                               |                   |                    |                            |                    |             |                |                   |                                       |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max                                                                                 | 7.60 dBm<br>40 dB             | Offset 7          | .60 dB 🐞 F         | VNT 1-E                    | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | pping R           |                                       |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max                                                                                         | 7.60 dBm<br>40 dB             | Offset 7          | .60 dB 🐞 F         | <b>RBW</b> 100 kHa         | 2<br>2 Mode A      |             | Ant1 Ho        | 1 200             |                                       |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8                                                                                                    | 7.60 dBm<br>40 dB             | Offset 7          | .60 dB 🐞 F         | <b>RBW</b> 100 kHa         | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max                                                                                         | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm                                                                               | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | <b>RBW</b> 100 kHa         | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm                                                                             | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm                                                                     | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm                                                                             | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                    | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                       | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                    | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | ₩<br>⊽                                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                       | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | 1.01 dBm<br>916080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm            | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | 1.01 dBm<br>916080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                       | 7.60 dBm<br>40 dB             | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | 2<br>2 Mode A      | uto FFT     | Ant1 Ho        | 1 200             | 1.01 dBm<br>916080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-0 dBm<br>-20 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm  | 7.60 dBm<br>40 dB<br>009/8009 | Offset 7          | 7.60 dB            |                            | Z Mode A           | uto FFT     | Ant1 Ho        | 2.479             | 1.01 dBm<br>216080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm | 7.60 dBm<br>40 dB<br>009/8009 | Offset 7          | 7.60 dB            | RBW 100 kHz<br>YBW 300 kHz | Z Mode A           | uto FFT     | Ant1 Ho        | 2.479             | 1.01 dBm<br>916080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-0 dBm<br>-20 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm  | 7.60 dBm<br>40 dB<br>009/8009 | Offset 7          | 7.60 dB            |                            | Z Mode A           | uto FFT     | Ant1 Ho        | 2.479             | 1.01 dBm<br>216080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-0 dBm<br>-20 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm  | 7.60 dBm<br>40 dB<br>009/8009 | Offset 7          | 7.60 dB            |                            | Z Mode A           | uto FFT     | Ant1 Ho        | 2.479             | 1.01 dBm<br>216080 GHz                |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-0 dBm<br>-20 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm  | 7.60 dBm<br>40 dB<br>009/8009 | Offset 7          | 7.60 dB            |                            | Z Mode A           | uto FFT     | Ant1 Ho        | 2.479             | 1.01 dBm<br>216080 GHz                |




| Att 40<br>SGL Count 1200/1:<br>1Pk Max                                                                                                                                                                                                                                                                                                                                     | dB <b>SWT</b> 227,5 μ:<br>200       | E training the second              | Mode Auto FF1       |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|---------------------|------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                            | - T T                               |                                    | M1[1]               |                              | 1.02 di                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                    | M2[1]               |                              | 2.47995000 G<br>-43,92 dt |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                    |                     | ( ) (                        | 2.48350000 G              | iHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| p dBm                                                                                                                                                                                                                                                                                                                                                                      | -                                   |                                    |                     |                              |                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| + <b>10</b> /dBm                                                                                                                                                                                                                                                                                                                                                           |                                     |                                    | -                   |                              |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -20 dBm-01 -18                                                                                                                                                                                                                                                                                                                                                             | 986 dBm:                            |                                    |                     | -                            |                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -30 cBm                                                                                                                                                                                                                                                                                                                                                                    |                                     | -                                  |                     |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                    | Mtha                                | - which have a start of the second |                     | peakerennonanterman          | Monthe handling           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                    | - manual mound                      | - management and                   | monor have been and | periodic and a second second | a marketinger             | and the second s |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                    |                     |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                    |                     |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 2.476 GHz                                                                                                                                                                                                                                                                                                                                                            | 1. 1                                | 1001 j                             | ots                 |                              | Stop 2.576 GH             | +z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Marker<br>Type   Ref   Trc                                                                                                                                                                                                                                                                                                                                                 | X-value                             | Y-value                            | Function            | Functio                      | n Result                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1 1<br>M2 1                                                                                                                                                                                                                                                                                                                                                               | 2.47995 GH:<br>2.4835 GH:           |                                    |                     |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3 1<br>M4 1                                                                                                                                                                                                                                                                                                                                                               | 2.5 GH<br>2.4983 GH                 | z -43,70 dBm                       | b l                 |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IMI+ T                                                                                                                                                                                                                                                                                                                                                                     | 2.4903 GH                           | 2 -41,42 UDII                      |                     | -                            |                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Spectrum<br>Ref Level 27.62 c<br>Att 40<br>SGL Count 100/10                                                                                                                                                                                                                                                                                                                | dB SWT 18.9 µs                      | RBW 100 kHz<br>VBW 300 kHz         | Mode Auto FFT       |                              | [                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spectrum<br>Ref Level 27.62 c<br>Att 40                                                                                                                                                                                                                                                                                                                                    | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | A.2                 |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum<br>Ref Level 27.62 c<br>Att 40<br>SGL Count 100/10                                                                                                                                                                                                                                                                                                                | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | [                         | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum<br>Ref Level 27.62 c<br>Att 40<br>SGL Count 100/10<br>1Pk Max                                                                                                                                                                                                                                                                                                     | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.62 c           Att         40           SGL Count 100/10           • 1Pk Max           20 dBm           10 dBm                                                                                                                                                                                                                             | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum<br>Ref Level 27.52 c<br>Att 40<br>SGL Count 100/10<br>• 1Pk Max<br>20 dBm                                                                                                                                                                                                                                                                                         | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum<br>Ref Level 27.52 c<br>Att 40<br>SGL Count 100/10<br>• 1Pk Max<br>20 dBm<br>10 dBm                                                                                                                                                                                                                                                                               | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.62 c           Att         40           SGL Count 100/10           • 1Pk Max           20 dBm           10 dBm           0 dBm                                                                                                                                                                                                             | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.62 c           Att         40           SGL Count 100/10           • 1Pk Max           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                                                                                                                         | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.52 c           Att         40           SGL Count 100/10           • 1Pk Max           20 dBm           10 dBm           -10 dBm                                                                                                                                                                                                           | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level         27.52 c           Att         40           SGL         Count         100/10           • 1Pk         Max           20 dBm         10         dBm           10 dBm         -         -           -10 dBm         -         -         -           -20 dBm         -         -         -                                                  | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | 🖷 RBW 100 kHz                      | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level         27.62 c           Att         40           SGL         Count         100/10           • IPk Max         20         Bm           10 dBm         -         -           -10 dBm         -         -           -20 dBm         -         -           -30 dBm         -         -                                                          | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.52 c           Att         40           SGL Count 100/100           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                                                                                                  | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.52 c           Att         40           SGL Count 100/100           IPK Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                                                                                                      | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2,36 dt                  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level         27.52 c           Att         40           SGL         Count         100/100           • IPk         Max           20 dBm         20 dBm           10 dBm         20 dBm           -10 dBm                                                                                                                                            | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2.36 di<br>2.40200900 G  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level 27.52 c           Att         40           SGL Count 100/100           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -60 dBm                                                                                                                  | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2.36 di<br>2.40200800 G  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level         27.52 c           Att         40           SGL         Count         100/100           • IPk         Max           20 dBm         20           10 dBm         20           -10 dBm         20           -20 dBm         -30 dBm           -30 dBm         -50 dBm           -50 dBm         -50 dBm           -70 dBm         -70 dBm | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2.36 di<br>2.40200900 G  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level         27.52 c           Att         40           SGL         Count         100/100           • IPk         Max           20 dBm         20           10 dBm         20           -10 dBm         20           -20 dBm         -30 dBm           -30 dBm         -50 dBm           -50 dBm         -50 dBm           -70 dBm         -70 dBm | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2.36 di<br>2.40200800 G  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum           Ref Level         27.52 c           Att         40           SGL         Count         100/100           • IPk         Max           20 dBm         20           10 dBm         20           -10 dBm         20           -20 dBm         -30 dBm           -30 dBm         -50 dBm           -50 dBm         -50 dBm           -70 dBm         -70 dBm | Bm Offset 7.62 dB<br>dB SWT 18.9 µs | RBW 100 kHz                        | Mode Auto FFT       |                              | -2.36 di<br>2.40200800 G  | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



