RETLIF TESTING LABORATORIES

			TABUI	LAR DATA S	HEET				
TEST METHOD:	POWER C	OUTPUT, EFFECTIVE F	RADIATED POWER I	METHOD, PARAGRAPH	1 2.985				
CUSTOMER:	Symbol Te	Symbol Technologies JOB No.: R-8586-1							
TEST SAMPLE:		18.959 Palm computer v PPPT2733	vith wireless area netw	ork(WAN) transmitter.					
MODEL No.:	PPT2733			SERIAL	No.: 64				
TEST SPECIFICATION:	FCC Part	2			PARAGRA	NPH: 2.985			
OPERATING MODE:	CONTINU	CONTINUOUSLY TRANSMITTING A CW SIGNAL AT CENTER FREQUENCY/CHANNEL SHOWN BELOW.							
TECHNICIAN:	Peter Lana	Peter Lananna DATE: June 19, 2000							
NOTES:									
Center Frequency	Channel	Antenna Orientation	Meter Reading	Signal Gen. Output Level	Antenna Correction	Corrected Reading	Converted Reading	Limit	
MHz			dBuV	dBm	dB	dBm	mWatts	mW:	atts
824.03	low	V/1.1	92.6	20.0	2.2	22.2	166.0	43	37
824.03	low	H/1.8	89.6	18.5	2.2	20.7	117.5		
835.04	middle	V/1.0	93.2	20.2	2.2	22.4	173.8		
835.04	middle	H/1.0	89.1	18.6	2.2	20.8	120.2		
848.95	high	V/1.1	91.8	17.6	2.2	19.8	95.5		
848.95	high	H/1.8	89.6	20.3	2.2	22.5	177.8	, \	/
		1							
		<u> </u>							
		1							
		1							
		The EUT was placed on a tabletop, and the radiated output level was measured with a biconilog. After the							
		vel was maximized, the EUT was replaced with dipole and a signal generator. The level of the generator as raised until it matched the level recorded from the EUT.							
	was raised until i	<u>ii malched the level</u>	recorded from the	₹ <u>⊏UI.</u>					
DATA SHEET	1 OF 1							R-85	586-