

SAR TEST REPORT (Mobile Phone)

REPORT NO.: SA970124L03A

MODEL NO.: MC7506

RECEIVED: Jun. 13, 2008

TESTED: Jul. 08 ~ Jul. 09, 2008

ISSUED: Jul. 11, 2008

APPLICANT: Symbol Technologies, Inc.

ADDRESS: One Symbol Plaza, Holtsville, NY 11742-1300 USA

ISSUED BY: Advance Data Technology Corporation

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang

244, Taipei Hsien, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan

Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 47 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Report no.: SA970124L03A Reference No.: 970613L11

TABLE OF CONTENTS

1.	CERTIFICATION	3				
2.	GENERAL INFORMATION	4				
2.1	GENERAL DESCRIPTION OF EUT	4				
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	6				
2.3	GENERAL INOFRMATION OF THE SAR SYSTEM	9				
2.4	GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION	.12				
3.	DESCRIPTION OF SUPPORT UNITS	.16				
4.	DESCRIPTION OF TEST POSITION	.17				
4.1	DESCRIPTION OF TEST POSITION	.17				
4.2.1	TOUCH/CHEEK TEST POSITION	.18				
4.2.2	TILT TEST POSITION	.19				
4.2.3	BODY-WORN CONFIGURATION	.19				
4.2	DESCRIPTION OF TEST MODE	.20				
4.3	SUMMARY OF TEST RESULTS	.21				
5.	TEST RESULTS	.22				
5.1	TEST PROCEDURES					
5.2	MEASURED SAR RESULTS	.24				
5.3	SAR LIMITS	.28				
5.4	RECIPES FOR TISSUE SIMULATING LIQUIDS	.29				
5.5	TEST EQUIPMENT FOR TISSUE PROPERTY	.34				
6.	SYSTEM VALIDATION	.35				
6.1	TEST EQUIPMENT					
6.2	TEST PROCEDURE					
6.3	VALIDATION RESULTS					
6.4	SYSTEM VALIDATION UNCERTAINTIES					
7.	MEASUREMENT SAR PROCEDURE UNCERTAINTIES					
7.1	PROBE CALIBRATION UNCERTAINTY					
7.2	ISOTROPY UNCERTAINTY					
7.3	BOUNDARY EFFECT UNCERTAINTY					
7.4	PROBE LINEARITY UNCERTAINTY					
7.5	READOUT ELECTRONICS UNCERTAINTY					
7.6	RESPONSE TIME UNCERTAINTY					
7.7	INTEGRATION TIME UNCERTAINTY					
7.8	PROBE POSITIONER MECHANICAL TOLERANCE					
	PROBE POSITIONING					
	PHANTOM UNCERTAINTY					
	DASY4 UNCERTAINTY BUDGET					
	INFORMATION ON THE TESTING LABORATORIES	.47				
	NDIX A: TEST DATA					
APPE	NDIX B: ADT SAR MEASUREMENT SYSTEM					
APPE	NDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION					
APPE	NDIX D: SYSTEM CERTIFICATE & CALIBRATION					
APPE	NDIX E: TEST CONFIGURATIONS					
APPENDIX E. TEST CONFIGURATIONS						

1. CERTIFICATION

PRODUCT: EDA (Enterprise Digital Assistant)

MODEL: MC7506 BRAND: Symbol

APPLICANT: Symbol Technologies, Inc.

TESTED: Jul. 08 ~ Jul. 09, 2008

TEST SAMPLE: PROTOTYPE

STANDARDS: FCC Part 2 (Section 2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102

IEEE 1528-2003

The above equipment (model: MC7506) have been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Andrea H., DATE: Jul. 11, 2008

Andrea Hsia / Specialist

TECHNICAL

ACCEPTANCE: James Fan / Engineer, DATE: Jul. 11, 2008

Responsible for RF James Fan / Engineer

APPROVED BY : Gary Chang (Assistant Manager , DATE: Jul. 11, 2008

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	EDA (Enterprise Digital Assis	stant)	
MODEL NO.	MC7506		
FCC ID	H9PMC7506		
POWER SUPPLY	3.7Vdc from rechargeable lithium battery 5.4Vdc from power adapter		
CLASSIFICATION	Portable device, production unit		
MODULATION TYPE	GMSK / 8PSK / BPSK		
FREQUENCY RANGE	Tx Frequency: 824.2MHz ~ 848.8MHz (GSM band) 1850.2MHz ~ 1909.8MHz (WCDMA band) Rx Frequency: 869.2MHz ~ 893.8MHz (GSM band) 1930.2MHz ~ 1989.8MHz (WCDMA band)		
CHANNEL FREQUENCIES UNDER TEST AND ITS CONDUCTED OUTPUT POWER	GSM850 band: 1.698W / 824.2MHz for channel 128 1.738W / 836.6MHz for channel 190 1.820W / 848.8MHz for channel 251 WCDMA850 band: 0.274W / 826.4MHz for channel 4132 0.275W / 836.4MHz for channel 4182 0.285W / 846.6MHz for channel 4233 GSM1900 band: 0.832W / 18520.2MHz for channel 512 0.832W / 1880.0MHz for channel 661 0.813W / 1909.8MHz for channel 810 WCDMA1900 band: 0.402W / 1852.4MHz for channel 9262 0.459W / 1880.0MHz for channel 9400 0.432W / 1907.6MHz for channel 9538		
MAX. AVERAGE SAR (1g)	0.127W/kg (GSM850) 0.140W/kg (WCDMA850) 0.045W/kg (GSM1900) 0.067W/kg (WCDMA1900)		
ANTENNA TYPE	Monopole antenna		
MAX. ANTENNA GAIN	850MHz : 4.0dBi 1900MHz : 2.0dBi		
DATA CABLE	NA		
I/O PORTS	Refer to user's manual		
ASSOCIATED DEVICES	Battery		

NOTE:

- 1. This report is issued as a supplementary report of ADT report no.: SA970124L03-1. This report is prepared for FCC class II permissive change. The difference compared with the original design is adding a pouch. Therefore tested the body position and presented the test result in this report.
- 2. The models as identified below are identical to each other except of the following options:
 - Keypad: Numeric / QWERTY
 - Barcode reader: 1D laser scanner / 2D Imager

BRAND	MODEL	DESCRIPTION			
Symbol	MC7506	HSDPA 1D Numeric			
Symbol	MC7506	HSDPA 2D QWERTY			
**the worst case had been marked by boldface.					

NOTE: HSDPA 2D is worse from original report, therefore all the test results came out from this.

3. The EUT has one lithium battery listed as below:

LI-LON BATTERY				
BRAND: MOTOROLA				
MODEL: 82-71364-05 Rev A				
RATING:	3.7Vdc, 3600mAh			

4. The following accessories are for support units only.

PRODUCT	BRAND	MODEL	DESCRIPTION
RS232 charging cable	Motorola	25-102776-01R	1.2m non-shielded cable with one core
USB charging cable	Motorola	25-102775-01R	1.5m shielded cable with one core
Headset	Motorola	50-11300-050R	VR10 headset 0.8m non-shielded cable with one core
Power Supply Adaptor	Motorola	EADP-16BB A I/P	I/P: 100-240Vac, 50-60Hz, 0.4A O/P: 5.4Vdc, 3A 1.8m non-shielded cable without core
Holster	Motorola	11-77969-01R	Ridged holster
Holster	Motorola	SG-MC7011110-01R	Ridged holster

- 5. Hardware version: MV.
- 6. Software version: BSP16.
- 7. IMEI Code: 00440168000000 ~ 00440168000999.
- 8. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

2.2 SAR MEASUREMENT CONDITIONS FOR WCDMA

The following procedures were followed according to FCC "SAR Measurement Procedure for 3G Devices", October 2007.

Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) should be tabulated in the SAR report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations should be clearly identified.

Head SAR Measurement

SAR for head exposure configurations in voice mode is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 kbps AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

Body SAR Measurements

SAR for body exposure configurations in voice and data modes is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". SAR for other spreading codes and multiple DPDCHn, when supported by the DUT, are not required when the maximum average output of each RF channel, for each spreading code and DPDCHn configuration, are less than ¼ dB higher than those measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCHn using the exposure configuration that results in the highest SAR with 12.2 kbps RMC. When more than 2 DPDCHn are supported by the DUT, it may be necessary to configure additional DPDCHn for a DUT using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

Handsets with Release 5 HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using the additional body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel. Handsets with both HSDPA and HSUPA should be tested according to Release 6 HSPA test procedures.

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC 47 CFR Part 2 (2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102

IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

2.4 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY4 (software 4.7 Build 53) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

ET3DV6 ISOTROPIC E-FIELD PROBE

CONSTRUCTION Symmetrical design with triangular core.

Built-in optical fiber for surface detection system.

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g.,

glycolether).

FREQUENCY 10MHz to 3GHz; Linearity: ± 0.2dB (30MHz to 3GHz)

DYNAMIC RANGE $5\mu \text{W/g to} > 100 \text{mW/g}$; Linearity: $\pm 0.2 \text{dB}$

OPTICAL SURFACE

DETECTION

± 0.2mm repeatability in air and clear liquids over diffuse

reflecting surfaces

DIMENSIONS Overall length: 330mm (Tip Length: 16mm)

Tip diameter: 6.8mm (Body diameter: 12mm)
Distance from probe tip to dipole centers: 2.7mm

APPLICATION General dosimetric measurements up to 3GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms (ET3DV6)

NOTE

- 1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
- 2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
- 3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION The shell corresponds to the specifications of the Specific

> Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

SHELL THICKNESS 2 ± 0.2 mm

FILLING VOLUME Approx. 25 liters

DIMENSIONS Height: 810 mm; Length: 1000 mm; Width: 500 mm

SYSTEM VALIDATION KITS:

Symmetrical dipole with I/4 balun

Enables measurement of feedpoint impedance with NWA CONSTRUCTION

Matched for use near flat phantoms filled with brain simulating

solutions

Includes distance holder and tripod adaptor

Calibrated SAR value for specified position and input power at the CALIBRATION

flat phantom in brain simulating solutions

FREQUENCY 835. 1900

RETURN LOSS > 20 dB at specified validation position

POWER CAPABILITY

> 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dipoles for other frequencies or solutions and other calibration **OPTIONS**

conditions upon request

DEVICE HOLDER FOR SAM TWIN PHANTOM

The device holder for the GSM900/DCS1800/PCS1900 GSM/GPRS/CDMA Mobile Phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

CONSTRUCTION

DATA ACQUISITION ELECTRONICS

CONSTRUCTION

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.5 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i
 Frequency F

Device parameters: - Frequency F

- Crest factor Cf

Media parameters: - Conductivity σ

- Density ρ

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

 V_i =compensated signal of channel i (i = x, y, z)

 U_i =input signal of channel I (i = x, y, z)

Cf =crest factor of exciting field (DASY parameter) dcp_i =diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-fieldprobes:
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-fieldprobes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

 V_i =compensated signal of channel I (i = x, y, z)

Norm_i = sensor sensitivity of channel i $\mu V/(V/m)2$ for (i = x, y, z)

E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

F = carrier frequency [GHz]

E_i = electric field strength of channel i in V/mH_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7 x 7 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30 x 30 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

3. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
1	Universal Radio Communication Tester R&S		CMU200	101372	Nov. 25, 2008