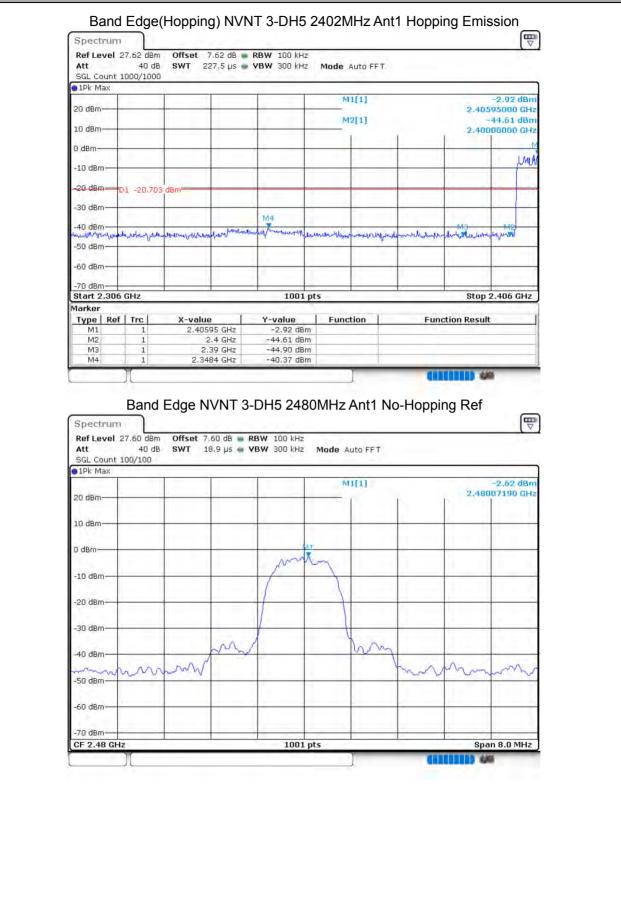
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 dBm 0 2.4021500 cHz<br>10 dBm 0 2.40025000 cHz<br>2.4000000 cHz<br>0 dBm 0 1 -22.363 dBm 0 444<br>40 dBm 0 1 -2.39 GHz 0 -2.60 dBm 0 444.30 dBm 0 444<br>M3 1 2.39 GHz 0 -2.60 dBm 0 444.30 dBm 0 444<br>M3 1 2.39 GHz 0 -2.60 dBm 0 444.30 dBm 0 444.30 dBm 0 444<br>M3 1 2.39 GHz 0 -2.60 dBm 0 444.30                                                                                                                                                                                                                                                                                                                                                                                                                               | • 1Pk Max                                                                 | 1                                       | 1                                                                                                              | -         | M1[1                      | 1                     |                   | -0.60 dBm   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|---------------------------|-----------------------|-------------------|-------------|
| 10 dBm 0 2.4000000 0H2<br>20 dBm 0 4.22,303 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 dBm 01 -22,383 dBm 01 -22,48000000 CH-<br>20 dBm 01 -22,383 dBm 01 - 24,4800000 CH-<br>20 dBm 01 -22,383 dBm 01 - 44<br>40 dBm 01 -22,383 dBm 01 - 44<br>50 dBm 01 -22,383 dBm 01 - 44<br>50 dBm 01 -22,383 dBm 01 - 44<br>50 dBm 01 - 22,383 dBm 01 - 44<br>50 dBm 01 - 22,393 dBm 01 - 44<br>50 dBm 01 - 22,393 dBm 01 - 44<br>10 2,390 GHz 10.2,39 GHz -45,16 dBm 01 - 44<br>10 2,390 GHz 10.2,39 GHz -45,16 dBm 01 - 44<br>10 2,390 GHz 10.2,39 GHz -45,16 dBm 01 - 44<br>10 2,390 GHz 10.2,39 GHz -45,16 dBm 01 - 44<br>10 2,390 GHz 10.2,39 GHz -45,16 dBm 01 - 44<br>10 2,390 GHz 10.2,39 GHz -45,16 dBm 01 - 44<br>10 dBm 01 - 2,39 GHz -45,16 dBm 01 - 44<br>10 dBm 01 - 2,39 GHz 10.2,39 BW 300 Hz Mode Auto FFT<br>50 Count 80000000<br>10 PF Max 00 GHz 10.2,9 BW 100 Hz Made Auto FFT<br>50 Count 80000000<br>10 PF Max 00 GHz 10.2,9 BW 100 Hz Made Auto FFT<br>50 Count 80000000<br>10 PF Max 00 GHz 10.2,9 BW 300 Hz Made Auto FFT<br>50 Count 80000000<br>10 DBm 01 - 44<br>10 dBm 01 - 44                                                                                                                                                                                                                                                                           | 20 dBm                                                                    |                                         |                                                                                                                | -         |                           |                       | 2.40              | 215000 GHz  |
| 0 dBm<br>10 dBm<br>20 dBm<br>21 22,363 dBm<br>24 40                                                                                                                               | 0 dBm<br>-10 dBm<br>-11 d2, 45 dB<br>-11 2, 45 dB<br>-1                                                                                                                                                          | 10 dBm                                                                    | -                                       |                                                                                                                | -         | 1                         |                       | 2.40              | 000000 GHz  |
| 20 dBm       01 - 22.363 dBm       44         30 dBm       44       44       44         40 dBm       101 pts       Stop 2.406 GHz         101 pts       Stop 2.406 GHz       101 pts         101 pt       2.40 (21 5 GHz       100 pts         101 pt       2.40 (21 5 GHz       44.30 dBm         101 pt       2.40 (21 5 GHz       44.30 dBm         101 pt       2.39 (GHz       44.33 dBm         101 pt       2.349 GHz       10.59 BF       YBW 300 HHZ         101 pt       2.40 GBM       M111       2.40 GBMO GHZ         101 pt       2.40 GBM       44.33 dBm       440 GMA         10 dBm       0 dBm       0 dBm       0 dBm       0 dBm         10 dBm       0 dBm       0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -20.88m       -1       -22.363 dm       -1       -40       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41       -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dBm                                                                     | -                                       |                                                                                                                |           |                           |                       | -                 | X           |
| 30 dem       M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10 dBm                                                                   |                                         |                                                                                                                |           |                           |                       |                   |             |
| 40 dBm       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 dBm       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -20 dBm-01 -22                                                            | .363 dBm                                |                                                                                                                | -         | -                         | _                     | _                 |             |
| 40 dBm<br>50 dBm<br>-0 dB | 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 dBm                                                                   |                                         |                                                                                                                | M4.       | -                         |                       |                   |             |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -40 dBm                                                                   | a putra anti trada mon                  | and manufactory                                                                                                | -         | understand with the prime | un phil about in some | united with which | and the who |
| Jord Bin       Stop 2.400 GHz         Yarkar       1001 pts       Stop 2.400 GHz         Mail       1       2.40215 GHz       GHz       Function Result         M1       1       2.40215 GHz       -44.516 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jond Bin       Stop 2.400 GHz         Type Ket       Trc       X-volue       Y-volue       Function Result         M1       1       2.40215 GHz       GHz       Function Result         M2       1       2.402 GHz       GHz       Function Result         M3       1       2.396 GHz       -40.53 dBm       GHz         M3       1       2.396 GHz       -40.53 dBm       GHz         M4       1       2.396 GHz       -40.53 dBm       GHz       GHZ         M4       1       2.396 GHz       -40.53 dBm       GHZ       GHZ       GHZ         Sectrum       V       V       WWW 300 KHZ       Mode Auto FFT       GUZ       GUZ       GHZ       -40.400 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -50 dBm                                                                   |                                         |                                                                                                                |           |                           |                       |                   |             |
| Start 2::006 GHz       Stop 2::406 GHz         Yorker       Stop 2::406 GHz         Marker       Function Result       Function Result         M1       1       2::404 GHz       -0.60 dBm         M2       1       2::406 GHz       Function Result         M2       1       2::404 GHz       -44::44::43 dBm         M3       1       2::39 GHz       -45::16 dBm       Function Result         M4       1       2::39 GHz       -40::53 dBm       Function Result         Ref Level 27::62 dBm       Offset 7::62 dB       RBW 100 kHz       Mode Auto FFT         SGL Count 8000/9000       SWT       18::9 µS       VBW 300 kHz       Mode Auto FFT         O dBm       M1       0::9 µS       VBW 300 kHz       Mode Auto FFT         O dBm       M1       0::9 µS       WBW 300 kHz       Mill       0::0 #GHZ         10 dBm       M1       0::9 µS       WBW 300 kHz       Mill       0:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start 2.306 GHz       Stop 2.406 GHz         Marker       Trc       X-volue       Y-volue       Function       Function Result         M1       1       2.40215 GHz       -0.60 dbm       Function       Function Result         M2       1       2.4024 GHz       -44.3 dbm       Function       Function Result         M2       1       2.4346 GHz       -45.16 dbm       Function       Function Result         M3       1       2.396 GHz       -45.16 dbm       Function       Function Result         M4       2.3446 GHz       -40.53 dbm       Function Result       Function Result       Function Result         M4       2.3446 GHz       -40.53 dbm       Function Result       Function Result       Function Result         M4       2.3446 GHz       -40.53 dbm       Function Result       Function Result       Function Result         Ref Level 27.62 dbm       Offset 7.62 db       RBW 100 kHz       Mode Auto FFT       Function Result       Function Result         92 dbm       0 dbm       M1[1]       -0.84 dbm       -0.84 dbm         10 dbm       M3       M3       Gas       -40399900 GHz       -40399900 GHz         -10 dbm       M3       M3       M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                         |                                                                                                                | f         |                           | I                     |                   |             |
| Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.40215 GHz         -0.60 dBm         -0.60 dBm         -0.60 dBm           M2         1         2.40215 GHz         -44.33 dBm         -0.60 dBm         -0.60 dBm           M3         1         2.39 GHz         -45.16 dBm         -40.53 dBm         -         -           M3         1         2.3496 GHz         -40.53 dBm         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Type         Ref         Trc         X-value         Y-value         Function         Function         Function Result           M1         1         2.40215 GHz         -0.60 dBm         -0.60 dBm         -0.60 dBm           M2         1         2.4042 -44.33 dBm         -44.33 dBm         -0.60 dBm         -0.60 dBm           M3         1         2.39 GHz         -45.16 dBm         -40.53 dBm         -0.60 dBm         -0.61 dBm</td> <td></td> <td></td> <td>   </td> <td>1001</td> <td>pts</td> <td></td> <td>Stop</td> <td>2.406 GHz</td>                                         | Type         Ref         Trc         X-value         Y-value         Function         Function         Function Result           M1         1         2.40215 GHz         -0.60 dBm         -0.60 dBm         -0.60 dBm           M2         1         2.4042 -44.33 dBm         -44.33 dBm         -0.60 dBm         -0.60 dBm           M3         1         2.39 GHz         -45.16 dBm         -40.53 dBm         -0.60 dBm         -0.61 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |                                         |                                                                                                                | 1001      | pts                       |                       | Stop              | 2.406 GHz   |
| Mi       1       2.40215 GHz       -0.60 dBm         Mi       1       2.39 GHz       -45.16 dBm         Mi       1       2.39 GHz       -45.16 dBm         Mi       1       2.3496 GHz       -40.53 dBm         Spectrum       Wi       Wi       Wi         Ref Level       27.62 dB       RBW 100 kHz       Made Auto FFT         SGL count B000/8000       SWT       18.9 µS       VBW 300 kHz       Made Auto FFT         SGL count B000/8000       WIT       18.9 µS       VBW 300 kHz       Made Auto FFT         SGL count B000/8000       MI(1)       -0.84 dBm       -0.84 dBm         20 dBm       MI       MI(1)       -0.84 dBm         -0 dBm       MI       MI       MI         -0 dBm       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mi       1       2.40215 GHz       -0.60 dBm         Mi       1       2.39 GHz       -45.16 dBm         Mi       1       2.39 GHz       -45.16 dBm         Mi       1       2.3496 GHz       -40.53 dBm         Mi       1       2.3496 GHz       -40.53 dBm         Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Ref       Image: Comparison of the transformed state in the transform state in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marker                                                                    | 1                                       | - 1                                                                                                            | A. (0.100 | 1                         |                       | -                 |             |
| M3       1       2.39 GHz       -45.16 dBm         M4       1       2.3496 GHz       -40.53 dBm         Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Ref         Spectrum       Image: Colspan="2">Image: Colspan="2" Image: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M3       1       2.39 GHz       -45.16 dBm         M4       1       2.3496 GHz       -40.53 dBm         Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Ref         Spectrum       Image: Control of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                                         |                                                                                                                |           |                           | 1                     | Function Resu     | π           |
| M4       1       2.3496 GHz       -40.53 dBm         Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Ref         Spectrum       Image: Contract of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M4       1       2.3496 GHz       -40.53 dBm         Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Ref         Spectrum         Ref Level       27.52 dB       Offset 7.62 dB       RBW 100 kHz         Std. Count B000/8000       SWT       18.9 µS       VBW 300 kHz       Mode Auto FFT         Std. Count B000/8000       0       MI(1)       -0.84 dBm         20 dBm       0       MI       2.40398000 GHz         10 dBm       0       MI       0         -10 dBm       0       MI       0         -30 dBm       0       0       MI         -40 dBm       0       0       0         -30 dBm       0       0       0         -30 dBm       0       0       0         -40 dBm       0       0       0         -30 dBm       0       0       0         -30 dBm       0       0       0         -40 dBm       0       0       0         -30 dBm       0       0       0         -30 dBm       0       0       0         -40 dBm       0       0       0         -30 dBm       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                         | and a second |           |                           |                       |                   |             |
| Spectrum         The control of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spectrum         The second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |                                         |                                                                                                                |           |                           |                       |                   |             |
| Spectrum         The control of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spectrum         The second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                         |                                         |                                                                                                                |           |                           | _                     |                   | 14 A        |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-10 d                                                        | 0 dBm     M1       -10 dBm     -0       -20 dBm     -0       -30 dBm     -0       -40 dBm     -0       -50 dBm     -0       -60 dBm     -0       -70 dBm     -0       -70 dBm     -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 dBm                                                                    |                                         |                                                                                                                |           | M1[1                      |                       | 2.40              |             |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-70 d                                                        | 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-10 d | 10 dBm                                                                    |                                         |                                                                                                                |           |                           |                       |                   |             |
| -20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70                                                        | -20 dBm<br>-30 dBm<br>-40 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>CF 2.402 GHz<br>1001 pts<br>Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                         |                                                                                                                |           | h h                       | 0 M                   |                   |             |
| -20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70                                                        | -20 dBm<br>-30 dBm<br>-40 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>CF 2.402 GHz<br>1001 pts<br>Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D dBm                                                                     |                                         |                                                                                                                | wh        | " your "                  | mon                   | " man and         |             |
| -30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70                                                        | -30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                         |                                                                                                                | 1         | U.                        |                       |                   | mon         |
| -40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -40 dBm<br>-50 dBm<br>-60 dBm<br>-70 | -10 dBm                                                                   |                                         |                                                                                                                | 1         | Ur .                      |                       |                   | hhm         |
| -50 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>(F 2.402 GHz 1001 pts Span 8.0 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10 dBm                                                                   |                                         |                                                                                                                |           |                           |                       |                   | m           |
| -60 dBm<br>-70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60 dBm<br>-70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10 dBm                                                                   |                                         |                                                                                                                |           |                           |                       |                   | m           |
| -60 dBm<br>-70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60 dBm<br>-70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10 dBm                                                                   |                                         | ma                                                                                                             |           |                           |                       |                   | hhan        |
| -70 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -70 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                  |                                         | ma                                                                                                             |           |                           |                       |                   | h           |
| CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF 2.402 GHz 1001 pts Span 8.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                |           |                           |                       |                   | hhan        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                       |                                         | - www                                                                                                          |           |                           |                       |                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm |                                         |                                                                                                                |           |                           |                       |                   | hh          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm |                                         |                                                                                                                | 1001      | pts                       |                       |                   |             |







