ET3DV6 SN: 1560 # DASY3 – Parameters of Probe: ET3DV6 SN:1560 | Sensi | ensitivity in Free Space Diode Compression | | | ression | | | | |-------|---|---|-------------------------------|--------------------|--------------------|----------|-------------------------| | | NormX
NormY
NormZ | 1.48 μV/(V/m
1.51 μV/(V/m
1.43 μV/(V/m | n) ² | | DCP
DCP
DCP | Χ | 98 mV
98 mV
98 mV | | Sensi | tivity in Tissue | e Simulating I | Liquid | | | | | | Head | 835 M | Hz Brain | e_r = 41.5 \pm 5% | 6 | s = | 0.90 ± 5 | 5% mho/m | | | ConvF $X = 6.7$
ConvF $Y = 6.7$
ConvF $Z = 6.7$ | 78 | | | Bou
Alph
Dep | | ffect:
0.30
2.90 | | Body | 835 M | Hz Brain | e_r = 56.2 \pm 5% | 6 | s = 0. | 95 ± 5% | mho/m | | | ConvF $X = 6.5$
ConvF $Y = 6.5$
ConvF $Z = 6.5$ | 52 ± 7% (k=2) | | | Bou
Alph
Dep | | ffect:
0.30
2.90 | | Head | 1900 N | /IHz Brain | $e_{\text{r}} = 40.0 \pm 5\%$ | 6 | s = 1. | 40 ± 5% | mho/m | | | ConvF $X = 5.1$
ConvF $Y = 5.1$
ConvF $Z = 5.1$ | 16 | | | Bou
Alph
Dep | | ffect:
0.48
2.40 | | Body | 1900 l | MHz Muscle | e_r = 54.2 \pm 5% | 6 | s = 1. | 50 ± 5% | mho/m | | | ConvF $X = 4.7$
ConvF $Y = 4.7$
ConvF $Z = 4.7$ | 70 ± 7% (k=2) | | | Bou
Alph
Dep | | ffect:
0.48
2.40 | | Senso | or Offset | | | | | | | | | Probe Tip to
Optical Surfa | Sensor Cente
ce Detection | r | 2.7 2.0 ± 0 |).2 | mm
mm | | #### ET3DV6 SN:1560 # Isotropy Error (ϕ), θ = 0° Page 3 of 5 ## Conversion Factor Assessment for DASY3 SAR Measurement System ET3DV6 S/N: 1560 #### 835 MHz Brain | Conve $X = 6.78 \pm 7\%$ (K=2) | Boundary | Effect: | |--------------------------------------|----------|---------| | ConvF Y = 6.78 \pm 7% (k=2) | Alpha | 0.30 | | ConvF $Z = 6.78 \pm 7\%$ (k=2) | Depth | 2.90 | #### 1900 MHz Brain | ConvF $X = 5.16 \pm 7\%$ (k=2) | Boundary I | Effect: | |--------------------------------------|------------|---------| | ConvF Y = 5.16 \pm 7% (k=2) | Alpha | 0.48 | | ConvF $Z = 5.16 \pm 7\%$ (k=2) | Depth | 2.40 | ## Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland, Phoné +41 1 245 97 00, Fax +41 1 245 97 79 ### Certificate of conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 | | |-----------------------|---|--| | Type No | QD 000 P40 BA | | | Series No | TP-1002 and higher | | | Manufacturer / Origin | Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland | | #### Tests The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples). | Test | Requirement | Details | Units tested | |------------------------|---|--|--------------------------------| | Shape | Compliance with the geometry according to the CAD model. | IT'IS CAD File (*) | First article,
Samples | | Material thickness | Compliant with the requirements according to the standards | 2mm +/- 0.2mm In specific areas | First article,
Samples | | Material
parameters | Dielectric parameters for required frequencies | 200 MHz - 3 GHz Relative permittivity < 5 Loss tangent < 0.05. | Material
sample
TP 104-5 | | Material resistivity | The material has been tested to be compatible with the liquids defined in the standards | Liquid type HSL 1800 and others according to the standard. | Pre-series,
First article | #### **Standards** - **CENELEC EN 50361** - IEEE P1528-200x draft 6.5 IEC PT 62209 draft 0.9 - The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3]. #### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3]. Date 18.11.2001 Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 243 97 79 Fin Brubolt