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

4. DESCRIPTION OF TEST POSITION

4.1 DESCRIPTION OF TEST POSITION

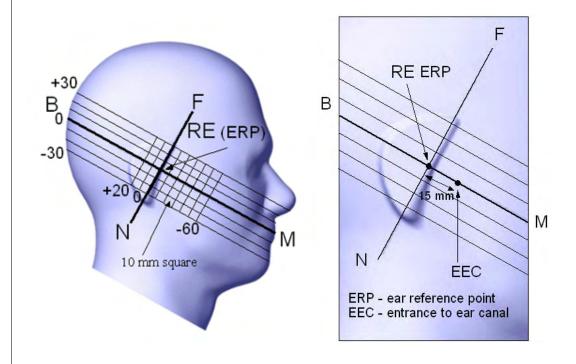
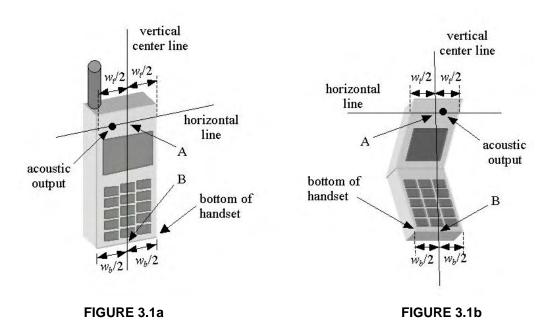
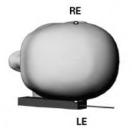



FIGURE 3.1



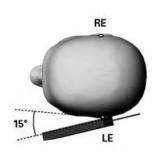
Report no.: SA970124L03A Reference No.: 970613L11



4.2.1 TOUCH/CHEEK TEST POSITION

The head position in Figure 3.1, the ear reference points ERP are 15mm above entrance to ear canal along the B-M line. The line N-F (Neck-Front) is perpendicular to the B-M (Back Mouth) line. The handset device in Figure 3.1a and 3.1b, The vertical centerline pass through two points on the front side of handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A) and the midpoint of the width Wb of the bottom of the handset (point B). The vertical centerline is perpendicular to the horizontal line and pass through the center of the acoustic output. The point A touches the ERP and the vertical centerline of the handset is parallel to the B-M line. While maintaining the point A contact with the ear(ERP), rotate the handset about the line NF until any point on handset is in contact with the cheek of the phantom

TOUCH/CHEEK POSITION FIGURE



4.2.2 TILT TEST POSITION

Adjust the device in the cheek position. While maintaining a point of the handset contact in the ear, move the bottom of the handset away from the mouth by an angle of 15 degrees.

TILT POSITION FIGURE

4.2.3 BODY-WORN CONFIGURATION

The handset device attached the belt clip or the holster. The keypad face of the handset is against with the bottom of the flat phantom face and the bottom of the keypad face contact to the bottom of the flat phantom.

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only accessory that dictates the closest spacing to the body must be tested.

4.2 DESCRIPTION OF TEST MODE

TEST MODE	COMMUNICATION MODE	MODULATION TYPE	ASSESSMENT POSTITION	TESTED CHANNEL
1	GSM850	GMSK	Body / Bottom	128, 190, 251
2	GPRS850 TS2	GMSK	Body / Bottom	251
3	GPRS850 TS1	GMSK	Body / Bottom	251
4	E-GPRS850 TS2	8PSK	Body / Bottom	251
5	E-GPRS850 TS1	8PSK	Body / Bottom	251
6	WCDMA850	BPSK	Body / Bottom	4132, 4182, 4233
7	HSDPA850	BPSK	Body / Bottom	4233
8	GSM1900	GMSK	Body / Bottom	512, 661, 810
9	GPRS1900 TS2	GMSK	Body / Bottom	661
10	GPRS1900 TS1	GMSK	Body / Bottom	661
11	E-GPRS1900 TS2	8PSK	Body / Bottom	661
12	E-GPRS1900 TS1	8PSK	Body / Bottom	661
13	WCDMA1900	BPSK	Body / Bottom	9262, 9400, 9538
14	HSDPA1900	BPSK	Body / Bottom	9400

NOTE: Assessment position A: Right head position, B: Left head position, C: Body position, please refer to appendix E for the photo.

4.3 SUMMARY OF TEST RESULTS

THE EUT OF THIS MODE IS WITH MODEL:

II	ГЕМ	1 2 3 4 5				5
COMMUNIC	CATION MODE	GSM850 GPRS850 TS2 GPRS850 TS1 E-GPRS850 TS2 E-GPRS850 TS				E-GPRS850 TS1
CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)				
128	824.2 (Low)	0.121	-	-	-	-
190	836.6 (Mid.)	0.116	-	-	-	-
251	848.8 (High)	0.127	0.090	0.088	0.057	0.028

ITEM		6	7	
COMMUNICATION MODE WCDMA850		WCDMA850	HSDPA850	
CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)		
4132	826.4 (Low)	0.102	-	
4182	836.4 (Mid.)	0.125	-	
4233	846.6 (High)	0.140	0.086	

NOTE: The worst value of each communication has been marked by boldface.

ın	ГЕМ	8 9 10			11	12
COMMUNIC	CATION MODE	GSM1900 GPRS1900 TS2 GPRS1900 TS1 E-GPRS1900 TS2 E-GPRS1900			E-GPRS1900 TS1	
CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)				
512	1850.2 (Low)	0.025	-	-	-	-
661	1880.0 (Mid.)	0.045	0.026	0.030	0.022	0.016
810	1909.8 (High)	0.031	-	-	-	-

ITEM		13	14	
COMMUNICATION MODE		WCDMA1900	HSDPA1900	
CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)		
9262	1852.4 (Low)	0.052	-	
9400	1880.0 (Mid.)	0.067	0.043	
9538	1907.6 (High)	0.045	-	

NOTE: The worst value of each communication has been marked by boldface.

5. TEST RESULTS

5.1 TEST PROCEDURES

The EUT makes a phone call to the communication simulator station. Establish the simulation communication configuration rather the actual communication. Then the EUT could continuous the transmission mode. Adjust the PCL of the base station could controlled the EUT to transmitted the maximum output power. The base station also could control the transmission channel. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 / EN 62209-1, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan with 15mm x 15mm grid was performed for the highest spatial SAR location. Consist of 11 x 13 points while the scan size is the 150mm x 180mm. The zoom scan with 30mm x 30mm x 30mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 4.0 mm and maintained at a constant distance of ± 1.0 mm during a zoom scan to determine peak SAR locations. The distance is 4mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 9mm separation distance. The cube size is 7 x 7 x 7 points consist of 343 points and the grid space is 5mm.

The measurement time is 0.5 s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 4mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than $\pm 5\%$.

5.2 MEASURED SAR RESULTS

GSM850/GPRS850 TS2/GPRS850 TS1/E-GPRS850 TS2/E-GPRS850 TS1 BAND BODY POSITION

	RONMEN DITION	TAL	Air Temperature: 23.1°C, Liquid Temperature: 22.3°C Humidity: 61%RH						
TESTED BY			Sam Onn			DATE		Jul. 08. 2008	
CHAN.	FREQ.	MODU	LATION	CONDUCTED	POWER (W)	POWER		E TEST	MEASURED 1g
CHAN.	(MHz)	TY	PE	BEGIN TEST	AFTER TEST	DRIFT (%)		DE	SAR (W/kg)
128	824.2 (Low)	GN	ISK	1.698	1.684	-0.82		1	0.121
190	836.6 (Mid.)	GN	ISK	1.738	1.721	-0.98	1		0.116
251	848.8 (High)	GN	ISK	1.820	1.800	-1.10	1		0.127
251	848.8 (High)	GN	ISK	1.202	1.188	-1.16		2	0.090
251	848.8 (High)	GN	ISK	1.738	1.714	-1.38	:	3	0.088
251	848.8 (High)	8P	SK	0.234	0.230	-1.71		4	0.057
251	848.8 (High)	8P	SK	0.363	0.356	-1.93		5	0.028

- 1. Test configuration of each mode is described in section 3.
- $2. \ In this testing, the limit for General Population Spatial Peak averaged over {\it 1g, 1.6W/kg}, is applied.$
- 3. Please see the Appendix A for the data.
- 4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

WCDMA850/HSDPA850 BAND BODY POSITION

ENVIR	RONMEN DITION	TAL	Air Temperature:23.1°C, Liquid Temperature:22.3°C Humidity:61%RH						
TESTED BY		Sam Onn			DATE	Jul. 08	l. 08. 2008		
	FREQ.	MODUI	LATION	CONDUCTED	POWER (W)	POWER	DEVICE TEST	MEASURED 1g	
CHAN.	(MHz)	ТҮР	PE	BEGIN TEST	AFTER TEST	DRIFT (%)	POSITION MODE	SAR (W/kg)	
4132	826.4 (Low)	ВР	PSK	0.274	0.272	-0.73	6	0.102	
4182	836.4 (Mid.)	ВР	PSK	0.275	0.272	-1.09	6	0.125	
4233	846.6 (High)	ВР	PSK	0.285	0.281	-1.40	6	0.140	
4233	846.6 (High)	ВР	PSK	0.255	0.251	-1.57	7	0.086	

- 1. Test configuration of each mode is described in section 3.
- 2. In this testing, the limit for General Population Spatial Peak averaged over ${\bf 1g}$, ${\bf 1.6W/kg}$, is applied.
- 3. Please see the Appendix A for the data.
- 4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

GSM1900/GPRS1900 TS2/GPRS1900 TS1/E-GPRS1900 TS2/E-GPRS1900 TS1 BAND BODY POSITION

	RONMEN DITION	TAL		Air Temperature:23.7°C, Liquid Temperature:22.9°C Humidity:61%RH						
TESTED BY			Sam C)nn		DATE		Jul. 09	Jul. 09, 2008	
OLIANI	FREQ.	MODUI	LATION	CONDUCTED	POWER (W)	POWER	DEVICE TEST		MEASURED 1g	
CHAN.	(MHz)		PE	BEGIN TEST	AFTER TEST	DRIFT (%)		TION DE	SAR (W/kg)	
512	1850.2 (Low)	GN	ISK	0.832	0.825	-0.84	,	8	0.025	
661	1880.0 (Mid.)	GN	ISK	0.832	0.824	-0.96	,	8	0.045	
810	1909.8 (High)	GN	ISK	0.813	0.804	-1.11	·	8	0.031	
661	1880.0 (Mid.)	GM	ISK	0.575	0.568	-1.22	!	9	0.026	
661	1880.0 (Mid.)	GN	ISK	0.794	0.783	-1.39	1	0	0.030	
661	1880.0 (Mid.)	GN	ISK	0.182	0.179	-1.65	1	1	0.022	
661	1880.0 (Mid.)	GN	ISK	0.288	0.283	-1.74	1	2	0.016	

- 1. Test configuration of each mode is described in section 3.
- 2. In this testing, the limit for General Population Spatial Peak averaged over ${\bf 1g}$, ${\bf 1.6W/kg}$, is applied.
- 3. Please see the Appendix A for the data.
- 4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

WCDMA1900/HSDPA1900 BAND BODY POSITION

ENVIR	RONMEN' DITION	TAL	Air Temperature:23.7°C, Liquid Temperature:22.9°C Humidity:61%RH						
TESTED BY		Sam Onn			DATE	Jul. 09	Jul. 09, 2008		
	FREQ.	MODUI	LATION	CONDUCTED	POWER (W)	POWER	DEVICE TEST	MEASURED 1g	
CHAN. (N	(MHz)	TY	PE	BEGIN TEST	AFTER TEST	DRIFT (%)	POSITION MODE	SAR (W/kg)	
9262	1852.4 (Low)	ВР	PSK	0.402	0.395	-1.74	13	0.052	
9400	1880.0 (Mid.)	ВР	PSK	0.459	0.450	-1.96	13	0.067	
9538	1907.6 (High)	ВР	PSK	0.432	0.423	-2.08	13	0.045	
9400	1880.0 (Mid.)	ВР	rsk	0.449	0.439	-2.23	14	0.043	

- 1. Test configuration of each mode is described in section 3.
- 2. In this testing, the limit for General Population Spatial Peak averaged over ${\bf 1g}$, ${\bf 1.6W/kg}$, is applied.
- 3. Please see the Appendix A for the data.
- 4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

5.3 SAR LIMITS

	SAR (W/kg)				
HUMAN EXPOSURE	(General Population / Uncontrolled Exposure Environment)	(Occupational / controlled Exposure Environment)			
Spatial Average (whole body)	0.08	0.4			
Spatial Peak (averaged over 1 g)	1.6	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

- 1. This limits accord to 47 CFR 2.1093 Safety Limit.
- 2. The EUT property been complied with the partial body exposure limit under the general population environment.