| Att 40 di<br>SGL Count 100/100<br>1Pk Max                                                                                                                                                                                                                        | 8 <b>SWT</b> 227.5µ                             | s 🎃 <b>VBW</b> 300 kHz                    | Mode Auto FFT                |                                       |                          |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------|---------------------------------------|--------------------------|-----|
| 20 dBm                                                                                                                                                                                                                                                           |                                                 |                                           | M1[1]                        |                                       | -1.73 dB<br>2.48015000 G |     |
| 10 dBm                                                                                                                                                                                                                                                           |                                                 |                                           | M2[1]                        |                                       | -43.78 dB                | m   |
|                                                                                                                                                                                                                                                                  |                                                 |                                           |                              | 1                                     | 2.48350000 GI            | -12 |
| -10 dBm                                                                                                                                                                                                                                                          |                                                 |                                           |                              |                                       |                          |     |
|                                                                                                                                                                                                                                                                  | E de la                                         |                                           |                              |                                       |                          | 1   |
| -20 dBm-01 -21,47                                                                                                                                                                                                                                                | o upm                                           |                                           |                              |                                       |                          | 1   |
| -40 dBm2 M4                                                                                                                                                                                                                                                      | Ma                                              | 0                                         |                              |                                       | -                        | 1   |
| -50 dBm                                                                                                                                                                                                                                                          | where the second stand                          | manutal anather washing                   | ar Marallahan Marandra Maran | when the second for the second second | mathematication          | A.A |
| -60 dBm                                                                                                                                                                                                                                                          |                                                 |                                           |                              |                                       |                          |     |
| -70 dBm                                                                                                                                                                                                                                                          |                                                 |                                           |                              |                                       | 1                        |     |
| Start 2.476 GHz<br>Marker                                                                                                                                                                                                                                        |                                                 | 1001                                      | pts                          |                                       | Stop 2.576 GH            | z   |
| Type Ref Trc<br>M1 1                                                                                                                                                                                                                                             | X-value<br>2.48015 GH                           | 2 -1.73 dBn                               | Function                     | Functi                                | on Result                | _   |
| M2 1<br>M3 1                                                                                                                                                                                                                                                     | 2.4835 GH<br>2.5 GH                             |                                           |                              |                                       |                          |     |
| M4 1                                                                                                                                                                                                                                                             | 2,4922 GH                                       | z -42.17 dBn                              | n                            |                                       |                          |     |
|                                                                                                                                                                                                                                                                  |                                                 |                                           |                              |                                       |                          |     |
| Spectrum<br>Ref Level 27.60 dBn<br>Att 40 di<br>SGL Count 8000/800                                                                                                                                                                                               | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | ) NVNT 2-DI<br>RBW 100 kHz<br>YBW 300 kHz | H5 2480MHz<br>Mode Auto FFT  | z Ant1 Hop                            |                          |     |
| Spectrum<br>Ref Level 27.60 dBn<br>Att 40 di<br>SGL Count 8000/8000<br>1Pk Max                                                                                                                                                                                   | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | <b>RBW</b> 100 kHz                        | 13.2.1.1.1.                  | z Ant1 Hop                            |                          |     |
| Spectrum Ref Level 27.60 dBn Att 40 di SGL Count 8000/800 PPk Max 20 dBm                                                                                                                                                                                         | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 d8                  |     |
| Spectrum<br>Ref Level 27.60 dBn<br>Att 40 df                                                                                                                                                                                                                     | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | <b>RBW</b> 100 kHz                        | Mode Auto FFT                | z Ant1 Hop                            | 0,98 d8                  |     |
| Spectrum Ref Level 27.60 dBn Att 40 dl SGL Count 8000/800 PR Max 20 dBm 10 dBm                                                                                                                                                                                   | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 d8                  |     |
| Spectrum           Ref Level 27.60 dBm           Att 40 dl           SGL Count 8000/800           IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm                                                                                    | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 d8                  |     |
| Spectrum Ref Level 27.60 dBm Att 40 di SGL Count 8000/800 PPk Max 20 dBm 10 dBm 0 dBm                                                                                                                                                                            | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 d8                  |     |
| Spectrum           Ref Level 27.60 dBm           Att 40 dl           SGL Count 8000/800           IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm                                                                                    | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 dB                  |     |
| Spectrum           Ref Level 27.60 dBm           Att 40 dl           SGL Count 8000/800           IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 dB                  |     |
| Spectrum           Ref Level 27.60 dBm           Att 40 dl           SGL Count 8000/800           IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 dB                  |     |
| Spectrum           Ref Level 27.60 dBn           Att         40 dl           SGL Count 8000/8000           IPK Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                     | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 dB                  |     |
| Spectrum           Ref Level 27.60 dBm           Att 40 dl           SGL Count 8000/800           IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 dB                  |     |
| Spectrum           Ref Level 27.60 dBm           Att         40 di           SGL Count 8000/8000           IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | RBW 100 kHz                               | Mode Auto FFT                | z Ant1 Hop                            | 0.98 dB<br>2.47999200 Gi |     |
| Spectrum           Ref Level 27.60 dBm           Att         40 di           SGL Count 8000/800           IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm                    | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | • RBW 100 kHz                             | Mode Auto FFT                | z Ant1 Hop                            | 0,98 dB                  |     |
| Spectrum           Ref Level 27.60 dBm           Att         40 di           SGL Count 8000/8000           IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | RBW 100 kHz                               | Mode Auto FFT                | z Ant1 Hop                            | 0.98 dB<br>2.47999200 Gi |     |
| Spectrum           Ref Level 27.60 dBn           Att         40 dl           SGL Count 8000/8000           IPK Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                     | n <b>Offset</b> 7.60 dB<br>3 <b>SWT</b> 18,9 µs | RBW 100 kHz                               | Mode Auto FFT                | z Ant1 Hop                            | 0.98 dB<br>2.47999200 Gi |     |




