

FCC TEST REPORT (PART 22)

REPORT NO.: RF970216L05A MODEL NO.: MC7598 RECEIVED: Jun. 13, 2008 TESTED: Jun. 25 ~ Jun. 30, 2008 ISSUED: Jul. 04, 2008

APPLICANT: Symbol Technologies, Inc.

- ADDRESS: One Symbol Plaza, Holtsville, NY 11742-1300, U.S.A.
- ISSUED BY: Advance Data Technology Corporation
 LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.
 TEST LOCATION: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 29 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	3
2	SUMMARY OF TEST RESULTS	4
2.1	MEASUREMENT UNCERTAINTY	4
3	GENERAL INFORMATION	5
3.1	GENERAL DESCRIPTION OF EUT	5
3.2	DESCRIPTION OF TEST MODES	7
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	7
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	8
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.4	DESCRIPTION OF SUPPORT UNITS	9
4	TEST TYPES AND RESULTS	10
4.1	OUTPUT POWER MEASUREMENT	10
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	10
4.1.2	TEST INSTRUMENTS	.11
4.1.3	TEST PROCEDURES	12
4.1.4	TEST SETUP	13
4.1.5	EUT OPERATING CONDITIONS	14
4.1.6	TEST RESULTS	15
4.2	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	16
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	16
4.2.2	TEST INSTRUMENTS	17
4.2.3	TEST PROCEDURES	18
4.2.4	DEVIATION FROM TEST STANDARD	18
4.2.5	TEST SETUP	19
4.2.6	EUT OPERATING CONDITIONS	19
4.2.7	TEST RESULTS	20
4.3	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	21
4.3.1	LIMITS OF RADIATED EMISSION MEASUREMENT	21
4.3.2	TEST INSTRUMENTS	22
4.3.3	TEST PROCEDURES	23
4.3.4	DEVIATION FROM TEST STANDARD	23
4.3.5	TEST SETUP	24
4.3.6	EUT OPERATING CONDITIONS	24
4.3.7	TEST RESULTS	25
5	INFORMATION ON THE TESTING LABORATORIES	28
6	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGE	S
	TO THE EUT BY THE LAB	29

1 CERTIFICATION

PRODUCT: EDA (Enterprise Digital Assistant) **MODEL:** MC7598 **BRAND:** Symbol APPLICANT: Symbol Technologies, Inc. TESTED: Jun. 25 ~ Jun. 30, 2008 **TEST SAMPLE: PROTOTYPE TEST STANDARDS: FCC Part 22, Subpart H** ANSI C63.4-2003

The above equipment (model: MC7598) has been tested by Advance Data **Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	

: <u>Zermine | Sem</u>, **DATE**: Jul. 04, 2008 Rennie Wang / Senior Specialist

TECHNICAL

ACCEPTANCE : Long Chen , DATE: Jul. 04, 2008 Responsible for RF Long Chen / Senior Engineer

APPROVED BY : Gary Chang / Assistant Manager , DATE: Jul. 04, 2008

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2 / IC RSS-132					
STANDARD TEST TYPE AND LIMIT RESULT REMARK					
2.1046 22.913 (a)	Maximum Peak Output Power Limit: max. 7 watts e.r.p peak power	PASS	Meet the requirement of limit. Minimum passing margin is 23.23dBm at 824.70MHz.		
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -34.92dB at 66.93MHz.		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT FREQUENCY		UNCERTAINTY
	30MHz ~ 200MHz	3.34 dB
Padiated emissions	200MHz ~1000MHz	3.35 dB
Naulated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	EDA (Enterprise Digital Assistant)	
MODEL NO.	MC7598	
FCC ID	H9PMC7598	
	3.7Vdc from rechargeable lithium battery	
I OWER SOIT EI	5.4Vdc from power adapter	
MODULATION TYPE	OQPSK, HPSK	
FREQUENCY RANGE	824MHz ~ 849MHz	
NUMBER OF CHANNEL	788	
MAX. ERP POWER	23.23dBm (0.210Watts)	
ANTENNA TYPE	Monopole antenna	
MAX. ANTENNA GAIN	0.79dBi	
DATA CABLE	Refer to NOTE	
I/O PORTS	Refer to user's manual	
ACCESSORY DEVICES	Battery, Pouch	

NOTE:

1. This report is prepared for FCC class II permissive change. Difference compared with the original report is listed as below, therefore radiated power and radiated emission measurements had been re-tested.