5.4 RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following ingredients are used:

• WATER- Deionized water (pure H20), resistivity _16 M - as basis for the liquid

• SUGAR- Refined sugar in crystals, as available in food shops - to reduce relative

permittivity

• **SALT-** Pure NaCl - to increase conductivity

• CELLULOSE- Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water,

20_C),

CAS # 54290 - to increase viscosity and to keep sugar in solution

• PRESERVATIVE- Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 - to

prevent the spread of bacteria and molds

• **DGMBE-** Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH,

CAS # 112-34-5 - to reduce relative permittivity

THE RECIPES FOR 835MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 835MHz (HSL-835)	MUSCLE SIMULATING LIQUID 835MHz (MSL-835)
Water	40.28%	50.07%
Cellulose	02.41%	NA
Salt	01.38%	0.94%
Preventtol D-7	00.18%	0.09%
Sugar	57.97%	48.2%
Dielectric Parameters at 22°C	f = 835MHz $ε = 41.5 \pm 5\%$ $σ = 0.97 \pm 5\%$ S/m	f= 835MHz ε= 55.0 ± 5% σ= 1.05 ± 5% S/m

THE RECIPES FOR 1900MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 1900MHz (HSL-1900)	MUSCLE SIMULATING LIQUID 1900MHz (MSL-1900)
Water	55.24%	70.16%
DGMBE	44.45%	29.44%
Salt	0.306%	00.39%
Dielectric Parameters at 22°C	f= 1900MHz ε= 40.0 ± 5% σ = 1.40 ± 5% S/m	f= 1900MHz ε= 53.3 ± 5% σ = 1.52 ± 5% S/m

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D. The testing procedure is following as

- 1. Turn Network Analyzer on and allow at least 30 min. warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature (±1°).
- 4. Set water temperature in Agilent-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness ϵ '=10.0, ϵ "=0.0). If measured parameters do not fit within tolerance, repeat calibration (±0.2 for ϵ ': ±0.1 for ϵ ").
- 7. Conductivity can be calculated from ε'' by $\sigma = \omega \varepsilon_0 \varepsilon'' = \varepsilon'' f [GHz] / 18.$
- 8. Measure liquid shortly after calibration. Repeat calibration every hour.
- 9. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900 MHz) and press 'Option'-button.

Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900 MHz).

FOR GSM850 BAND SIMULATING LIQUID

LIQUID T	YPE	HSL	-835	MSL-835		
SIMULATING LIQUID TEMP.		N	IA	22.3		
TESTED I	DATE	N	IA	Jul. 08	3. 2008	
TESTED I	ВҮ	٨	IA	Sam	Onn	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	STANDARD VALUE	MEASUREMENT VALUE	
824.2		NA	NA	55.20	55.70	
826.4		NA	NA	55.20	55.70	
835.0	Permitivity	NA	NA	55.20	55.60	
836.4	(ε)	NA	NA	55.20	55.60	
836.6	(0)	NA	NA	55.20	55.60	
846.6		NA	NA	55.20	55.50	
848.8		NA	NA	55.20	55.50	
824.2		NA	NA	0.97	0.96	
826.4		NA	NA	0.97	0.96	
835.0	Conductivity	NA	NA	0.97	0.97	
836.4	(σ)	NA	NA	0.97	0.97	
836.6	S/m	NA	NA	0.97	0.97	
846.6		NA	NA	0.98	0.98	
848.8		NA	NA	0.99	0.98	
Dielectric Parameters Required at 22℃		f= 835MHz ε= 41.5 ± 5% σ= 0.97 ± 5% S/m		f= 835MHz ε= 55.0 ± 5% σ= 1.05 ± 5% S/m		

FOR GSM1900 BAND SIMULATING LIQUID

LIQUID TYPE		HSL	-1900	MSL-1900		
SIMULATING LIQUID TEMP.		N	IA	22.9		
TESTED I	DATE	N	NA .	Jul. 09	9, 2008	
TESTED I	ВҮ	N	NA .	Sam	n Onn	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	STANDARD VALUE	MEASUREMENT VALUE	
1850.2		NA	NA	53.30	53.40	
1852.4		NA	NA	53.30	53.40	
1880.0	Permitivity	NA	NA	53.30	53.30	
1900.0	(ε)	NA	NA	53.30	53.20	
1907.6		NA	NA	53.30	53.10	
1909.8		NA	NA	53.30	53.10	
1850.2		NA	NA	1.52	1.49	
1852.4	Conductivity	NA	NA	1.52	1.49	
1880.0	Conductivity (σ)	NA	NA	1.52	1.53	
1900.0	S/m	NA	NA	1.52	1.55	
1907.6	5/111	NA	NA	1.52	1.55	
1909.8		NA	NA	1.52	1.56	
Dielectric Parameters Required at 22℃		f= 1900MHz ε= 40.0 ± 5% σ= 1.40 ± 5% S/m		f= 1900MHz ε= 53.3 ± 5% σ= 1.52 ± 5% S/m		

Report no.: SA970124L03A Reference No.: 970613L11

5.5 TEST EQUIPMENT FOR TISSUE PROPERTY

ITEI	NAME	BAND	TYPE	SERIES NO.	CALIBRATED UNTIL
1	Network Analyzer	Agilent	E8358A	US41480538	Nov. 11, 2008
2	Dielectric Probe	Agilent	85070D	US01440176	NA

NOTE: 1. Before testing the measurement, all test equipment shall have 30 min warm up.

2. The tolerance (k=1) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually ±2.5% and ±5% for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than ±2.5% (k=1). It can be substantially smaller if more accurate methods are applied.

6. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

6.1 TEST EQUIPMENT

ITEM	NAME	BAND	TYPE	SERIES NO.	CALIBRATED UNTIL
1	SAM Phantom	S&P	QD000 P40 CA	TP-1150	NA
2	Synthesized Signal Generator	Anritsu	68247B	984703	May 26, 2009
3	E-Field Probe	S&P	ET3DV6	1790	Nov. 19, 2008
5	DAE	S&P	DAE	510	Aug. 28, 2008
6	Robot Positioner	Staubli Unimation	NA	NA	NA
7	Validation Dipole	S&P	D835V2	4d021	May 12, 2009
	validation Dipole	S&P	D1900V2	5d022	Aug. 27, 2008

NOTE: Before starting the measurement, all test equipment shall be warmed up for 30min.

6.2 TEST PROCEDURE

Before you start the system performance check, need only to tell the system with which components (probe, medium, and device) are performing the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat phantom section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for the EUT can be left in place but should be rotated away from the dipole.

- 1.The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ±0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ±0.02 dB.
- 2.The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). In that case it is better to abort the system performance check and stir the liquid. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.) However, varying breaking indices of different liquid compositions might also influence the distance. If the indicated difference varies from the actual setting, the probe parameter "optical surface

- 3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
- 4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY4 system is less than ±0.1mm.

$$SAR_{tolerance}[\%] = 100 \times (\frac{(a+d)^2}{a^2} - 1)$$

As the closest distance is 10mm, the resulting tolerance SAR_{tolerance}[%] is <2%.

6.3 VALIDATION RESULTS

SYSTEM VALIDATION TEST OF SIMULATING LIQUID							
FREQUENCY (MHz)	REQUIRED SAR (mW/g)	MEASURED SAR (mW/g)	DEVIATION (%)	SEPARATION DISTANCE	TESTED DATE		
MSL 835	2.34 (1g)	2.29	-2.14	15mm	Jul. 08. 2008		
MSL 1900	9.44 (1g)	9.22	-2.33	10mm	Jul. 09, 2008		
TESTED BY	Sam Onn						

NOTE: Please sees Appendix for the photo of system validation test.

6.4 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the EN 62209-1 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance (±%)	Probability Distribution	Divisor	(C _i)		Standard Uncertainty (±%)		(v _i)
	(= / 0)			(1g)	(10g)	(1g)	(10g)	
Measurement System								
Probe Calibration	4.8	Normal	1	1	1	4.8	4.8	∞
Axial Isotropy	4.7	Rectangular	√3	1	1	2.7	2.7	∞
Hemispherical Isotropy	0	Rectangular	√3	1	1	0	0	∞
Boundary effect	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
System Detection Limit	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time	0	Rectangular	√3	1	1	0	0	∞
Integration Time	0	Rectangular	√3	1	1	0	0	∞
RF Ambient Conditions	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.4	Rectangular	√3	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	∞
Algorithms for Max. SAR Evaluation	1.0	Rectangular	√3	1	1	0.6	0.6	8
Dipole								
Dipole Axis to Liquid Distance	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Input power and SAR drift measurement	4.7	Rectangular	√3	1	1	2.7	2.7	8
	ı	Phantom and Tiss	ue Parame	ters				
Phantom Uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	8
Liquid Conductivity (target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	2.5	Normal	1	0.64	0.43	1.6	1.1	8
Liquid Permittivity (target)	5.0	Rectangular	√3	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	2.5	Normal	1	0.6	0.49	1.5	1.2	∞
Combined Standard Uncertainty					8.4	8.1	∞	
Coverage Factor for 95%					kp=2			
Expanded Uncertainty (K=2)					16.8	16.2		

NOTE: About the system validation uncertainty assessment, please reference the section 7.

7. MEASUREMENT SAR PROCEDURE UNCERTAINTIES

The assessment of spatial peak SAR of the hand handheld devices is according to IEEE 1528. All testing situation shall be met below these requirements.

- The system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG.
- The probe has been calibrated within the requested period and the stated uncertainty for the relevant frequency bands does not exceed 4.8% (k=1).
- The validation dipole has been calibrated within the requested period and the system performance check has been successful.
- The DAE unit has been calibrated within the within the requested period.
- The minimum distance between the probe sensor and inner phantom shell is selected to be between 4 and 5mm.
- The operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136 and PDC) and the measurement/integration time per point is >500 ms.
- The dielectric parameters of the liquid have been assessed using Agilent 85070D dielectric probe kit or a more accurate method.
- The dielectric parameters are within 5% of the target values.
- The DUT has been positioned as described in section 3.

7.1 PROBE CALIBRATION UNCERTAINTY

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO17025. The uncertainties are stated on the calibration certificate. For the most relevant frequency bands, these values do not exceed 4.8% (k=1). If evaluations of other bands are performed for which the uncertainty exceeds these values, the uncertainty tables given in the summary have to be revised accordingly.

7.2 ISOTROPY UNCERTAINTY

The axial isotropy tolerance accounts for probe rotation around its axis while the hemispherical isotropy error includes all probe orientations and field polarizations. These parameters are assessed by SPEAG during initial calibration. In 2001, SPEAG further tightened its quality controls and warrants that the maximal deviation from axial isotropy is ± 0.20 dB, while the maximum deviation of hemispherical isotropy is ± 0.40 dB, corresponding to $\pm 4.7\%$ and $\pm 9.6\%$, respectively. A weighting factor of cp equal to 0.5 can be applied, since the axis of the probe deviates less than 30 degrees from the normal surface orientation.