| Att<br>SGL Count                                                                                                                                                                                                       | 40 dB<br>1000/1000            | L RCDA    |                   | VBW 300 kHz                            |                |                   |              |             |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-------------------|----------------------------------------|----------------|-------------------|--------------|-------------|------------------------|
| 20 dBm-                                                                                                                                                                                                                |                               |           |                   |                                        | MI             | [1]               |              | 2 470       | -0.13 dBm<br>05000 GHz |
| 10 dBm                                                                                                                                                                                                                 |                               |           |                   | 1.1                                    | Ma             | [1]               |              |             | 42.27 dBm              |
| 1                                                                                                                                                                                                                      |                               |           |                   |                                        |                |                   | 1            | 2.483       | 50000 GHz              |
| 0 dBm                                                                                                                                                                                                                  |                               |           | -                 |                                        |                | 1                 |              |             |                        |
| - 34 (mm)                                                                                                                                                                                                              | i rem                         |           |                   |                                        |                |                   |              |             | 1                      |
| -20 dBm                                                                                                                                                                                                                | D1 -19,019                    | dBm       |                   |                                        |                |                   |              |             |                        |
| -30 dBm                                                                                                                                                                                                                | M4                            |           |                   |                                        | -              |                   |              | 1           |                        |
| -40 dBm                                                                                                                                                                                                                | an water a first and a second | MB        | within the houses | withermore many                        | Manarthanaport | invalinationships | sy merry man | www.        | hand and the second    |
| -50 dBm                                                                                                                                                                                                                |                               |           |                   |                                        |                | -                 |              |             |                        |
| -60 dBm                                                                                                                                                                                                                |                               |           |                   |                                        | -              | -                 | 1            | 1           | -                      |
| -70 dBm-                                                                                                                                                                                                               | CH7                           |           |                   | 1001                                   | nts            | _                 | 1            | Ston        | 2.576 GHz              |
| Marker                                                                                                                                                                                                                 |                               |           |                   |                                        |                | 1-1-              |              |             |                        |
| Type Ref<br>M1                                                                                                                                                                                                         | 1 Trc                         |           | D5 GHz            | Y-value<br>-0.13 dBr                   |                | ion               | Fund         | tion Result | -                      |
| M2<br>M3                                                                                                                                                                                                               | 1                             |           | 35 GHz<br>.5 GHz  | -42.27 dBr<br>-43.92 dBr               |                |                   |              |             |                        |
| M4                                                                                                                                                                                                                     | 1                             | 2.49(     | 09 GHz            | -41.96 dBr                             | m              |                   |              |             |                        |
| Spectrum<br>Ref Level<br>Att                                                                                                                                                                                           | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | -DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 13.2           |                   | о-Норрії     | ng Ret      |                        |
| Ref Level                                                                                                                                                                                                              | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        |                   | o-Hoppii     |             | -0.04 dBm<br>81620 GHz |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                               | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                                                                                                         | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                                                                                                    | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                                                                                                         | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                                                               | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>IPk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                                                                                                                 | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-                                                                                                                                           | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att<br>SGL Count<br>IPk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                                                                                                                 | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att           SGL Count           • 1Pk Max           20 dBm-           10 dBm-           0 dBm-           -10 dBm-           -20 dBm-           -30 dBm-                                                 | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                     | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                   | 27.62 dBm<br>40 dB            | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              |             | -0,04 dBm              |
| Ref Level<br>Att           SGL Count           SGL Count           10 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | 27.62 dBm<br>40 dB<br>300/300 | Offset 7. | 62 dB 🐞 🖡         | RBW 100 kHz                            | Mode Au        | ito FFT           |              | 2.401       | -0.04 dBm<br>81620 GHz |



