

Specific Absorption Rate (SAR) Test Report

for

Symbol Technologies Inc

on the

EDA (Enterprise Digital Assistant)

Report No. : FA840317A Trade Name : Symbol Model Name : MC5574

FCC ID : H9PMC5574

Date of Testing : Apr. 05 and 08, 2008

Date of Report : Apr. 14, 2008 Date of Review : Apr. 14, 2008

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 01

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

		nent of Compliance	
		istration Data	
	2.1	Testing Laboratory	
	2.2	Detail of Applicant	2
	2.3	Detail of Manufacturer	2
	2.4	Application Details	2
3.	Gener	al Information	3
	3.1	Description of Device Under Test (DUT)	3
	3.2	Basic Description of Device under Test	4
	3.3	Product Photos	
	3.4	Applied Standards	6
	3.5	Device Category and SAR Limits	7
	3.6	Test Conditions	7
		3.6.1 Ambient Condition	
		3.6.2 Test Configuration	
4.	Specif	ic Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	
5.	SAR N	leasurement Setup	
•	5.1	DASY4 E-Field Probe System	
	• • •	5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 E-Field Probe Calibration	
	5.2	DATA Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4	Measurement Server	
	5.5	SAM Twin Phantom	
	5.6	Device Holder for SAM Twin Phantom	
	5.7	Data Storage and Evaluation	
		5.7.1 Data Storage	
		5.7.2 Data Evaluation	
	5.8	Test Equipment List	
6.	Tissue	Simulating Liquids	
		tainty Assessment	
		leasurement Evaluation	
٠.	8.1	Purpose of System Performance check	
	8.2	System Setup	
	8.3	Validation Results	
9.		ption for DUT Testing Position	
		rement Procedures	
10.	10.1	Spatial Peak SAR Evaluation	
	10.1	Scan Procedures	
	10.2	SAR Averaged Methods	
11		est Results	
• • • •	11.1	Right Cheek	
	11.2	Right Tilted	
	11.3	Left Cheek	
	11.4	Left Tilted	
	11.5	Front Face with 0cm Gap	
	11.6	Rear Face with 0cm Gap	
12	_	ences	
			32
		A - System Performance Check Data	
		B - SAR Measurement Data	
		C - Calibration Data	
		D - Product Photos	
App	endix	E - Test Setup Photos	

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum results found during testing for the **Symbol Technologies Inc EDA (Enterprise Digital Assistant) Symbol MC5574** are as follows (with expanded uncertainty 21.9%):

Test Report No : FA840317A

Position	GSM850 (W/kg)	GSM1900 (W/Kg)
Head	1.24	0.678
Body	0.679	1.37

Remark:

- 1. The Volume Scan of GSM850 CH251 and 802.11g CH06 for head SAR is 1.34 W/kg and its position is right tilted.
- 2. The Volume Scan of GSM1900 CH512 and 802.11g CH06 for head SAR is 0.649 W/kg and its position is left tilted.
- 3. The Volume Scan of GSM850 CH251 and 802.11g CH06 for head SAR is 1.30 W/kg and its position is front face with 0cm gap.
- 4. The Volume Scan of GSM1900 CH512 and 802.11g CH06 for head SAR is 0.805 W/kg and its position is front face with 0cm gap.

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Roy Wu Manager

2. Administration Data

2.1 Testing Laboratory

Company Name: Sporton International Inc.

Department: Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,

Test Report No : FA840317A

TaoYuan Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-328-4978

2.2 Detail of Applicant

Company Name: Symbol Technologies Inc

Address: One Symbol Plaza Holtsville, NY 11733-1300 United States

2.3 <u>Detail of Manufacturer</u>

Company Name: ASKEY COMPUYER CORP

Address: 10F, No.119, CHIENKANG RD., CHUNG-HO, TAIPEI, TAIWAN, 235,

R.O.C

2.4 Application Details

Date of reception of application: Apr. 03, 2008 **Start of test:** Apr. 05, 2008 **End of test:** Apr. 08, 2008