7.3 BOUNDARY EFFECT UNCERTAINTY

The effect can be estimated according to the following error approximation formula

$$SAR_{tolerance}[\%] = SAR_{be}[\%] \times \frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{e^{\frac{-d_{be}}{\delta/2}}}{\delta/2}$$

$$d_{be} + d_{step} < 10mm$$

The parameter d_{be} is the distance in mm between the surface and the closest measurement point used in the averaging process; d_{step} is the separation distance in mm between the first and second measurement points; δ is the minimum penetration depth in mm within the head tissue equivalent liquids (i.e., δ = 13.95 mm at 3GHz); SAR_{be} is the deviation between the measured SAR value at the distance d_{be} from the boundary and the wave-guide analytical value SAR_{ref}.DASY4 applies a boundary effect compensation algorithm according to IEEE 1528, which is possible since the axis of the probe never deviates more than 30 degrees from the normal surface orientation. SAR_{be}[%] is assessed during the calibration process and SPEAG warrants that the uncertainty at distances larger than 4mm is always less than 1%.In summary, the worst case boundary effect SAR tolerance[%] for scanning distances larger than 4mm is < \pm 0.8%.

7.4 PROBE LINEARITY UNCERTAINTY

Field probe linearity uncertainty includes errors from the assessment and compensation of the diode compression effects for CW and pulsed signals with known duty cycles. This error is assessed using the procedure described in IEEE 1528. For SPEAG field probes, the measured difference between CW and pulsed signals, with pulse frequencies between 10 Hz and 1 kHz and duty cycles between 1 and 100, is $< \pm 0.20$ dB ($< \pm 4.7\%$).

7.5 READOUT ELECTRONICS UNCERTAINTY

All uncertainties related to the probe readout electronics (DAE unit), including the gain and linearity of the instrumentation amplifier, its loading effect on the probe, and accuracy of the signal conversion algorithm, have been assessed accordingly to IEEE 1528. The combination (root-sum-square RSS method) of these components results in an overall maximum error of ±1.0%.

7.6 RESPONSE TIME UNCERTAINTY

The time response of the field probes is assessed by exposing the probe to a well-controlled electric field producing SAR larger than 2.0 W/kg at the tissue medium surface. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/of switch of the power source. Analytically, it can be expressed as:

$$SAR_{tolerance}[\%] = 100 \times (\frac{T_m}{T_m + \tau e^{-T_m/\tau} - \tau} - 1)$$

where Tm is 500 ms, i.e., the time between measurement samples, and $_{\rm T}$ the time constant. The response time $_{\rm T}$ of SPEAG's probes is <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

7.7 INTEGRATION TIME UNCERTAINTY

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization and can be assessed as follows

$$SAR_{tolerance} [\%] = 100 \times \sum_{all sub-frames} \frac{t_{frame}}{t_{\text{integration}}} \frac{slot_{idle}}{slot_{total}}$$

The tolerances for the different systems are given in Table 7.1, whereby the worst-case $SAR_{tolerance}$ is 2.6%.

System	SAR _{tolerance} %
CW	0
CDMA*	0
WCDMA*	0
FDMA	0
IS-136	2.6
PDC	2.6
GSM/DCS/PCS	1.7
DECT	1.9
Worst-Case	2.6

TABLE 7.1

7.8 PROBE POSITIONER MECHANICAL TOLERANCE

The mechanical tolerance of the field probe positioner can introduce probe positioning uncertainties. The resulting SAR uncertainty is assessed by comparing the SAR obtained according to the specifications of the probe positioner with respect to the actual position defined by the geometric enter of the probe sensors. The tolerance is determined as:

$$SAR_{tolerance} [\%] = 100 \times \frac{d_{ph}}{\delta/2}$$

The specified repeatability of the RX robot family used in DASY4 systems is $\pm 25 \,\mu$ m. The absolute accuracy for short distance movements is better than ± 0.1 mm, i.e., the SAR_{tolerance}[%] is better than 1.5% (rectangular).

7.9 PROBE POSITIONING

The probe positioning procedures affect the tolerance of the separation distance between the probe tip and the phantom surface as:

$$SAR_{tolerance} [\%] = 100 \times \frac{d_{ph}}{\delta/2}$$

where d_{ph} is the maximum deviation of the distance between the probe tip and the phantom surface. The optical surface detection has a precision of better than 0.2 mm, resulting in an SAR_{tolerance}[%] of <2.9% (rectangular distribution). Since the mechanical detection provides better accuracy, 2.9% is a worst-case figure for DASY4 system.

7.10 PHANTOM UNCERTAINTY

The SAR measurement uncertainty due to SPEAG phantom shell production tolerances has been evaluated using

$$SAR_{tolerance}[\%] \cong 100 \times \frac{2d}{a},$$
 $d << a$

For a maximum deviation d of the inner and outer shell of the phantom from that specified in the CAD file of ± 0.2 mm, and a 10mm spacing a between source and tissue liquid, the calculated phantom uncertainty is $\pm 4.0\%$.

7.11 DASY4 UNCERTAINTY BUDGET

Error Description	Tolerance (±%)	Probability Distribution	Divisor	(C _i)		Standard Uncertainty (±%)		(v _i)
	` ′			(1g)	(10g)	(1g)	(10g)	
Measurement Equipment								
Probe Calibration	4.8	Normal	1	1	1	4.8	4.8	∞
Axial Isotropy	4.7	Rectangular	√3	1	1	1.9	1.9	∞
Hemispherical Isotropy	9.6	Rectangular	√3	1	1	3.9	3.9	∞
Boundary effect	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	∞
System Detection Limit	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time	0.8	Normal	1	1	1	0.8	0.8	∞
Integration Time	2.6	Normal	1	1	1	2.6	2.6	∞
Noise	0.0	Normal	1	0	0	0	0	∞
		Mechanical Co	onstraints					
Scanning System	0.4	Rectangular	√3	1	1	0.2	0.2	∞
Phantom Shell	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Probe Positioning	2.9	Rectangular	√3	1	1	1.7	1.7	∞
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	875
		Physical Par	ameters					
Liquid Conductivity (target)	5.0	Rectangular	√3	0.7	0.5	2	1.4	∞
Liquid Conductivity (measurement)	4.3	Rectangular	√3	0.7	0.5	1.7	1.2	∞
Liquid Permittivity (target)	5.0	Rectangular	√3	0.6	0.5	1.7	1.4	∞
Liquid Permittivity (measurement)	4.3	Rectangular	√3	0.6	0.5	1.5	1.2	8
Power Drift	5	Rectangular	√3	1	1	2.9	2.9	∞
RF Ambient Conditions	3.0	Rectangular	√3	1	1	1.7	1.7	8
Post-Processing								
Extrapolation and Integration	1	Rectangular	√3	1	1	0.6	0.6	∞
Combined Standard Uncertainty					9.9	9.7		
Coverage Factor for 95%						kp=2		
Expanded Uncertainty (K=2)					19.9	19.3		

TABLE 7.2

The table 7.2: Worst-Case uncertainty budget for DASY4 assessed according to IEEE 1528. The budget is valid for the frequency range $300 MHz \sim 3 GHz$ and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

8. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA FCC, UL, A2LA TUV Rheinland

JAPAN VCCI NORWAY NEMKO

CANADA INDUSTRY CANADA, CSA

R.O.C. TAF, BSMI, NCC

NETHERLANDS Telefication

SINGAPORE GOST-ASIA (MOU)
RUSSIA CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---

APPENDIX A: TEST DATA

Liquid Level Photo

Tissue MSL835MHz D=150mm

MSL 1900MHz D=151mm

Date/Time: 2008/7/8 16:45:19

Test Laboratory: Advance Data Technology

M01-Body Worn-GSM850-Ch128

DUT: EDA; Type: MC7506; Test Frequency: 824.2 MHz

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL835 Medium parameters used: f = 824.2 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 55.7$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

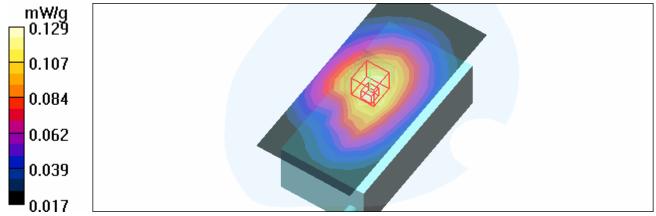
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Low Channel 128/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.127 mW/g


Low Channel 128/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m

Peak SAR (extrapolated) = 0.157 W/kg

SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.088 mW/g

Maximum value of SAR (measured) = 0.129 mW/g

Date/Time: 2008/7/8 17:06:32

Test Laboratory: Advance Data Technology

M01-Body Worn-GSM850-Ch190

DUT: EDA; Type: MC7506; Test Frequency: 836.6 MHz

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: MSL835 Medium parameters used: f = 836.6 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

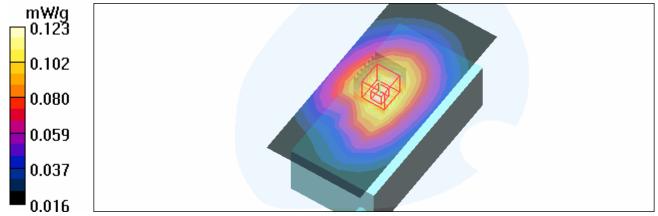
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 190/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.122 mW/g


Mid Channel 190/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.7 V/m

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.123 mW/g

Date/Time: 2008/7/8 17:28:50

Test Laboratory: Advance Data Technology

M01-Body Worn-GSM850-Ch251

DUT: EDA; Type: MC7506; Test Frequency: 848.8 MHz

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: MSL835 Medium parameters used: f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

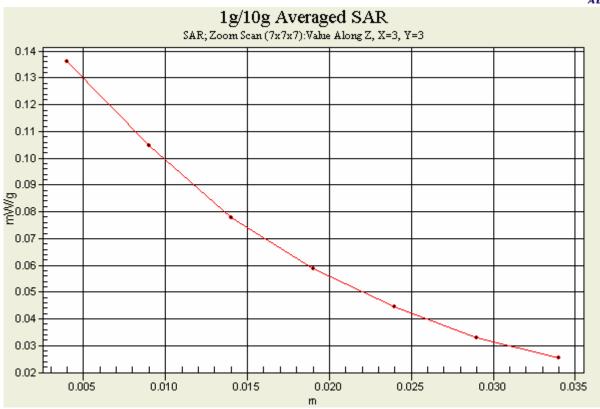
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 251/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.133 mW/g


High Channel 251/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m


Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.127 mW/g; SAR(10 g) = 0.093 mW/g

Maximum value of SAR (measured) = 0.135 mW/g

Date/Time: 2008/7/8 17:49:12

Test Laboratory: Advance Data Technology

M02-Body Worn-GPRS850 TS2-Ch251

DUT: EDA; Type: MC7506; Test Frequency: 848.8 MHz

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: MSL835 Medium parameters used: f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK / UL 2 time slots

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

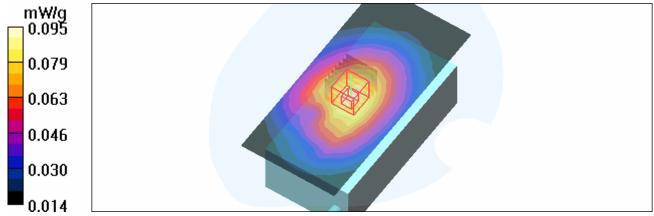
Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 251/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.096 mW/g