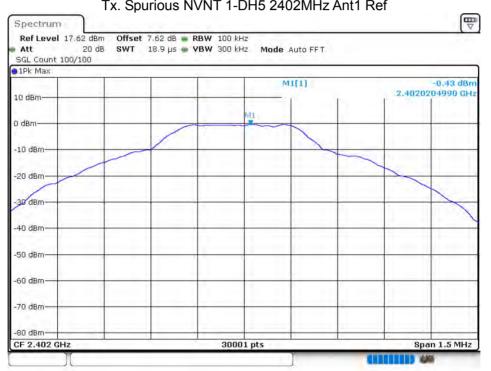
| ●1Pk Max                                                                                                                                                                         |                                            |                      |                  | 1                        | M1[1         | 1            |                 |            | -1.4                  | dBm            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|------------------|--------------------------|--------------|--------------|-----------------|------------|-----------------------|----------------|
| 20 dBm                                                                                                                                                                           |                                            |                      |                  |                          | M2[1         |              |                 | 2.40       | -45.9                 | 0 GHz          |
| 10 dBm                                                                                                                                                                           | -                                          | _                    |                  |                          | mzt 1        |              |                 | 2.40       | 000000                | 0 GHz          |
| 0 dBm                                                                                                                                                                            |                                            |                      |                  | -                        |              |              | _               |            |                       | MI             |
| -10 dBm                                                                                                                                                                          |                                            |                      |                  | -                        |              |              |                 | -          | -                     |                |
| -20 dBm [                                                                                                                                                                        | 01 -20,038                                 | dBm                  |                  |                          |              |              | _               |            | -                     |                |
| -30 dBm                                                                                                                                                                          |                                            |                      |                  | -                        | -            |              | _               | -          | -                     |                |
| -40 dBm                                                                                                                                                                          |                                            |                      | M4               | A arthur at              |              |              |                 | M3         | M                     | <b>h</b>       |
| -50 dBm                                                                                                                                                                          | Manufallericht                             | reconstructure       | hunner and       | suntrationstructly       | rubalization | manuscharter | almentationship | mulikum    | (hull your )          | )H]L           |
| -60 dBm                                                                                                                                                                          |                                            |                      |                  | _                        |              |              | _               |            |                       |                |
| -70 dBm                                                                                                                                                                          |                                            |                      |                  |                          |              |              | 1               |            |                       |                |
| Start 2.306<br>Marker                                                                                                                                                            | GHz                                        |                      | -                | 1001                     | pts          |              |                 | Sto        | p 2.406               | GHz            |
| Type   Ref                                                                                                                                                                       |                                            | X-value              |                  | Y-value                  | Function     | 1            | Fund            | ction Resu | ult                   |                |
| M1<br>M2                                                                                                                                                                         | 1                                          |                      | 95 GHz<br>.4 GHz | -1.44 dBr<br>-45.95 dBr  | n            |              |                 |            |                       |                |
| M3<br>M4                                                                                                                                                                         | 1                                          |                      | 39 GHz<br>01 GHz | -43.04 dBr<br>-41.18 dBr |              |              |                 |            |                       |                |
| 1717                                                                                                                                                                             |                                            | 2.01                 | out of the       |                          |              |              |                 |            |                       |                |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count 1                                                                                                                              | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | VNT 3-D                  | Mode Auto    | FFT          | nt1 Ho          | pping I    |                       | E dam          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count 1                                                                                                                              | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | 13.213       | FFT          | nt1 Ho          |            |                       | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count 1<br>• 1Pk Max                                                                                                                 | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          |            | -0.70                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count f<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                               | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.70                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count f<br>IPk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                      | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count f<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                               | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count f<br>IPk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                      | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level 3<br>Att<br>SGL Count 1<br>O Bm<br>10 dBm<br>0 dBm<br>-10 dBm                                                                                        | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level 3<br>Att<br>SGL Count 1<br>SGL Count 1<br>1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm                                                 | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count f<br>IPk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                          | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level 3<br>Att<br>SGL Count 1<br>9 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                   | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count f<br>IC Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                           | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count I<br>IPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm                              | and Edg<br>27.62 dBm<br>40 dB              | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              | Mode Auto    | FFT          | nt1 Ho          | 2,4(       | -0.7(                 | I dBm          |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count I<br>IPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                   | and Edg<br>27.62 dBm<br>40 dB<br>8000/8000 | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              |              | FFT          | nt1 Ho          | 2.44       | -0.7(                 | I dBm<br>O GHz |
| Ba<br>Spectrum<br>Ref Level :<br>Att<br>SGL Count If<br>SGL Count If<br>ID dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm  | and Edg<br>27.62 dBm<br>40 dB<br>8000/8000 | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              |              | FFT          | nt1 Ho          | 2.44       | -0.70<br>051648<br>ML | I dBm<br>O GHz |
| Ba<br>Spectrum<br>Ref Level 3<br>Att<br>SGL Count If<br>SGL Count If<br>ID dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm | and Edg<br>27.62 dBm<br>40 dB<br>8000/8000 | ge(Hopp<br>offset 7. | Ding) N          | RBW 100 kHz              |              | FFT          | nt1 Ho          | 2.44       | -0.70<br>051648<br>ML | I dBm<br>O GHz |





