RETLIF TESTING LABORATORIES

TABULAR DATA SHEET									
TEST METHO	D: POWER O	OUTPUT, EFFECTIV	VE RADIATED PO	WER METHOD, PAI	RAGRA	PH 2.985			
CUSTOMER: Symbo		Technologies		JOB No	JOB No.:		R-8576-1		
TEST SAMPLE:		824.024-848.959 Palm computer with wireless area network(WAN) transmitter. FCC ID:H9PSPT1733							
MODEL No.:	SPT1733	SPT1733			SERIAL No.: N/A				
TEST SPECIFICATIO	DN: FCC Part	FCC Part 2 PARAGRAPH: 2.985							
OPERATING MODE:	CONTINU	CONTINUOUSLY TRANSMITTING A CW SIGNAL AT CENTER FREQUENCY/CHANNEL SHOWN BELOW.							
TECHNICIAN:	Peter Lan	Peter Lananna DATE: June 8, 2000							
NOTES:		5/12							
Center Frequency	Channel	Antenna Orientation	Meter Reading	Signal Gen. Output Level	Antenna Correction		Corrected Reading	Converted Reading	Limit
MHz			dBuV	dBm	dB		dBm	mWatts	mWatts
824.024	low	V/1.1	92.1	18.5		2.2	20.7	117.5	437
824.028	low	H/1.3	89.5	15.5		2.2	17.7	58.9	
835.035	middle	V/1.3	93.9	20.0		2.2	22.2	166.0	
835.045	middle	H/1.0	89.1	16.0		2.2	18.2	66.1	
633.043	midale	П/1.0	69.1	16.0		2.2	10.2	00.1	
0.40.050	ti Carta)//4 O	05.0	04.0		0.0	00.5	000.0	
848.953	high	V/1.3	95.3	21.3	2.2		23.5	223.9	
848.959	high	H/1.0	90.9	18.0		2.2	20.2	104.7	V
	The CUT	plead at a fall	loton or d the	radiated sutroit	0.461.1	/00 m = = = :	- ' جا جا جافاند ام میں	nilog After the	
	The EUT was placed on a tabletop, and the radiated output level was measured with a biconilog. After the level was maximized, the EUT was replaced with dipole and a signal generator. The level of the generator								
	was raised until it matched the level recorded from the EUT.								
									1

R-8576-1

DATA SHEET 1 OF 1