3. General Information

3.1 Description of Device Under Test (DUT)

	Product Feature & Specification					
DUT Type :	EDA (Enterprise Digital Assistant)					
Trade Name :	Symbol					
Model Name :	MC5574					
FCC ID:	H9PMC5574					
	GSM850 : 824 MHz ~ 849 MHz					
T., F.,,	GSM1900 : 1850 MHz ~1910 MHz					
Tx Frequency:	Bluetooth : 2400 MHz ~ 2483.5 MHz					
	WLAN: 2400 MHz ~ 2483.5 MHz					
	GSM850 : 869 MHz ~ 894 MHz					
Rx Frequency :	GSM1900 : 1930 MHz ~ 1990 MHz					
Kx Frequency:	Bluetooth: 2400 MHz ~ 2483.5 MHz					
	WLAN: 2400 MHz ~ 2483.5 MHz					
	GSM850 : 32.43 dBm (GSM) /					
	32.41 dBm (GPRS8) / 30.62 dBm (GPRS10) / 26.87 dBm (GPRS12) /					
	25.94 dBm (EGPRS8) / 23.83 dBm (EGPRS10) / 19.67 dBm (EGPRS12) /					
Maximum Output Power to	GSM1900: 29.50 dBm (GSM) /					
Antenna :	29.39 dBm (GPRS8) / 27.55 dBm (GPRS10) / 23.79 dBm (GPRS12) /					
	25.06 dBm (EGPRS8) / 23.26 dBm (EGPRS10) / 19.22 dBm (EGPRS12) /					
	Bluetooth: 4.76 dBm					
	WLAN : 14.57 dBm (802.11b) / 15.52 dBm (802.11g)					
	GSM: PIFA Antenna					
Antenna Type :	Bluetooth : Chip antenna					
	WLAN: PIFA Antenna					
A Maria Color	Bluetooth: -0.94 dBi					
Antenna Gain :	WLAN: 1.22 dBi					
Power Rating (DC/AC, Voltage and	GSM : DC 3.8V / 2A					
Current of RF element or PA):						
GPRS / EGPRS Multislot class:	12					
	GSM / GPRS : GMSK					
Type of Modulation :	EDGE: 8PSK					
Type of Modulation :	Bluetooth: GFSK					
	WLAN: DSSS/OFDM					
DUT Stage :	Identical Prototype					

Test Report No : FA840317A

3.2 Basic Description of Device under Test

Equipment		EDA (Enterprise Digital Assistant)		
Trade Name		Symbol		
Model Name		MC5574		
FCC ID		H9PMC5574		
Sample A		1D scanner without camera		
Sample B		2D scanner without camera		
Sample C 1D scanner with camera				
Sample D	2D scanner with camera			
	Brand Name	DELTA		
	Model Name	ADP-16GB		
AC Adapter	Power Rating	I/P: 100-240Vac, 50-60Hz, 0.4A;		
110 Humpter	Tower Rating	O/P: 5.4Vdc, 3A		
	AC Power Cord Type	AC: 1.8 meter non-shielded cable with ferrite core		
	The Fower Cord Type	DC: 1.8 meter non-shielded cable without ferrite core		
	Brand Name	SYMBOL		
Battery	Part Number	82-107172-01 Rev A		
Datter y	Power Rating	3.7Vdc, 2400mAh		
	Type	Li-ion		
G	Brand Name	SYMBOL		
Communication USB charge cable	Part Number	25-108022-01R Rev. 1		
CSD charge cable	Signal Line Type	1.5 meter shielded cable without ferrite core		

Remark: Above EUT's information was declared by manufacturer. Please refer to the specifications of manufacturer or User's Manual for more detailed features description.

3.3 Product Photos

Please refer to Appendix D

Test Report No : FA840317A

3.4 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this EDA (Enterprise Digital Assistant) is in accordance with the following standards:

Test Report No : FA840317A

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Test Report No : FA840317A

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.6 Test Conditions

3.6.1 Ambient Condition

Item	HSL_850	MSL_850	HSL_1900	MSL_1900		
Ambient Temperature (°C)	20-24					
Tissue simulating liquid	21.3°C	21.6°C	21.5°C	21.3°C		
temperature (°C)	21.5 C	21.0 C	21.3 C	21.5 C		
Humidity (%)	<60 %					

3.6.2 Test Configuration

The DUT was set from the emulator to radiate maximum output power during all tests.

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT.