High Channel 251/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.1 V/m

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.090 mW/g; SAR(10 g) = 0.066 mW/g

Maximum value of SAR (measured) = 0.095 mW/g

Date/Time: 2008/7/8 18:12:10

Test Laboratory: Advance Data Technology

M03-Body Worn-GPRS850 TS1-Ch251

DUT: EDA; Type: MC7506; Test Frequency: 848.8 MHz

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: MSL835 Medium parameters used: f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK / UL 1 time slot

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

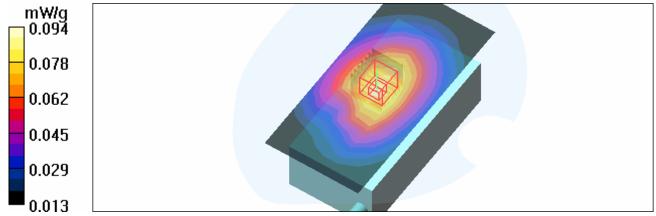
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 251/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.092 mW/g


High Channel 251/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.2 V/m

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.094 mW/g

Date/Time: 2008/7/8 18:34:46

Test Laboratory: Advance Data Technology

M04-Body Worn-E-GPRS850 TS2-Ch251

DUT: EDA; Type: MC7506; Test Frequency: 848.8 MHz

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: MSL835 Medium parameters used: f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: 8PSK / UL 2 time slots

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

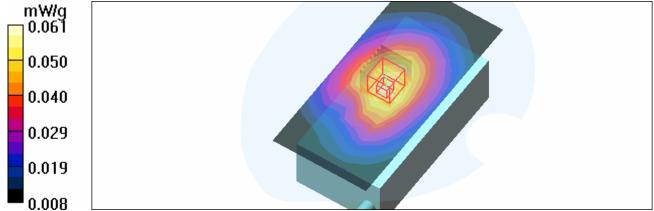
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 251/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.059 mW/g


High Channel 251/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.37 V/m

Peak SAR (extrapolated) = 0.072 W/kg

SAR(1 g) = 0.057 mW/g; SAR(10 g) = 0.042 mW/g

Maximum value of SAR (measured) = 0.061 mW/g

Date/Time: 2008/7/8 18:55:05

Test Laboratory: Advance Data Technology

M05-Body Worn-E-GPRS850 TS1-Ch251

DUT: EDA; Type: MC7506; Test Frequency: 848.8 MHz

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: MSL835 Medium parameters used: f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: 8PSK / UL 1 time slot

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

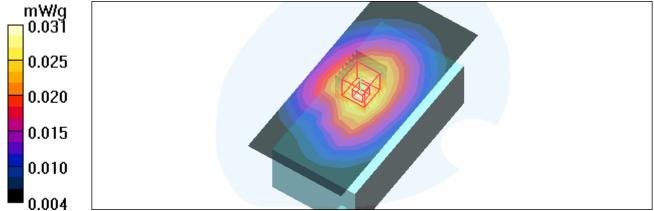
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 251/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.030 mW/g


High Channel 251/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.86 V/m

Peak SAR (extrapolated) = 0.036 W/kg

SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.021 mW/g

Maximum value of SAR (measured) = 0.031 mW/g

Date/Time: 2008/7/8 19:16:23

Test Laboratory: Advance Data Technology

M06-Body Worn-WCDMA850-Ch4132

DUT: EDA; Type: MC7506; Test Frequency: 826.4 MHz

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL835 Medium parameters used: f = 826.4 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.7$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

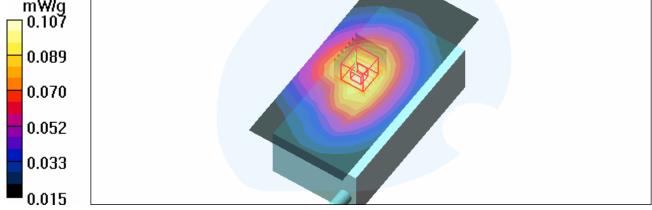
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Low Channel 4132/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.106 mW/g


Low Channel 4132/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.9 V/m

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.075 mW/g

Maximum value of SAR (measured) = 0.107 mW/g

Date/Time: 2008/7/8 19:37:29

Test Laboratory: Advance Data Technology

M06-Body Worn-WCDMA850-Ch4182

DUT: EDA; Type: MC7506; Test Frequency: 836.4 MHz

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

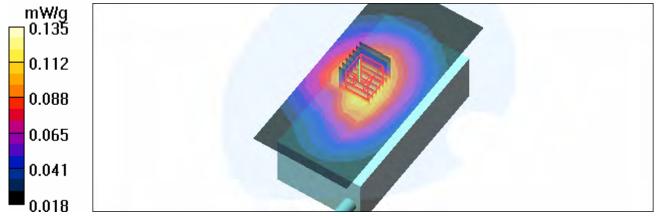
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 4182/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.131 mW/g


Mid Channel 4182/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.091 mW/g

Maximum value of SAR (measured) = 0.135 mW/g

Date/Time: 2008/7/8 19:59:02

Test Laboratory: Advance Data Technology

M06-Body Worn-WCDMA850-Ch4233

DUT: EDA; Type: MC7506; Test Frequency: 846.6 MHz

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL835 Medium parameters used: f = 846.6 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

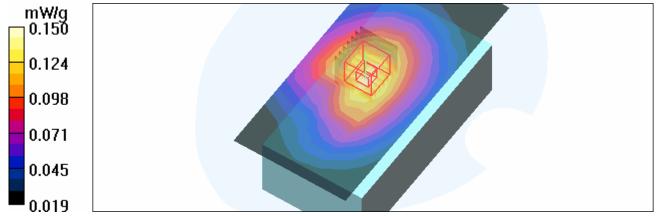
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

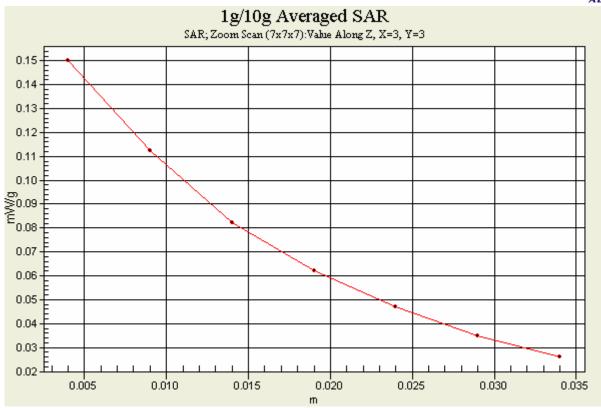
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 4233/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.146 mW/g

High Channel 4233/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 12.8 V/m


Peak SAR (extrapolated) = 0.182 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.150 mW/g

Date/Time: 2008/7/8 20:21:37

Test Laboratory: Advance Data Technology

M07-Body Worn-HSDPA850-Ch4132

DUT: EDA; Type: MC7506; Test Frequency: 846.6 MHz

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL835 Medium parameters used: f = 846.6 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$

kg/m³; Liquid Level: 150 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.1 degrees; Liquid Temp.: 22.3 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

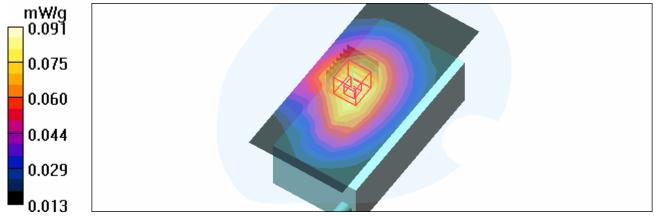
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 4233/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.088 mW/g

High Channel 4233/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 9.87 V/m

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.086 mW/g; SAR(10 g) = 0.062 mW/g

 $Maximum\ value\ of\ SAR\ (measured) = 0.091\ mW/g$

Date/Time: 2008/7/9 20:11:14

Test Laboratory: Advance Data Technology

M08-Body Worn-PCS1900-Ch512

DUT: EDA; Type: MC796; Test Frequency: 1850.2 MHz

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.4$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance: 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Low Channel 512/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.025 mW/g

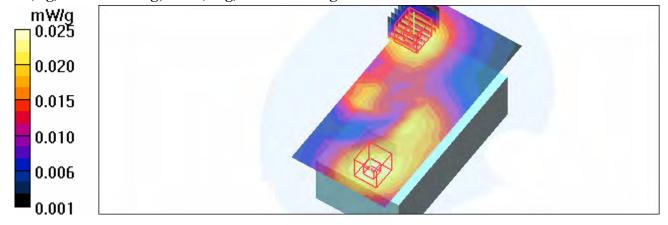
Low Channel 512/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 3.17 V/m

Peak SAR (extrapolated) = 0.042 W/kg

 $SAR(1 g) = \frac{0.025}{0.025} mW/g; SAR(10 g) = 0.016 mW/g$


Maximum value of SAR (measured) = 0.026 mW/g

Low Channel 512/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.17 V/m

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.015 mW/g

Date/Time: 2008/7/9 20:32:01

Test Laboratory: Advance Data Technology

M08-Body Worn-PCS1900-Ch661

DUT: EDA; Type: MC796; Test Frequency: 1880 MHz

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

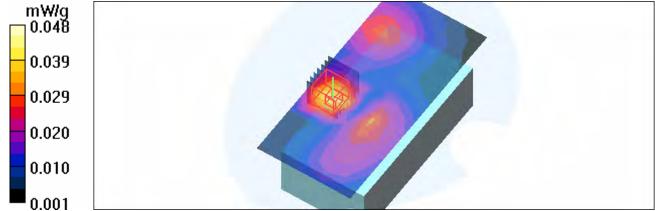
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

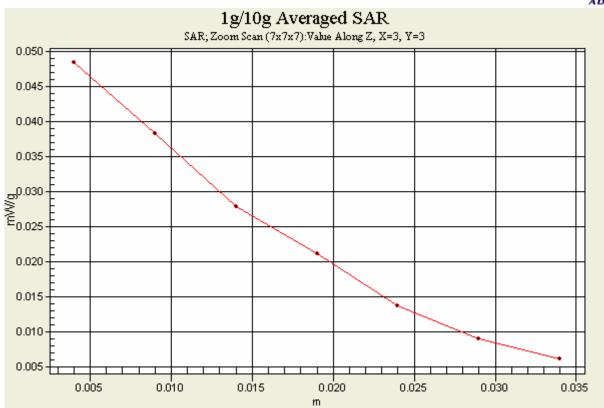
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 661/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.044 mW/g


Mid Channel 661/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.03 V/m


Peak SAR (extrapolated) = 0.062 W/kg

SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.048 mW/gmW/q

Date/Time: 2008/7/9 20:52:27

Test Laboratory: Advance Data Technology

M08-Body Worn-PCS1900-Ch810

DUT: EDA; Type: MC796; Test Frequency: 1909.8 MHz

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 810/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.032 mW/g


High Channel 810/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.29 V/m

Peak SAR (extrapolated) = 0.046 W/kg

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.033 mW/g

Date/Time: 2008/7/9 21:10:20

Test Laboratory: Advance Data Technology

M09-Body Worn-GPRS1900 TS2-Ch661

DUT: EDA; Type: MC7506; Test Frequency: 1880 MHz

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK / UL 2 times slots

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

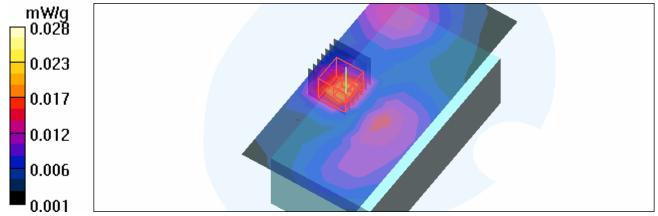
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Low Channel 512/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.026 mW/g