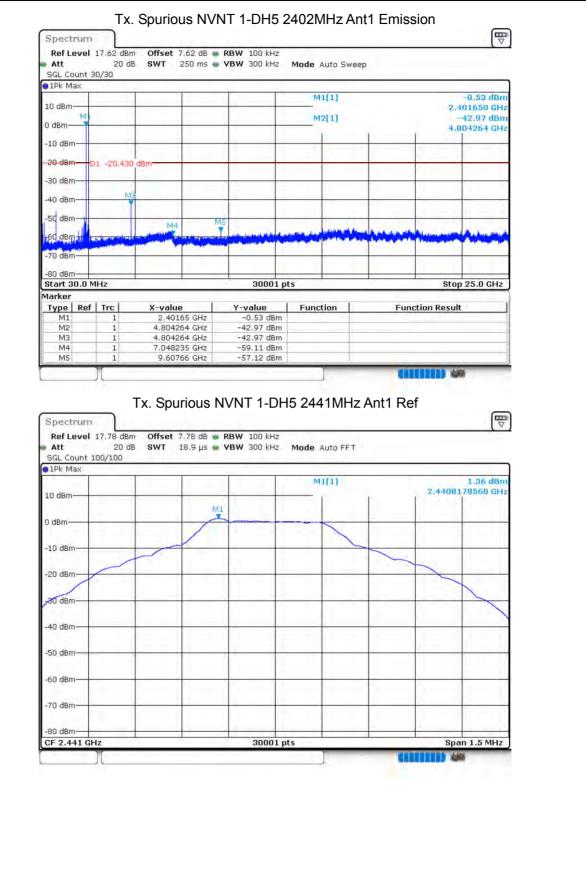


| SGL Count 100/1<br>91Pk Max                                                                                                                                                                                                                                  | 40 dB <b>SWT</b><br>100 | Second Children       |                                    | z Mode Auto       |                   |               |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|------------------------------------|-------------------|-------------------|---------------|---------------------------|
| 20 dBm-                                                                                                                                                                                                                                                      | -                       |                       | 1                                  | M1[1]             |                   | 2.4           | -1.02 dBm<br>7985000 GHz  |
| 10 dBm                                                                                                                                                                                                                                                       |                         |                       |                                    | M2[1]             |                   |               | -44.33 dBm<br>8350000 GHz |
|                                                                                                                                                                                                                                                              |                         | _                     |                                    |                   |                   | -             |                           |
| -10 cBm                                                                                                                                                                                                                                                      | -                       | -                     | -                                  | -                 | -                 |               |                           |
| -20 cBm-01 -2                                                                                                                                                                                                                                                | 2.623 dBm-              | _                     | -                                  |                   |                   | _             |                           |
| -30 dBm                                                                                                                                                                                                                                                      |                         | -                     |                                    |                   | _                 |               |                           |
| -40 dBmie M4                                                                                                                                                                                                                                                 |                         | ALANSAN MANAMAN       | when a standard and a              | www.horthurauthur | mulupatheterenthy | wannerstellen | monputation               |
| -50 dBm                                                                                                                                                                                                                                                      |                         |                       |                                    |                   |                   |               | 1 = 1                     |
| -60 dBm                                                                                                                                                                                                                                                      |                         |                       |                                    |                   |                   |               | 1                         |
| Start 2.476 GHz                                                                                                                                                                                                                                              |                         | 1                     | 1001                               | pts               | 1                 | Sto           | p 2.576 GHz               |
| Marker<br>Type Ref Tr                                                                                                                                                                                                                                        |                         | alue                  | Y-value                            | Function          |                   | Function Res  | ult                       |
| M2                                                                                                                                                                                                                                                           | 1 2                     | 47985 GHz             | -1.02 dB<br>-44.33 dB<br>-47.44 dB | m                 |                   |               |                           |
| M3<br>M4                                                                                                                                                                                                                                                     | 1                       | 2.5 GHz<br>2.4898 GHz | -47.44 0B                          |                   |                   |               |                           |
| I                                                                                                                                                                                                                                                            |                         |                       |                                    |                   |                   | CHILIND       |                           |
| Spectrum<br>Ref Level 27.60                                                                                                                                                                                                                                  | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               | Hopping       |                           |
| Spectrum<br>Ref Level 27.60<br>Att<br>SGL Count 8000,                                                                                                                                                                                                        | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | 100.200           | FFT               |               |                           |
| Spectrum<br>Ref Level 27.60<br>Att<br>SGL Count 8000,<br>1Pk Max                                                                                                                                                                                             | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum<br>Ref Level 27.60<br>Att<br>SGL Count 8000,<br>•1Pk Max<br>20 dBm-                                                                                                                                                                                 | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum<br>Ref Level 27.60<br>Att<br>SGL Count 8000,<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>0 dBm                                                                                                                                                     | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm                                                                                             | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum<br>Ref Level 27.60<br>Att<br>SGL Count 8000,<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                              | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm                                                                                             | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                                           | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                                         | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                       | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                     | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               |               | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                   | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz                        | Mode Auto         | FFT               | 2.4           | ₩<br>1,23 dBm             |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz<br>VBW 300 kHz         | Mode Auto         | FFT               | 2.4           | 1,23 dBm<br>7983220 GHz   |
| Spectrum           Ref Level 27.60           Att           SGL Count 8000,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | dBm Offse               | t 7.60 dB 👜 I         | RBW 100 kHz<br>VBW 300 kHz         | Mode Auto         | FFT               | 2.4           | 1,23 dBm<br>7983220 GHz   |