Measurements were performed on the lowest, middle, and highest channel for each testing position. Measurements were performed only on the middle channel if the SAR is below 3 dB of limit.

For head SAR testing, EUT is in GSM link mode, and its crest factor is 8.3.

For body SAR testing, EUT is in GPRS/EDGE link mode and its crest factor is 2 because EUT is GPRS/EDGE class 12 device.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Test Report No : FA840317A

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

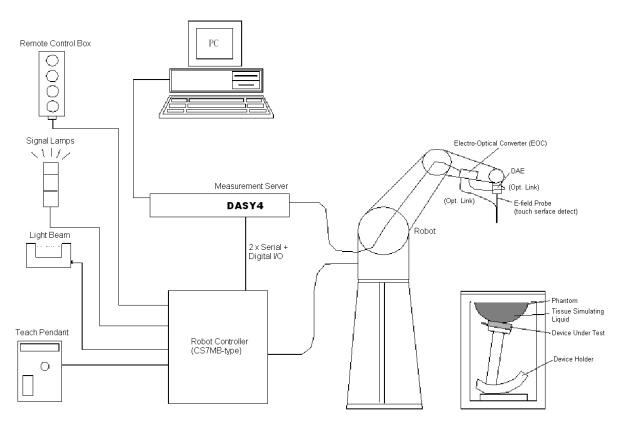


Fig. 5.1 DASY4 System

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

Test Report No : FA840317A

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- ➤ The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- ➤ A device holder
- > Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 <u>DASY4 E-Field Probe System</u>

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

Test Report No : FA840317A

5.1.1 ET3DV6 E-Field Probe Specification

<ET3DV6>

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

system

Built-in shielding against static charges PEEK enclosure material (resistant to organic

solvents)

Frequency 10 MHz to 3 GHz

Directivity \pm 0.2 dB in brain tissue (rotation around probe

axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular

to probe axis)

Dynamic Range $5 \mu \text{ W/g to } 100 \text{mW/g; Linearity: } \pm 0.2 \text{dB}$ **Surface Detection** $\pm 0.2 \text{ mm}$ repeatability in air and clear liquids

on reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary phantoms

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

> ET3DV6 sn1787

F E13DV0 8n1/8/						
Sensitivity	X axis : 1.63 μV		Y axis : 1.66 μV		Z axis : 2.08 μV	
Diode compression point	X axis : 92 mV		Y axis : 96 mV		Z axis : 91 mV	
	Frequency (MHz)	Xa	xis	Y axis	Z axis	
Conversion factor (Head / Body)	800~1000	6.58 / 6.10		6.58 / 6.10	6.58 / 6.10	
	1710~1910	5.16 / 4.68		5.16 / 4.68	5.16 / 4.68	
	Frequency (MHz)	Alp	ha	Depth		
Boundary effect (Head / Body)	800~1000	0.32 /	0.36	2.42 / 2.52		
	1710~1910	0.50 /	0.61	2.61 / 2.56		

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Test Report No : FA840317A

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY4 system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- ➤ High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➤ Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

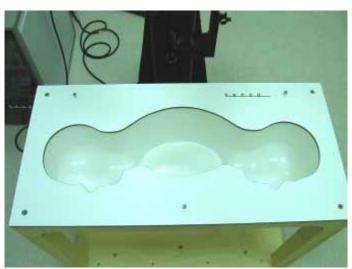


Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 <u>Device Holder for SAM Twin Phantom</u>

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY4 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY4 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 <u>Data Storage and Evaluation</u>

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Test Report No : FA840317A

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i
 Frequency f

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Test Report No : FA840317A

with

 V_i = compensated signal of channel i (i = x, y, z)

 $U_i = input signal of channel i (i = x, y, z)$

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with

 P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration		
Manufacture	Name of Equipment	1 ype/wiodei	Serial Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 28, 2007	Aug. 28, 2008	
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 17, 2010	
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 16, 2007	Jul. 16, 2009	
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 17, 2007	Sep. 17, 2008	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR	
SPEAG	Phantom	QD 0VA 001 BB	1029	NCR	NCR	
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	ENA Series Network Analyzer	E5071B	MY42403579	Apr. 09, 2008	Apr. 08, 2009	
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR	
Agilent	Power Meter	E4416A	GB41292344	Feb. 21, 2008	Feb. 20, 2009	
Agilent	Power Sensor	E9327A	US40441548	Feb. 21, 2008	Feb. 20, 2009	