Low Channel 512/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.51 V/m

Peak SAR (extrapolated) = 0.037 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.028 mW/g

Date/Time: 2008/7/9 21:30:36

Test Laboratory: Advance Data Technology

M10-Body Worn-GPRS1900 TS1-Ch661

DUT: EDA; Type: MC796; Test Frequency: 1880 MHz

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: GMSK / UL 1 time slot

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

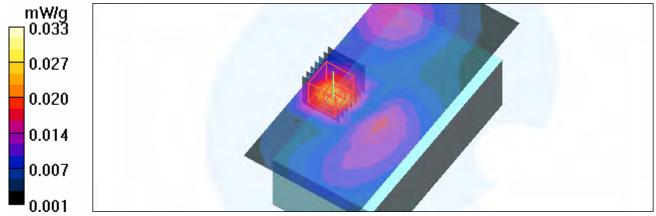
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 661/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.030 mW/g


Mid Channel 661/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.38 V/m

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.030 mW/g; SAR(10 g) = 0.019 W/g

Maximum value of SAR (measured) = 0.033 mW/g

Date/Time: 2008/7/9 21:50:13

Test Laboratory: Advance Data Technology

M11-Body Worn-E-GPRS1900 TS2-Ch661

DUT: EDA; Type: MC7506; Test Frequency: 1880 MHz

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: 8PSK / UL 2 time slots

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

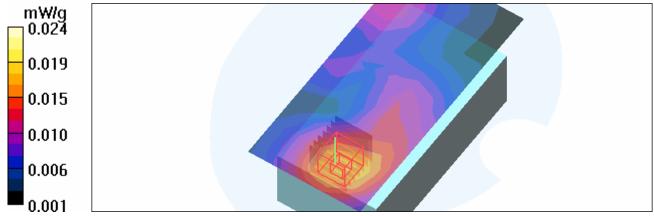
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 661/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.023 mW/g


Mid Channel 661/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.73 V/m

Peak SAR (extrapolated) = 0.038 W/kg

 $SAR(1 g) = \frac{0.022}{0.022} mW/g; SAR(10 g) = 0.015 mW/g$

Maximum value of SAR (measured) = 0.024 mW/g

Date/Time: 2008/7/9 22:09:23

Test Laboratory: Advance Data Technology

M12-Body Worn-E-GPRS1900 TS1-Ch661

DUT: EDA; Type: MC7506; Test Frequency: 1880 MHz

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: 8PSK / UL 1 time slot

Separation Distance : 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type: Monopole Antenna; Air Temp.: 23.7 degrees; Liquid Temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 - SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20

- Sensor-Surface: 4mm (Mechanical Surface Detection)

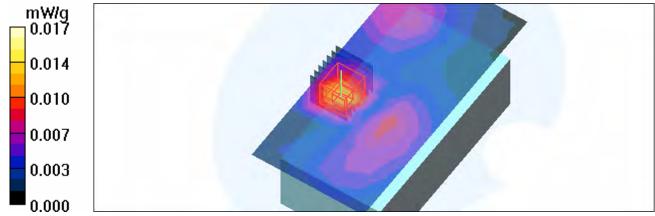
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29

- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 661/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.015 mW/g


Mid Channel 661/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.65 V/m

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.010 mW/g

Maximum value of SAR (measured) = 0.017 mW/g

Date/Time: 2008/7/9 22:38:52

Test Laboratory: Advance Data Technology

M13-Body Worn-WCDMA1900-Ch9262

DUT: EDA; Type: MC7506; Test Frequency: 1852.4 MHz

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: MSL1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.49$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type : Monopole Antenna ; Air Temp. : 23.7 degrees ; Liquid Temp. : 22.9 degrees DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

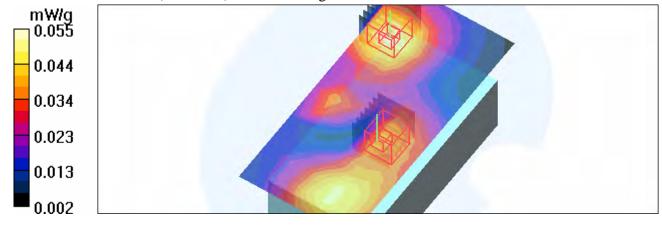
Low Channel 9262/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.055 mW/g

Low Channel 9262/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.12 V/m

Peak SAR (extrapolated) = 0.081 W/kg

 $SAR(1 g) = \frac{0.052}{0.052} mW/g; SAR(10 g) = 0.034 mW/g$


Low Channel 9262/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.12 V/m

Peak SAR (extrapolated) = 0.064 W/kg

SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.027 mW/g

Maximum value of SAR (measured) = 0.045 mW/g

Date/Time: 2008/7/9 23:06:58

Test Laboratory: Advance Data Technology

M13-Body Worn-WCDMA1900-Ch9400

DUT: EDA; Type: MC7506; Test Frequency: 1880 MHz

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type : Monopole Antenna ; Air Temp. : 23.7 degrees ; Liquid Temp. : 22.9 degrees DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Mid Channel 9400/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.067 mW/g

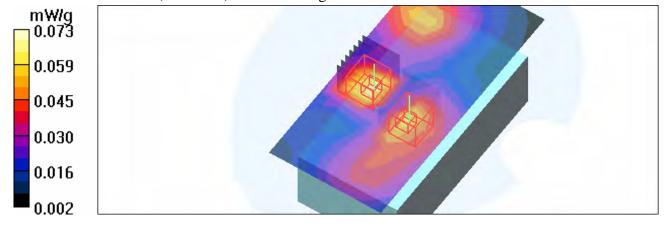
Mid Channel 9400/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.82 V/m

Peak SAR (extrapolated) = 0.093 W/kg

 $SAR(1 g) = \frac{0.067}{mW/g}; SAR(10 g) = 0.044 mW/g$

Maximum value of SAR (measured) = 0.073 mW/g


Mid Channel 9400/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.82 V/m

Peak SAR (extrapolated) = 0.083 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.035 mW/g

Maximum value of SAR (measured) = 0.059 mW/g

Date/Time: 2008/7/9 23:31:28

Test Laboratory: Advance Data Technology

M13-Body Worn-WCDMA1900-Ch9538

DUT: EDA; Type: MC7506; Test Frequency: 1907.6 MHz

Communication System: WCDMA1900; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: BPSK

Separation Distance: 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type : Monopole Antenna ; Air Temp. : 23.7 degrees ; Liquid Temp. : 22.9 degrees DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

High Channel 9538/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.048 mW/g

High Channel 9538/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

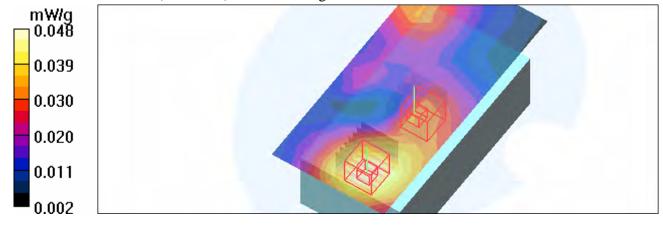
dy=5mm, dz=5mm

Reference Value = 3.62 V/m

Peak SAR (extrapolated) = 0.068 W/kg

 $SAR(1 g) = \frac{0.045}{0.045} mW/g; SAR(10 g) = 0.030 mW/g$

High Channel 9538/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 3.62 V/m

Peak SAR (extrapolated) = 0.047 W/kg

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.033 mW/g

Date/Time: 2008/7/9 23:52:19

Test Laboratory: Advance Data Technology

M14-Body Worn-WCDMA1900-Ch9400

DUT: EDA; Type: MC7506; Test Frequency: 1880.0 MHz

Communication System: WCDMA1900; Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium: MSL1900 Medium parameters used: f = 1880.0 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³; Liquid Level: 151 mm

Phantom section: Flat Section; DUT test position: Body; Modulation Type: HPSK

Separation Distance: 0 mm (The bottom side of the EUT to the Phantom)

Antenna Type : Monopole Antenna ; Air Temp. : 23.7 degrees ; Liquid Temp. : 22.9 degrees DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

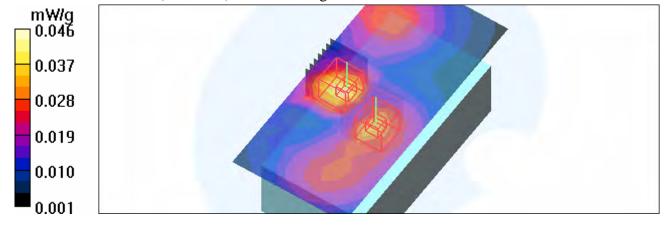
Mid Channel 9400/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.046 mW/g

Mid Channel 9400/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.63 V/m

Peak SAR (extrapolated) = 0.065 W/kg

 $SAR(1 g) = \frac{0.043}{MW/g}; SAR(10 g) = 0.028 mW/g$


Mid Channel 9400Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.63 V/m

Peak SAR (extrapolated) = 0.052 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.037 mW/g

Date/Time: 2008/7/8 10:04:43

Test Laboratory: Advance Data Technology

System Validation Check-MSL 835MHz

DUT: Dipole 850 MHz; Type: D835V2; Serial: 4d021; Test Frequency: 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1; Modulation type: CW

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³;

Liquid level: 150 mm

Phantom section: Flat Section; Separation distance: 15 mm (The feetpoint of the dipole to the

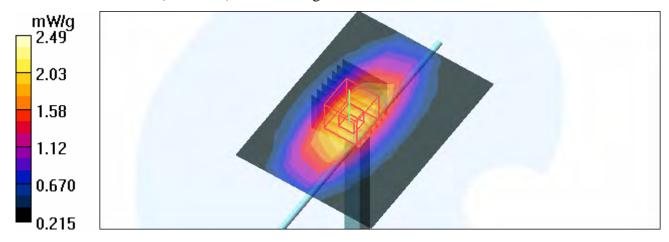
Phantom)Air temp.: 23.6 degrees; Liquid temp.: 22.5 degrees

DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(6.15, 6.15, 6.15); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.24 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 52.6 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g

Maximum value of SAR (measured) = 2.49 mW/g

Date/Time: 2008/7/9 10:38:40

Test Laboratory: Advance Data Technology

System Validation Check-MSL 1900MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d022; Test Frequency: 1900 MHz

Communication System: CW ; Frequency: 1900 MHz; Duty Cycle: 1:1; Modulation type: CW Medium: MSL1900;Medium parameters used: f=1900 MHz; $\sigma=1.55$ mho/m; $\epsilon_r=53.2$; $\rho=1000$ kg/m 3 ; Liquid level : 151 mm

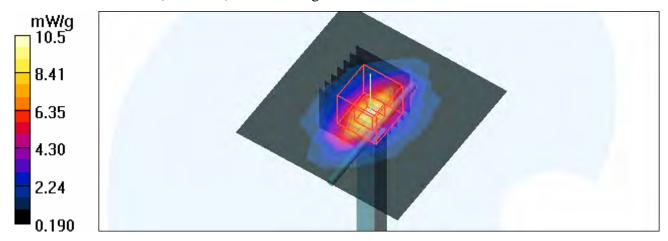
Phantom section: Flat Section; Separation distance: 10 mm (The feetpoint of the dipole to the Phantom) Air temp.: 23.7 degrees; Liquid temp.: 22.9 degrees

DASY4 Configuration:

- Probe: ET3DV6 SN1790; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/11/20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2007/8/29
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.4 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