ITEM	ORIGINAL DESCRIPTION	CLASS II CHANGE DESCRIPTION
1	Monopole antenna with 4.5dBi gain	Monopole antenna with 0.79dBi gain
2	-	Adding Pouch

- 2. The models as identified below are identical to each other except of the following options: - Keypad: Numeric / QWERTY
 - Barcode reader: 1D laser scanner / 2D Imager

BRAND	MODEL	DESCRIPTION			
Symbol	MC7598	EVDO 1D Numeric			
Symbol MC7598 EVDO 2D QWERTY					
**the worst case had been marked by boldface.					

3. The EUT is an EDA (Enterprise Digital Assistant). The functions of EUT listed as below:

	TEST STANDARD	REFERENCE REPORT
CDMA 850	FCC Part 22	RF970216L05A
CDMA 1900	FCC Part 24	RF970216L05A-1

4. The communicated functions of EUT listed as below:

		850MHz	1900MHz	With
3G	CDMA	\checkmark	\checkmark	802.11a/b/g + Bluetooth +
	EVDO	\checkmark	\checkmark	GPS functions

5. The EUT has one lithium battery listed as below:

I-LON BATTERY			
BRAND: MOTOROLA			
MODEL:	82-71364-05 Rev A		
RATING: 3.7Vdc, 3600mAh			

6. The following accessories are for support units only.

PRODUCT	BRAND	MODEL	DESCRIPTION	
RS232 charging cable	2 charging cable Motorola 25-102776-01R 1.2m non-shielded cable with one core		1.2m non-shielded cable with one core	
USB charging cable	Motorola	25-102775-01R	1.5m shielded cable with one core	
Headset Motorola 50-11300-050R VR10 headset 0.8m no		VR10 headset 0.8m non-shielded cable with one core		
Power Supply Adaptor	Motorola	EADP-16BB A	I/P: 100-240Vac, 50-60Hz, 0.4A O/P: 5.4Vdc, 3A 1.8m non-shielded cable without core	

- 7. Hardware version: MV.
- 8. Software version: BSP16.
- 9. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

788 channels are provided to this EUT in the CDMA850 band. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	1013	824.7 MHz	SO55
MIDDLE	384	836.5 MHz	SO55
HIGH	777	848.3 MHz	SO55

NOTE:

- 1. Below 1 GHz, the channel 1013, 384 and 777 were pre-tested in chamber. The channel 1013 was the worst case and chosen for final test.
- 2. Above 1 GHz, the channel 1013, 384 and 777 were tested individually.
- 3. The channel space is 0.03MHz.
- 4. In this report, CDMA2000 (SO55) was the worst case for all test items, therefore, only the data was recorded in the following section.

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		APPLICABLE TO		DESCRIPTION
MODE	OP	RE<1G	RE ³ 1G	DESCRIPTION
-	V	V	V	-

Where **OP:** Output power

RE<1G: Radiated emission below 1GHz

RE³1G: Radiated emission above 1GHz

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, xyz axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
-	1013 to 777	1013, 384, 777	CDMA	Х

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, xyz axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
-	1013 to 777	1013	CDMA	Х

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, xyz axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	AXIS
-	1013 to 777	1013, 384, 777	CDMA	Х

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 ANSI C63.4-2003 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	CAL. DATE
1	Universal Radio Communication Tester	R&S	CMU200	101095	Nov. 25, 2008

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE:

1. All power cords of the above support units are non shielded (1.8m).

2. Item 1 acted as a communication partners to transfer data.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 22.913 (a) that "Mobile / Portable station are limited to 7 watts e.r.p".

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESI7	100033	Jun. 29, 2009
Spectrum Analyzer Agilent	FSP	100041	Apr. 21, 2009
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May, 01, 2009
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 23, 2009
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 24, 2008
Preamplifier Agilent	8447D	2944A10633	Oct. 28, 2008
Preamplifier Agilent	8449B	3008A01964	Oct. 23, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283402/4	Dec. 06, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	251644/4	Dec. 06, 2008
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC3789B-3.