Table 5.1 Test Equipment List

Test Report No : FA840317A

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

Test Report No : FA840317A

The following ingredients for tissue simulating liquid are used:

- ▶ Water: deionized water (pure H_20), resistivity $\ge 16M\Omega$ as basis for the liquid
- ➤ Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- ➤ Salt: pure NaCl to increase conductivity
- ➤ Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850MHZ and 1900 MHz

Ingredient	HSL-850	MSL-850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric	f = 835 MHz	f=835 MHz	f= 1900 MHz	f= 1900 MHz
Parameters at 22°	$_{r}=41.5\pm5\%$	$r = 55.2 \pm 5\%$	$\varepsilon_{\rm r} = 40.0 \pm 5\%$	$\varepsilon_{\rm r} = 53.3 \pm 5 \%$
	$= 0.90\pm5\% \text{ S/m}$	$= 0.97 \pm 5\% \text{ S/m}$	$\sigma = 1.4 \pm 5\% \text{ S/m}$	$\sigma = 1.52 \pm 5\% \text{ S/m}$

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Band	Position	Frequency (MHz)	Permittivity (ε_r)	Conductivity (σ)	Measurement Date
		824.2	40.8	0.898	
	Head	836.4	40.7	0.909	Apr. 05, 2008
GSM850		848.8	40.5	0.919	
$(824 \sim 849 \text{ MHz})$	Body	824.2	56.3	0.979	
		836.4	56.3	0.991	Apr. 08, 2008
		848.8	56.1	1.00	
		1850.2	39.2	1.38	
	Head	1880.0	39.1	1.40	Apr. 05, 2008
GSM1900		1909.8	39.0	1.43	
$(1850 \sim 1910 \text{ MHz})$		1850.2	51.4	1.47	
	Body	1880.0	51.3	1.50	Apr. 08, 2008
		1909.8	51.2	1.53	

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $_r$ = 41.5±5% and $= 0.9\pm5\%$ for head GSM850, $_r$ = 55.2 \pm 5% and $= 0.97 \pm 5\%$ for body GSM850, $_r$ = 40.0 \pm 5% and $= 1.4 \pm 5\%$ for head GSM1900, and $_r$ = 53.3 \pm 5% and $= 1.52 \pm 5\%$ for body GSM1900.

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Test Report No : FA840317A

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

Expanded uncertainty

(Coverage factor = 2)

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related			<u> </u>			
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %	 I	K=2				
		1	,		1	1

Table 7.2 Uncertainty Budget of DASY4

Test Report No : FA840317A

±21.9

8. SAR Measurement Evaluation

Each DASY4 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY4 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Test Report No : FA840317A

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

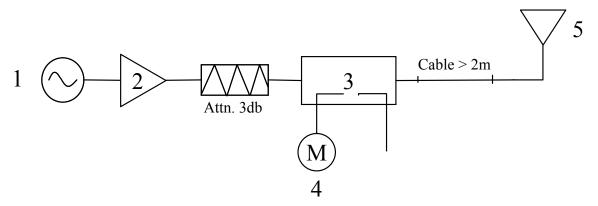


Fig. 8.1 System Setup for System Evaluation

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Band	Position	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
	Head	SAR (1g)	9.16	9.29	1.4 %	Apr. 05, 2008
GSM850	Head	SAR (10g)	6.0	6.16	2.7 %	Apr. 03, 2006
(835MHz)	Body	SAR (1g)	9.52	10.2	7.1 %	Apr. 08, 2008
		SAR (10g)	6.37	6.73	5.7 %	
	111	SAR (1g)	39.5	40.8	3.3 %	Ann 05 2000
GSM1900	Head	SAR (10g)	20.6	21.9	6.3 %	Apr. 05, 2008
(1900MHz)	Dody	SAR (1g)	40.1	39.9	-0.5 %	Ann 00 2000
	Body	SAR (10g)	21.3	21.2	-0.5 %	Apr. 08, 2008

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 6 different positions. They are right cheek, right tilted, left cheek, left tilted, front face with 0cm Gap and rear face with 0cm Gap as illustrated below:

Test Report No : FA840317A

1) "Cheek Position"

- i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).