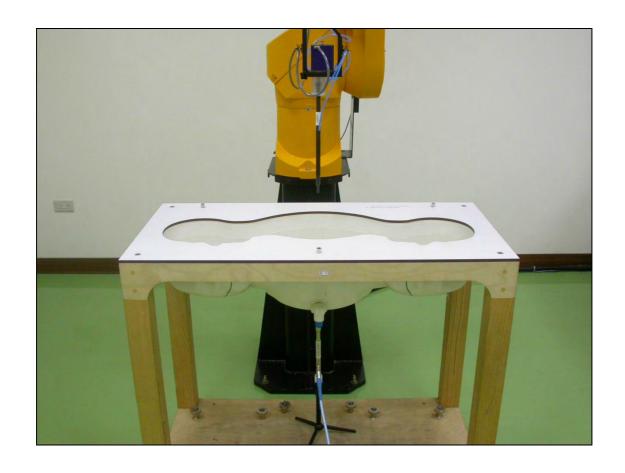

dy=5mm, dz=5mm

Reference Value = 89.4 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 9.22 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.5 mW/g



APPENDIX B: ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

D1: SAM PHANTOM

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0		
Type No	QD 000 P40 CA		
Series No	TP-1150 and higher		
Manufacturer / Origin -	Untersee Composites		
	Hauptstr. 69	•	
	CH-8559 Fruthwilen		
	Switzerland		

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz - 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Engineering AG

Zeughausstrasse 43, CH-8004 Zurlch
Tel. +41 1 245 97 00, Fex +41 1 245 97 79

Schmid & Partner

Page

1 (1)

F. Bumbult

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ADT (Auden)

Accreditation No.: SCS 108

(gyaetelyyae(olya)	aeralie etat		
Object	ERDV6-SNE	790	
Calibration procedure(s)	OA CAL-011 v6	edure for gosimetric E-field probes	
Calibration date:	November 20, 2	(0)07/-	
Condition of the calibrated item	In Tolerance		
The measurements and the uncer	rtainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and are only facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08
Reference Probe ES3DV2 DAE4	SN: 3013 SN: 654	4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Jan-08 Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	U\$3642U01700	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	
		1	
Approved by:	Niels Kuster:	Graility Manager 1997	1/20
			Issued: November 20, 2007

Issued: November 20, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP Polarization φ diode compression point φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1790

Manufactured:

May 28, 2003

Last calibrated:

November 23, 2006

Recalibrated:

November 20, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1790

Sensitivity in Fre	Diode C	ompression	В		
NormX	2.10 ± 10.1%	μV/(V/m)²	DCP X	92 mV	
NormY	2.11 ± 10.1%	μ V/(V/m) ²	DCP Y	92 mV	
Norm7	1 77 + 10 1%	иV/(V/m) ²	DCP 7	92 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL.

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	6.2	3.3
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

TSL

1750 MHz

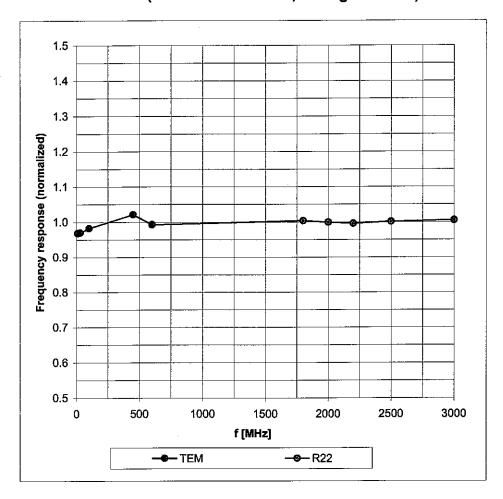
Typical SAR gradient: 10 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	12.2	8.1
SAR _{be} [%]	With Correction Algorithm	0.9	0.0

Sensor Offset

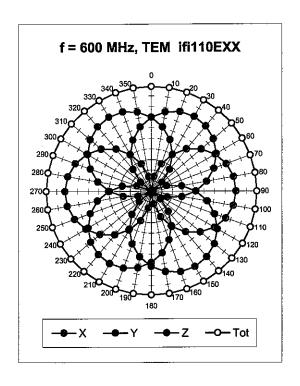
Probe Tip to Sensor Center

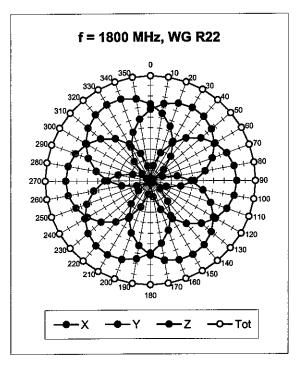
2.7 mm

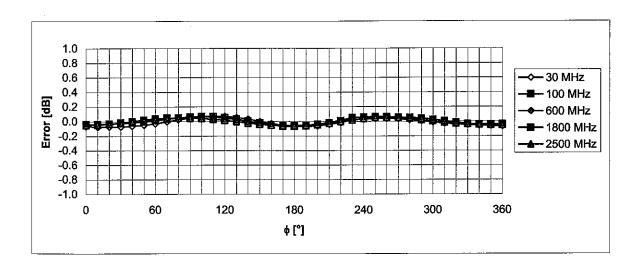

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

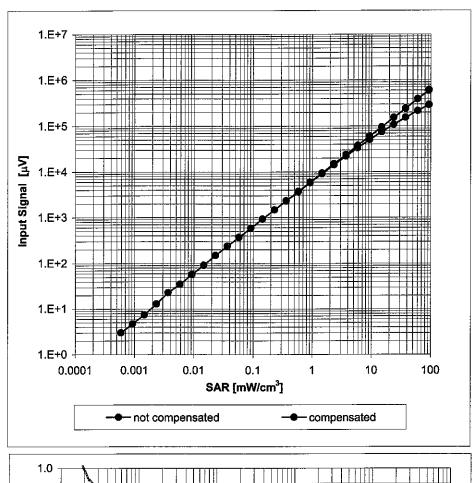

Frequency Response of E-Field

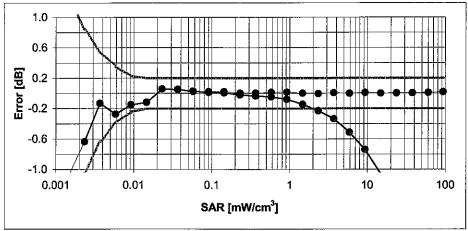

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

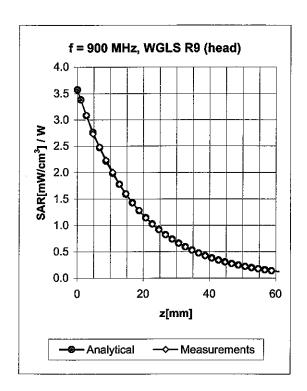
Receiving Pattern (ϕ), ϑ = 0°

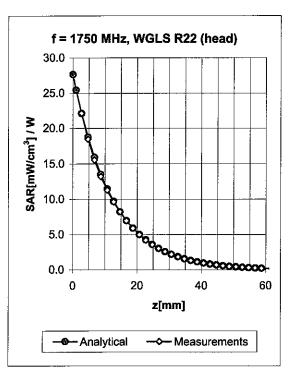




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

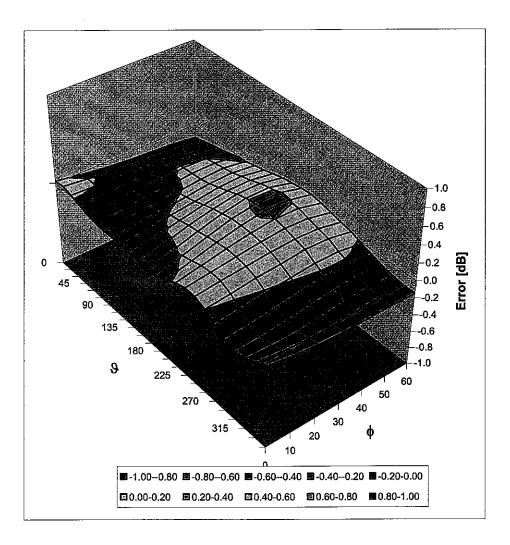
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.59	2.17	6.65 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.59	2.28	5.42 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.63	2.14	5.10 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.74	1.94	4.74 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.67	2.06	6.15 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.57	2.54	4.98 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.49	4.58 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.66	2.27	4.16 ± 11.8% (k=2)

 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

Client

ADT (Auden)

Certificate No: DAE3-510 Aug 07

CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 510 Object QA CAL-06 v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) August 29, 2007 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration SN: 6295803 13-Oct-06 (Elcal AG, No: 5492) Oct-07 Fluke Process Calibrator Type 702 Oct-07 SN: 0810278 03-Oct-06 (Elcal AG, No: 5478) Keithley Multimeter Type 2001 1D# Scheduled Check Secondary Standards Check Date (in house) In house check Jun-08 Calibrator Box V1.1 SE UMS 006 AB 1004 25-Jun-07 (SPEAG, in house check) **Function** Signature Name Dominique Steffen Calibrated by: Technician Approved by: Fin Bomholt R&D Director Issued: August 29, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1L

1LSB =

6.1μV ,

full range = -100...+300 mV

Low Range:

1LSB =

61nV ,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.150 ± 0.1% (k=2)	404.218 ± 0.1% (k=2)	404.585 ± 0.1% (k=2)
Low Range	3.98817 ± 0.7% (k=2)	3.97339 ± 0.7% (k=2)	3.96897 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	42°±1°	
Connector Angle to be deed in Brief Cyclem		

Certificate No: DAE3-510_Aug07

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)	
Channel X	+ Input	200000	200000.7	0.00	
Channel X	+ Input	20000	20006.63	0.03	
Channel X	- Input	20000	-19999.14	0.00	
Channel Y	+ Input	200000	199999.5	0.00	
Channel Y	+ Input	20000	20005.23	0.03	
Channel Y	- Input	20000	-20002.04	0.01	
Channel Z	+ Input	200000	199999.6	0.00	
Channel Z	+ Input	20000	20006.53	0.03	
Channel Z	- Input	20000	-20001.38	0.01	

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	2000	2000	0.00
Channel X	+ Input	200	199.97	-0.01
Channel X	- Input	200	-199.90	-0.05
Channel Y	+ Input	2000	2000.1	0.00
Channel Y	+ Input	200	199.64	-0.18
Channel Y	- Input	200	-200.58	0.29
Channel Z	+ Input	2000	2000	0.00
Channel Z	+ Input	200	199.20	-0.40
Channel Z	- Input	200	-200.81	0.41

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	17.82	16.82
	- 200	-16.18	-16.83
Channel Y	200	14.68	14.20
	- 200	-15.70	-16.05
Channel Z	200	-8.25	-8.73
	- 200	8.01	8.08

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	0.75	1.74
Channel Y	200	2.34	-	2.77
Channel Z	200	-1.43	0.25	-

Certificate No: DAE3-510_Aug07 Page 4 of 5 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15893	16120
Channel Y	16114	16051
Channel Z	16081	16196

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.67	-1.71	-0.06	0.26
Channel Y	-1.04	-3.37	0.35	0.34
Channel Z	-1.26	-3.29	0.15	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	198.5
Channel Y	0.2001	199.2
Channel Z	0.2000	200.3

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-510_Aug07 Page 5 of 5

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ADT (Auden)

Certificate No: D835V2-4d021_May08

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d021

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: May 19, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
SN: 5047.2 / 06327	08-Aug-07 (No. 217-00721)	Aug-08
SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
SN: 601	14-Mar-08 (No. DAE4-601_Mar08)	Mar-09
ID#	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-09
100005	04-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
Name	Function	Signature
Claudio Leubler	Laboratory Technician	Val
Katja Pokovic	Technical Manager	.20 m
	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Claudio Leubler	GB37480704 04-Oct-07 (METAS, No. 217-00736) US37292783 04-Oct-07 (METAS, No. 217-00736) SN: 5086 (20g) 07-Aug-07 (METAS, No 217-00718) SN: 5047.2 / 06327 08-Aug-07 (No. 217-00721) SN: 3025 28-Apr-08 (No. ES3-3025_Apr08) SN: 601 14-Mar-08 (No. DAE4-601_Mar08) ID # Check Date (in house) MY41092317 18-Oct-02 (SPEAG, in house check Oct-07) 100005 04-Aug-99 (SPEAG, in house check Oct-07) US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-07) Name Function Claudio Leubler Laboratory Technician

Issued: May 19, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d021_May08

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result..