4.1.3 TEST PROCEDURES

- a. The EUT was set up for the maximum peak power with CDMA link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels: 1013, 384 and 777 (low, middle and high operational frequency range.)
- b. The conducted peak output power used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The path loss included the splitter loss, cable loss and 20dB pad loss. The spectrum set RB/VB 3MHz,then read peak power value and record to the test. (All transmitted path loss shall be considered in the test report data.)
- c. E.I.R.P peak power measurement. In the fully anechoic chamber, EUT placed on the 1.5m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- d. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the calibration antenna. Rotated the Turn Table to find the maximum radiation power. "Raw" is the spectrum reading value, "SG" is signal generator export power, "TX Gain" is calibration antenna isotropic gain value, "TX cable" is the transmitted cable loss between the calibration antenna and signal generator. The "Factor" means that the transmission path loss is equal to "SG" "TX cable" + "TX Gain" "Raw".
- e. Actually the real E.I.R.P peak power is equal to "Read Value" + "Factor".
- f. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.

4.1.4 TEST SETUP

EIRP POWER MEASUREMENT:

4.1.5 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

MODE	TX connected	DETECTOR FUNCTION	Average
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 988hPa
TESTED BY	Brad Wu	-	-

ERP POWER (1x EV-DO)								
	FREQ	RAW VAL	.UE (dBm)	CORR	PEAK OUTPUT POWER			
CHANNEL	(MHz)		. ,	FACTOR (dB) RTAP		AP	FTAP	
		RTAP	FTAP		dBm	Watt	dBm	Watt
1013	824.7	-18.36	-18.43	40.03	21.67	0.147	21.60	0.145
384	836.5	-18.64	-18.71	40.32	21.68	0.147	21.61	0.145
777	848.3	-19.35	-19.46	40.62	21.27	0.134	21.16	0.131

ERP POWER (SO55)						
CHANNEL NO.	FREQUENCY (MHz)			PEAK OUT	PUT POWER	
	·····,		FACTOR (dB)	dBm	Watt	
1013	824.7	-16.80	40.03	23.23	0.210	
384	836.5	-17.16	40.32	23.16	0.207	
777	848.3	-17.99	40.62	22.63	0.183	

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Receiver Antenna Gain (dBi) + Cable Loss (dB) + Free Space Loss (dB).

3. The value in bold is the worst.

4.2 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917, On any frequency outside a licensee's frequency block within GSM850 spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P)dB. The specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm. So the limit of emission is the same absolute specified line.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)	
-13	82.22	

NOTE: The following formula is used to convert the equipment radiated power to field strength.

E = [1000000 $\sqrt{(30P)}$] / 3 uV/m, where P is Watts.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESI7	100033	Jun. 29, 2009
Spectrum Analyzer Agilent	FSP	100041	Apr. 21, 2009
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May, 01, 2009
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 23, 2009
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 24, 2008
Preamplifier Agilent	8447D	2944A10633	Oct. 28, 2008
Preamplifier Agilent	8449B	3008A01964	Oct. 23, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283402/4	Dec. 06, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	251644/4	Dec. 06, 2008
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC3789B-3.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. Repeat step a ~ c for horizontal polarization.

NOTE: The resolution bandwidth of spectrum analyzer is 1MHz and the video bandwidth is 3MHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.2.7 TEST RESULTS

MODE	TX channel 1013	DETECTOR FUNCTION	Peak
FREQUENCY RANGE	Below 1000MHz	INPUT POWER (SYSTEM)	120Vac, 60Hz
ENVIRONMENTAL CONDITIONS	24deg. C, 64%RH, 988hPa	TESTED BY	Match Tsui