2) "Tilted Position"

- i) To position the device in the "cheek" position described above.
- ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).

3) "Body Worn"

- i) To position the device parallel to the phantom surface.
- ii) To adjust the phone parallel to the flat phantom.
- iii) To adjust the distance between the EUT surface and the flat phantom to 0 cm.

Remark: Please refer to Appendix E for the test setup photos.

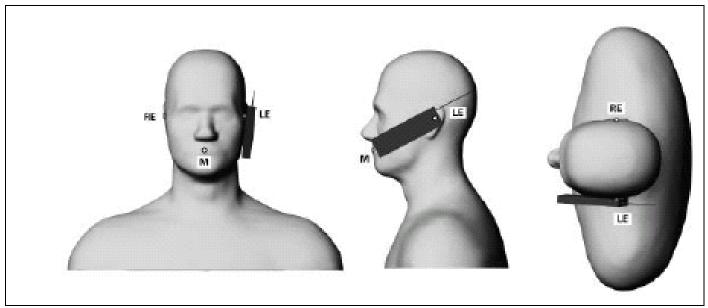


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

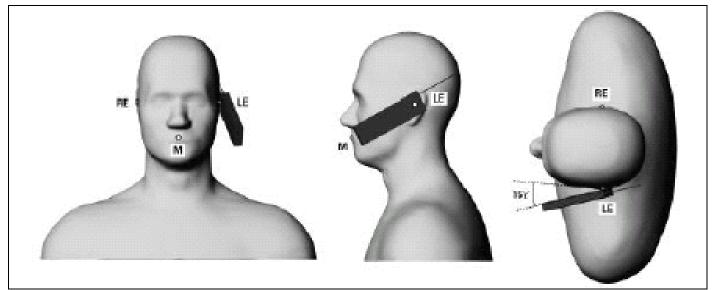


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10.Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- > Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- Taking data for the middle channel on each testing position
- Finding out the largest SAR result on these testing positions of each band
- Measuring output power and SAR results for the low and high channels in this worst case testing position

Test Report No : FA840317A

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- Area scan
- > Zoom scan
- ➤ Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Test Report No : FA840317A

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Right Cheek

Mode	Sample	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
		128 (Low)	824.2	GMSK	32.11	-	-	-	-
GSM850	D	189 (Mid)	836.4	GMSK	32.26	0.025	0.782	1.6	Pass
		251 (High)	848.8	GMSK	32.43	-	-	-	-
	A	512(Low)	1850.2	GMSK	29.50	-0.137	0.572	1.6	Pass
	В	512(Low)	1850.2	GMSK	29.50	-0.067	0.57	1.6	Pass
GSM1900	C	512(Low)	1850.2	GMSK	29.50	-0.122	0.583	1.6	Pass
GSW1900	D	512(Low)	1850.2	GMSK	29.50	-0.106	0.678	1.6	Pass
		661(Mid)	1880.0	GMSK	29.21	-0.105	0.501	1.6	Pass
		810(High)	1909.8	GMSK	28.87	0.018	0.542	1.6	Pass

Test Report No : FA840317A

11.2 Right Tilted

11.2 Ngm 1 meu											
Mode	Sample	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result		
	A	251 (High)	848.8	GMSK	32.43	-0.024	1.13	1.6	Pass		
GSM850	В	251 (High)	848.8	GMSK	32.43	-0.064	1.14	1.6	Pass		
	C	251 (High)	848.8	GMSK	32.43	-0.148	1.11	1.6	Pass		
USW1850		128 (Low)	824.2	GMSK	32.11	0.077	0.793	1.6	Pass		
	D	189 (Mid)	836.4	GMSK	32.26	0.013	0.889	1.6	Pass		
		251 (High)	848.8	GMSK	32.43	-0.128	1.24	1.6	Pass		
GSM1900		512(Low)	1850.2	GMSK	29.50	-	-	ı	ı		
	D	661(Mid)	1880.0	GMSK	29.21	-0.081	0.443	1.6	Pass		
		810(High)	1909.8	GMSK	28.87	-	-	-	-		