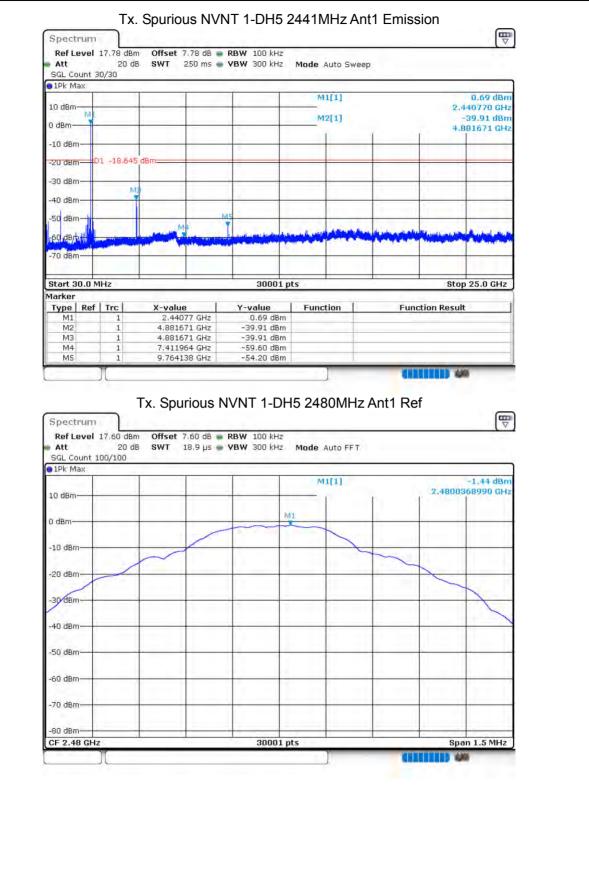



| <b>₩</b>                                                                                                        |                                |                       | RBW 100 kHz                           | Offset 7.60 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .60 dBm      | pectrum<br>lef Level 27  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
|                                                                                                                 |                                | ode Auto FFT          | VBW 300 kHz                           | SWT 227.5 µs 🖷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 dB        | <b>tt</b><br>GL Count 10 |
|                                                                                                                 |                                |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1Pk Max                  |
| -1.56 dBm                                                                                                       |                                | M1[1]                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                          |
| 2.47805000 GHz                                                                                                  |                                | -                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ) dBm                    |
| -44.02 dBm                                                                                                      |                                | M2[1]                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ) dBm                    |
| 2.48350000 GHz                                                                                                  | 1                              |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                          |
|                                                                                                                 | -                              |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | dBm                      |
| A constant for the second of                                                                                    | 1.1.1.1.1.1                    | 101 101 101           |                                       | and the second sec |              | at 1                     |
|                                                                                                                 | -                              |                       | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 0 cBm                    |
|                                                                                                                 | + +                            |                       |                                       | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -18.768      | - DI                     |
|                                                                                                                 |                                |                       | 1 .                                   | april                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.700      | 0 cBm-01                 |
|                                                                                                                 | 4 19 10 10 10 10               |                       | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                          |
| in the second |                                |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M4           |                          |
| to provide and the second second                                                                                |                                | and the second second | more moundanemention                  | M3 . where h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                          |
| and manual has proved to be                                                                                     | and a second the second of the | mand reducer amonthan | And Anthony and Anthony               | un and and when the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | second rules | monum                    |
|                                                                                                                 |                                |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ) dBm                    |
|                                                                                                                 |                                |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 0 dBm                    |
|                                                                                                                 |                                |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 5 GDIII                  |
|                                                                                                                 | -                              |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 0 dBm                    |
| Stop 2.576 GHz                                                                                                  |                                |                       | 1001 pts                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz           | art 2.476 0              |
| The second se |                                | And the American      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | arker                    |
|                                                                                                                 | Func                           | Function              | Y-value                               | rc X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ype   Ref                |
| ction Result                                                                                                    | , and                          |                       |                                       | D 4700E CUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            | M1                       |
| ction Result                                                                                                    | 1 dillo                        |                       | -1.56 dBm                             | 2.47805 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1.1-1                    |
| ction Result                                                                                                    | i uno                          |                       | -1.56 dBm<br>-44.02 dBm<br>-44.35 dBm | 2.47805 GHz<br>2.4835 GHz<br>2.5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            | M2<br>M3                 |

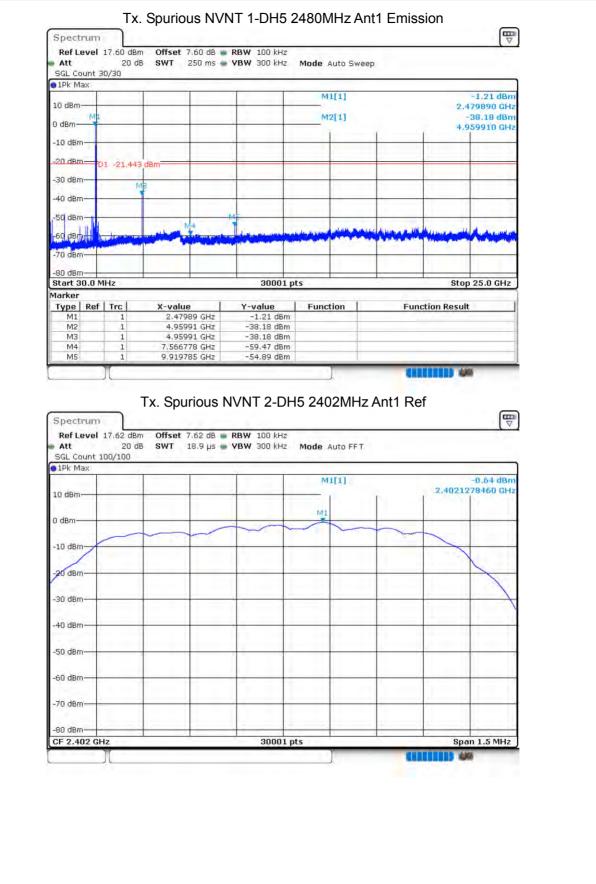
### ® lac-M NTEK 北测 ACCREDITED Certificate #4298.01


## 8.7 CONDUCTED RF SPURIOUS EMISSION

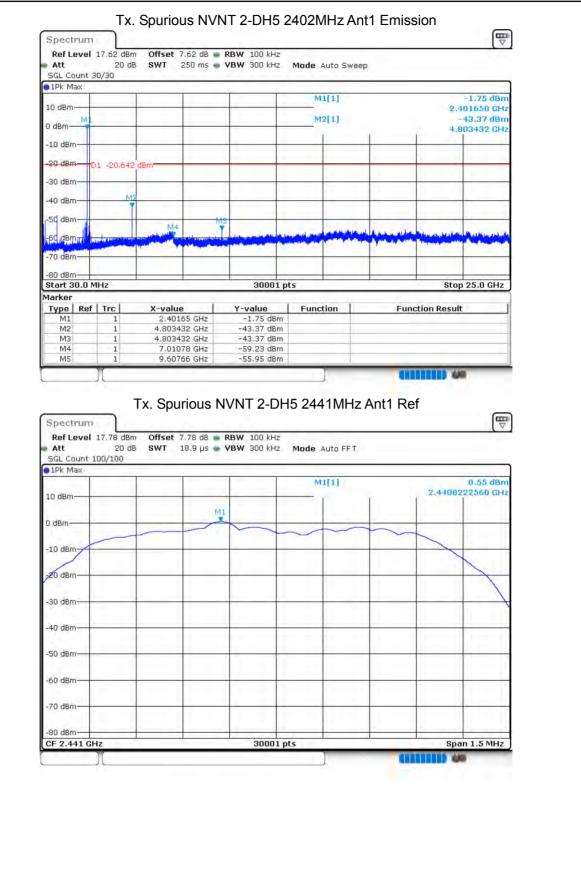
| CONDUCTED |       |                 |         |                 |             |         |
|-----------|-------|-----------------|---------|-----------------|-------------|---------|
| Condition | Mode  | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
| NVNT      | 1-DH5 | 2402            | Ant 1   | -42.53          | -20         | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | -41.27          | -20         | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | -36.73          | -20         | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | -42.72          | -20         | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | -42.45          | -20         | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | -39.31          | -20         | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | -44.4           | -20         | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | -44.78          | -20         | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | -34.25          | -20         | Pass    |