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	175.79	40.39	82.22	-41.83	2.00 H	148	27.07	13.32		
2	292.42	38.67	82.22	-43.55	2.50 H	163	23.71	14.96		
3	871.70	38.39	82.22	-43.83	1.50 H	169	11.15	27.24		
4	902.81	39.94	82.22	-42.28	1.50 H	130	12.30	27.64		
5	939.74	39.45	82.22	-42.77	1.50 H	193	11.28	28.17		
6	968.90	39.87	82.22	-42.35	1.50 H	154	11.42	28.45		
7	1001.94	40.66	82.22	-41.56	1.00 H	112	11.99	28.67		
		ANTENNA	POLARIT	Y & TEST [DISTANCE:	VERTICAL	. AT 3 m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	30.00	45.93	82.22	-36.29	1.00 V	142	32.57	13.36		
2	66.93	47.30	82.22	-34.92	1.00 V	199	34.21	13.09		
3	175.79	43.25	82.22	-38.97	1.00 V	169	29.94	13.32		
4	239.94	41.42	82.22	-40.80	1.00 V	202	28.38	13.04		
5	292.42	42.98	82.22	-39.24	1.00 V	223	28.02	14.96		
6	801.72	41.51	82.22	-40.71	2.00 V	10	15.59	25.92		
7	902.81	41.24	82.22	-40.98	1.00 V	277	13.60	27.64		
8	1001.94	41.55	82.22	-40.67	1.50 V	172	12.88	28.67		

NOTE:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. This is valid for all 3 channels.

20

4.3 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

4.3.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 22.917 (a), On any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$. The specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESI7	100033	Jun. 29, 2009
Spectrum Analyzer Agilent	FSP	100041	Apr. 21, 2009
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May, 01, 2009
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 23, 2009
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 24, 2008
Preamplifier Agilent	8447D	2944A10633	Oct. 28, 2008
Preamplifier Agilent	8449B	3008A01964	Oct. 23, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	283402/4	Dec. 06, 2008
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	251644/4	Dec. 06, 2008
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC3789B-3.

4.3.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. The EUT is replaced by a horn antenna connected to a signal generator tuned to the frequency of emission.
- e. The signal generator level has to be adjusted to have the same emission nature.
- f. The radiated power can be calculated via the factor and antenna gain.
- g. Repeat step a ~ f for horizontal polarization.

NOTE: The resolution bandwidth of spectrum analyzer is 1MHz and the video bandwidth is 3MHz.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.3.6 EUT OPERATING CONDITIONS

- a. The EUT makes a phone call to the communication simulator.
- b. The communication simulator station system controlled an EUT to export maximum output power under transmission mode and specific channel frequency.

4.3.7 TEST RESULTS

MODE	Channel 1013	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg [°] C, 65%RH, 988hPa
TESTED BY	Brad Wu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No. Freq. (MHz) Emission Level (dBuV) Limit (dBm) S.G Power Correvent					Correction Factor (dB)	Power Value (dBm)		
1	1649.40	43.49	-13.00	-61.48	10.12	-51.36		
2	2474.10	53.03	-13.00	-53.34	11.49	-41.85		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)			
1	1649.40	44.08	-13.00	-60.96	10.12	-50.84			
2	2474.10	50.90	-13.00	-55.50	11.49	-44.01			

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	Channel 384	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg [°] C, 65%RH, 988hPa
TESTED BY	Brad Wu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No. Freq. (MHz) Emission Level (dBuV) Limit (dBm) S.G Power Value (dBm) Correction Factor (dB)					Correction Factor (dB)	Power Value (dBm)		
1	1673.04	43.68	-13.00	-61.38	10.12	-51.26		
2	2509.56	45.52	-13.00	-60.84	11.49	-49.35		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1673.04	42.59	-13.00	-62.47	10.12	-52.35		
2	2509.56	45.81	-13.00	-60.57	11.49	-49.08		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	Channel 777	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	25deg [°] C, 65%RH, 988hPa
TESTED BY	Brad Wu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1696.62	39.65	-13.00	-65.30	10.17	-55.13		
2	2544.93	45.78	-13.00	-60.72	11.49	-49.23		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV)	Limit (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Power Value (dBm)		
1	1696.62	39.59	-13.00	-65.42	10.17	-55.25		
2	2544.93	45.52	-13.00	-60.75	11.49	-49.26		

NOTE: Power Value (dBum) = S.G Power Value (dBm) + Correction Factor (dB).

5 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
GERMANY	TUV Rheinland
JAPAN	VCCI
NORWAY	NEMKO
CANADA	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
NETHERLANDS	Telefication
SINGAPORE	GOST-ASIA (MOU)
RUSSIA	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343

Fax: 886-3-5935343

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050 Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----