Certificate No: D835V2-4d021 May08 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 mW / g
SAR normalized	normalized to 1W	9.24 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.13 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR normalized	normalized to 1W	6.08 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.03 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d021_May08

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.34 mW / g
SAR normalized	normalized to 1W	9.36 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.08 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 mW / g
SAR normalized	normalized to 1W	6.20 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.07 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d021_May08

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 5.6 jΩ
Return Loss	-24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω - 6.9 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

Certificate No: D835V2-4d021_May08 Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 19.05.2008 12:37:00

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d021

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.909$ mho/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

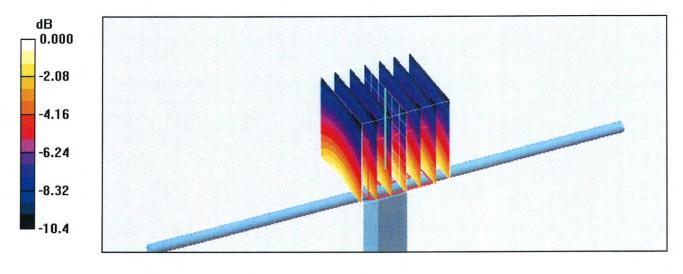
• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;

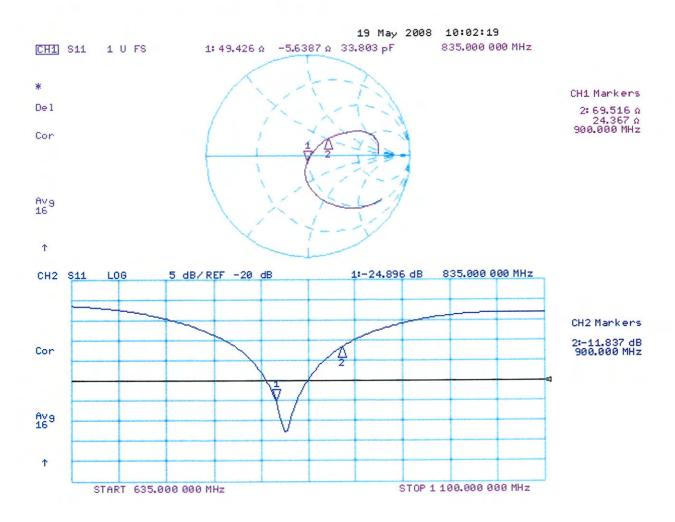
Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 54.7 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 3.37 W/kg


SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.58 mW/g

0 dB = 2.58 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 13.05.2008 14:51:57

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d021

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900;

Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

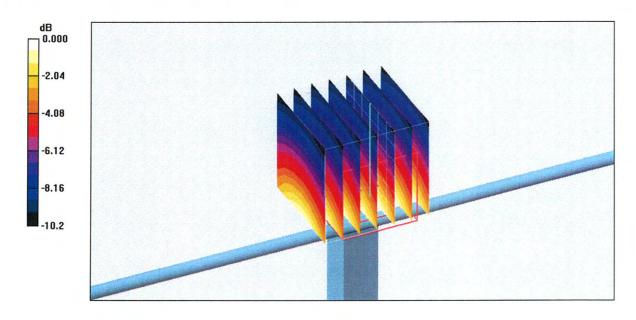
• Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

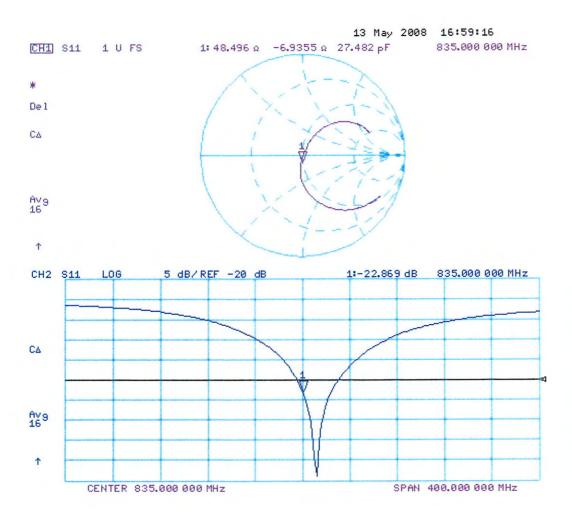
Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 52.7 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 3.38 W/kg


SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.65 mW/g

0 dB = 2.65 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

D1900V2 - SN: 5d022

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

64/18/5:44:10//86/9:24/9/04/94:

Accreditation No.: SCS 108

Client

Object

ADI (Auden)

certificate No. D1900V2-56022 Aug07

QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits August 28, 2007 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID# Cal Date (Calibrated by, Certificate No.) GB37480704 03-Oct-06 (METAS, No. 217-00608) Oct-07 Power meter EPM-442A Oct-07 Power sensor HP 8481A US37292783 03-Oct-06 (METAS, No. 217-00608) Aug-08 Reference 20 dB Attenuator SN: 5086 (20g) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) Aug-08 Reference 10 dB Attenuator SN: 5047.2 (10r) Oct-07 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) Reference Probe ET3DV6 SN: 1507 Oct-07 Reference Probe ES3DV3 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) SN: 3025 DAE4 SN 601 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Jan-08 ID# Scheduled Check Check Date (in house) Secondary Standards MY41092317 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 Power sensor HP 8481A MY41000675 11-May-05 (SPEAG, in house check Nov-05) In house check: Nov-07 RF generator Agilent E4421B Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Signature Name **Function** Laboratory/Technician Marcel Fehr Calibrated by: Approved by: Katja Pokovic Technical Manager Issued: August 29, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and care and the following parameters and care and the following parameters are a second and the second and the second and the second are a second and the second and the second are a second and the second and the second are a second and the second are a second and the second and the second are a second are a second and the second are a second are a second and the second are a	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(21.3 ± 0.2) °C		al laboral SE

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.42 mW / g
SAR normalized	normalized to 1W	37.7 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	36.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.94 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	19.4 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d022_Aug07

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	1.59 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.44 mW / g
SAR normalized	normalized to 1W	37.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	37.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.08 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d022_Aug07

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω + 3.3 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.6 Ω + 3.9 jΩ
Return Loss	- 26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 29, 2002

Certificate No: D1900V2-5d022_Aug07

DASY4 Validation Report for Head TSL

Date/Time: 28.08.2007 14:10:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d022

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.97, 4.97, 4.97); Calibrated: 19.10.2006

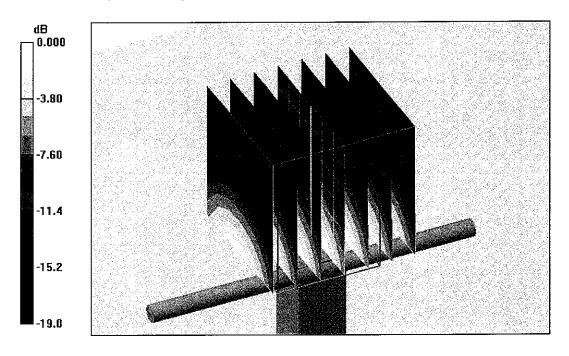
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;

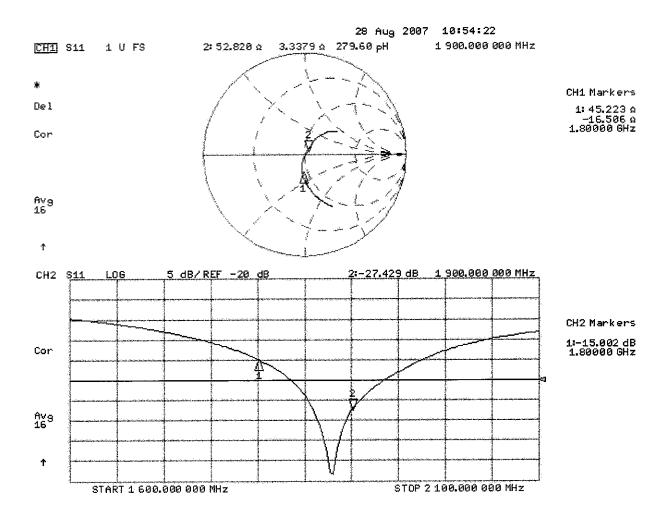
Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.8 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 16.2 W/kg


SAR(1 g) = 9.42 mW/g; SAR(10 g) = 4.94 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

0 dB = 10.7 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 21.08.2007 12:04:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d022

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.59 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

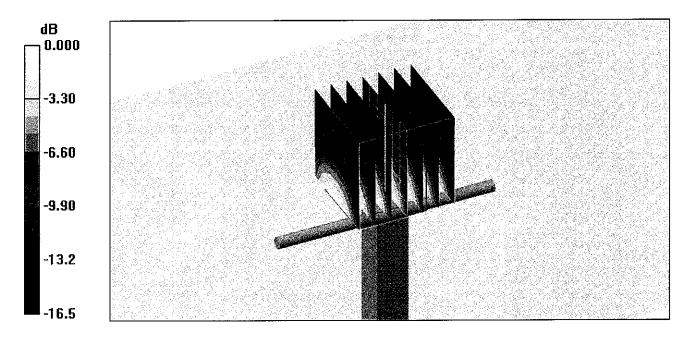
DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.43, 4.43, 4.43); Calibrated: 19.10.2006

Sensor-Surface: 4mm (Mechanical Surface Detection)

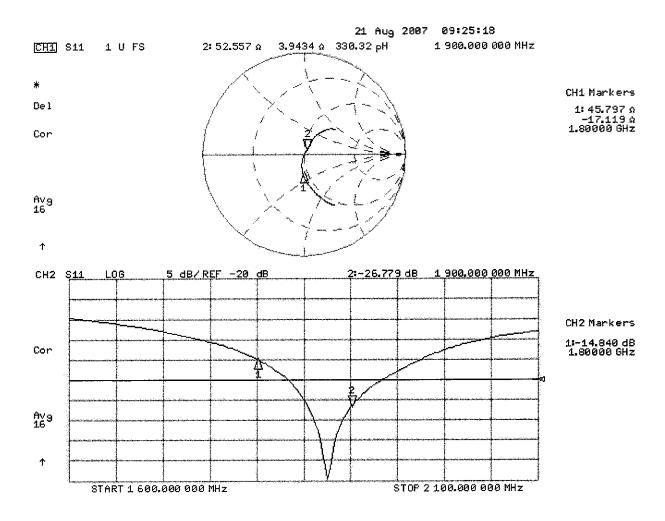
Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;


Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.3 V/m; Power Drift = 0.009 dB


Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 9.44 mW/g; SAR(10 g) = 5.08 mW/g Maximum value of SAR (measured) = 10.6 mW/g

0 dB = 10.6 mW/g

Impedance Measurement Plot for Body TSL