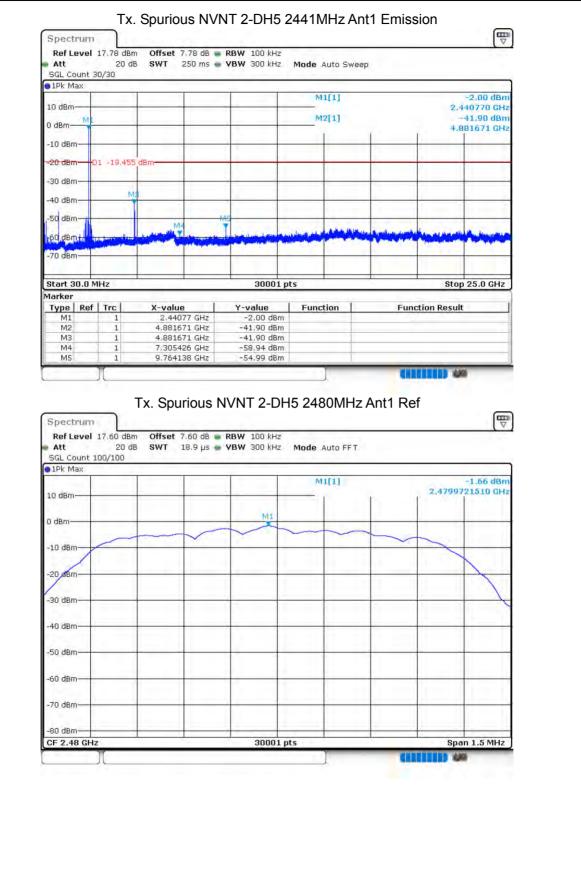

#### Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref



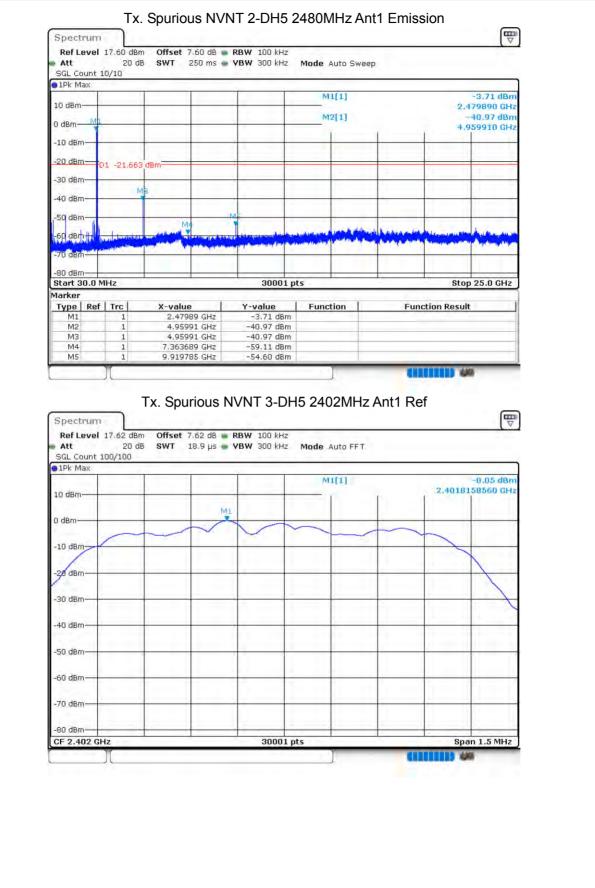


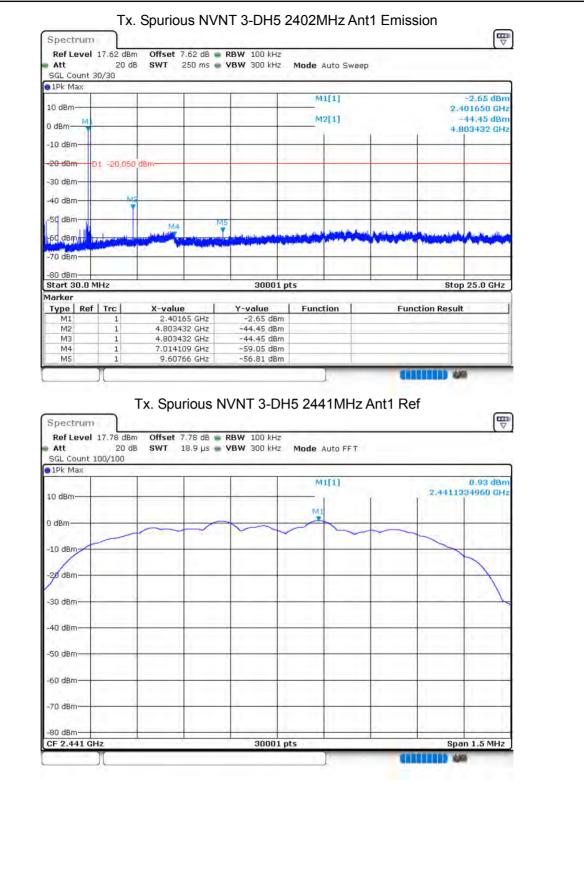


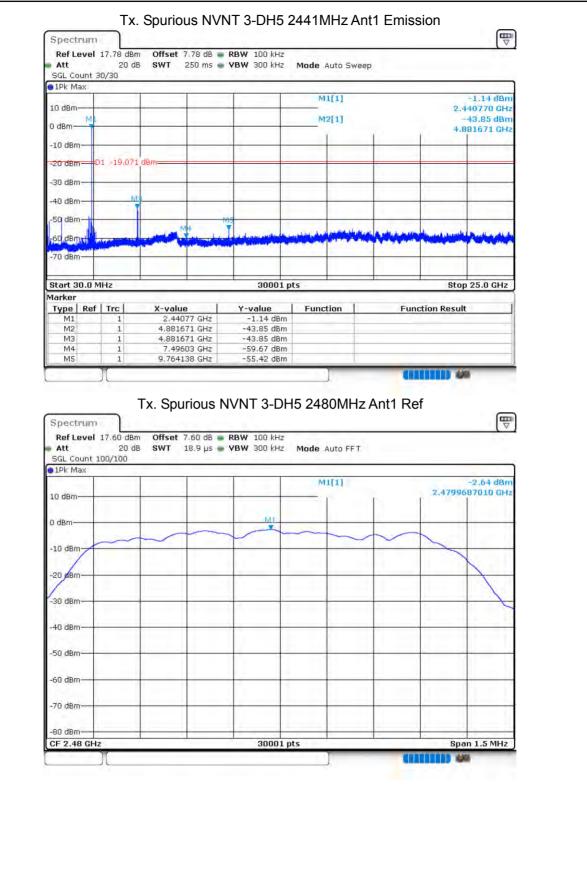



















| Ref Le         | rum<br>evel | 17.60 dBm<br>20 dB           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
|----------------|-------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SGL Co         | unt 3       | 22.25                        | 5 3WI 250 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WBW 300 KH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mode Auto Sw                          | eep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 1Pk M          |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 2. 2.3         |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.95 dBm               |
| 10 dBm         |             | _                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.479890 GHz            |
| 0 dBm-         | ML          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2[1]                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -36.89 dBn              |
| 2 GDIII        |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i.                                    | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.959078 GHz            |
| -10 dBm        |             | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
|                |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 20 dBm         | D           | 1 -22.638                    | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 30 dBm         | r           | 6.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
|                |             | 14                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 40 dBm         |             | _                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 50 dBm         |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| SU UBI         |             |                              | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | al an elle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and a start             |
| 50 dBr         |             |                              | the state of the s | and the particular for the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and had been been and a |
|                |             | A manufacture of the last of | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the street of th | 11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 70 dBm         |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| -SO dBm        | r           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| Start 3        | 0.0 M       | IHz                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop 25.0 GHz           |
| larker         |             | a la seconda                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anna Anna Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | and the second se |                         |
|                | Ref         | Trc                          | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function                              | Functio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Result                |
| Type           | F 2. 1      | 1                            | 2.47989 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.95 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| M1             |             | 1                            | 4.959078 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -36.89 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| M1<br>M2       |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -36.89 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| M1<br>M2<br>M3 |             | 1                            | 4.959078 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| M2             |             | 1                            | 4,959078 GHz<br>7,484377 GHz<br>9,919785 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -59.71 dBm<br>-54.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |

END OF REPORT