11.3 Left Cheek

Mode	Sample	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	D	128 (Low)	824.2	GMSK	32.11	-	-	-	-
		189 (Mid)	836.4	GMSK	32.26	-0.182	0.487	1.6	Pass
		251 (High)	848.8	GMSK	32.43	-	-	-	-
	D	512(Low)	1850.2	GMSK	29.50	-	-	-	-
GSM1900		661(Mid)	1880.0	GMSK	29.21	-0.015	0.284	1.6	Pass
		810(High)	1909.8	GMSK	28.87	-	-	•	-

11.4 Left Tilted

11.4 <u>Left 1 tueu</u>											
Mode	Sample	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result		
GSM850	D	128 (Low)	824.2	GMSK	32.11	-	-	-	-		
		189 (Mid)	836.4	GMSK	32.26	-0.025	0.459	1.6	Pass		
		251 (High)	848.8	GMSK	32.43	-	-	-	-		
GSM1900	D	512(Low)	1850.2	GMSK	29.50	-	-	-	-		
		661(Mid)	1880.0	GMSK	29.21	-0.006	0.279	1.6	Pass		
		810(High)	1909.8	GMSK	28.87	-	-	-	-		

11.5 Front Face with 0cm Gap

Mode	Sample	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GGN 4070		128 (Low)	824.2	GMSK	32.09	-	-	-	-
GSM850 (GPRS8)	D	189 (Mid)	836.4	GMSK	32.25	0.026	0.718	1.6	Pass
(GPKS8)		251 (High)	848.8	GMSK	32.41	-	-	-	-
		128 (Low)	824.2	GMSK	30.29	0.009	0.964	1.6	Pass
	A	189 (Mid)	836.4	GMSK	30.45	-0.021	1.09	1.6	Pass
		251 (High)	848.8	GMSK	30.62	-0.133	1.37	1.6	Pass
		128 (Low)	824.2	GMSK	30.29	0.01	0.863	1.6	Pass
	В	189 (Mid)	836.4	GMSK	30.45	0.039	0.983	1.6	Pass
GSM850		251 (High)	848.8	GMSK	30.62	-0.11	1.21	1.6	Pass
(GPRS10)	С	128 (Low)	824.2	GMSK	30.29	0.057	0.774	1.6	Pass
		189 (Mid)	836.4	GMSK	30.45	0.021	0.904	1.6	Pass
		251 (High)	848.8	GMSK	30.62	-0.149	1.12	1.6	Pass
	D	128 (Low)	824.2	GMSK	30.29	-0.031	0.812	1.6	Pass
		189 (Mid)	836.4	GMSK	30.45	0.022	0.966	1.6	Pass
		251 (High)	848.8	GMSK	30.62	-0.009	1.27	1.6	Pass
CCN 4070	D	128 (Low)	824.2	GMSK	26.57	-	-	-	-
GSM850		189 (Mid)	836.4	GMSK	26.72	-0.129	0.869	1.6	Pass
(GPRS12)		251 (High)	848.8	GMSK	26.87	-	-	-	-
CCN 4070		128 (Low)	824.2	8PSK	25.94	-	-	-	-
GSM850 (EDGE8)	D	189 (Mid)	836.4	8PSK	25.86	0.037	0.23	1.6	Pass
(EDGE8)		251 (High)	848.8	8PSK	25.76	-	-	-	-
CCM 4050		128 (Low)	824.2	8PSK	23.83	-	-	-	-
GSM850 (EDGE10)	D	189 (Mid)	836.4	8PSK	23.72	-0.132	0.292	1.6	Pass
(EDGEIU)		251 (High)	848.8	8PSK	23.65	-	-	-	=
CCMOSO		128 (Low)	824.2	8PSK	19.67	-	-	-	-
GSM850	D	189 (Mid)	836.4	8PSK	19.63	0.042	0.261	1.6	Pass
(EDGE12)		251 (High)	848.8	8PSK	19.50	-	-	-	-
CCM1000		512(Low)	1850.2	GMSK	23.79	-	-	-	-
GSM1900	D	661(Mid)	1880.0	GMSK	23.52	-0.037	0.579	1.6	Pass
(GPRS12)		810(High)	1909.8	GMSK	23.21	-	-	-	-

SAR Test Report Test Report No : FA840317A

11.6 Rear Face with 0cm Gap

Mode	Sample	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850		128 (Low)	824.2	GMSK	26.57	-	-	-	-
(GPRS12)	D	189 (Mid)	836.4	GMSK	26.72	-0.001	0.313	1.6	Pass
(OFKS12)		251 (High)	848.8	GMSK	26.87	-	-	-	-
CSM1000		512(Low)	1850.2	GMSK	29.39	-	-	-	-
GSM1900 (GPRS8)	D	661(Mid)	1880.0	GMSK	29.11	0.041	0.499	1.6	Pass
(Ol K56)		810(High)	1909.8	GMSK	28.78	-	-	-	-
	A	512(Low)	1850.2	GMSK	27.55	-0.169	0.575	1.6	Pass
	В	512(Low)	1850.2	GMSK	27.55	-0.129	0.624	1.6	Pass
GSM1900	C	512(Low)	1850.2	GMSK	27.55	-0.113	0.652	1.6	Pass
(GPRS10)	D	512(Low)	1850.2	GMSK	27.55	-0.146	0.679	1.6	Pass
		661(Mid)	1880.0	GMSK	27.27	0.006	0.669	1.6	Pass
		810(High)	1909.8	GMSK	26.95	-0.044	0.574	1.6	Pass
CCM1000	D	512(Low)	1850.2	GMSK	23.79	-	-	-	-
GSM1900 (GPRS12)		661(Mid)	1880.0	GMSK	23.52	0.18	0.58	1.6	Pass
(OFKS12)		810(High)	1909.8	GMSK	23.21	-	-	-	-
CCM1000		128 (Low)	824.2	8PSK	25.06	-	-	-	-
GSM1900 (EDGE8)	D	189 (Mid)	836.4	8PSK	25.03	0.055	0.196	1.6	Pass
(EDGE8)		251 (High)	848.8	8PSK	24.91	-	-	-	-
CCM1000		128 (Low)	824.2	8PSK	23.26	-	-	-	-
GSM1900 (EDGE10)	D	189 (Mid)	836.4	8PSK	23.22	0.049	0.276	1.6	Pass
(EDGE10)		251 (High)	848.8	8PSK	23.04	-	-	-	-
CSM1000		128 (Low)	824.2	8PSK	19.22	-	-	-	-
GSM1900 (EDGE12)	D	189 (Mid)	836.4	8PSK	19.13	-0.002	0.223	1.6	Pass
(EDGE12)		251 (High)	848.8	8PSK	19.01	-	-	-	-

Remark:

- 1. The Volume Scan of GSM850 CH251 and 802.11g CH06 for head SAR is 1.34 W/kg and its position is right tilted.
- 2. The Volume Scan of GSM1900 CH512 and 802.11g CH06 for head SAR is 0.649 W/kg and its position is left tilted.
- 3. The Volume Scan of GSM850 CH251 and 802.11g CH06 for head SAR is 1.30 W/kg and its position is front face with 0cm gap.
- 4. The Volume Scan of GSM1900 CH512 and 802.11g CH06 for head SAR is 0.805 W/kg and its position is front face with 0cm gap.
- 5. Test Engineer: A-Rod, Eric Huang, Jason Wang, and Gordon Lin.

12.References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Test Report No : FA840317A

- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DASY4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

System Check Head 850MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

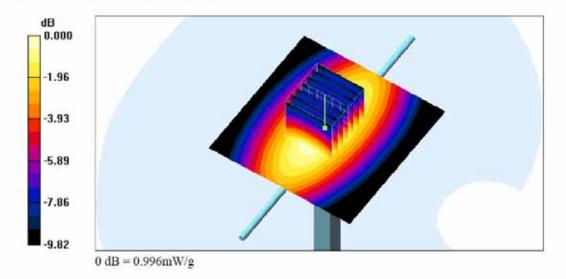
Medium: HSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.908$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Test Report No : FA840317A

Ambient Temperature: 22.4 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.00 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.3 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.929 mW/g; SAR(10 g) = 0.616 mW/gMaximum value of SAR (measured) = 0.996 mW/g

Test Report No : FA840317A

System Check Head 1900MHz

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_c = 39$; $\rho = 1000$ kg/m³

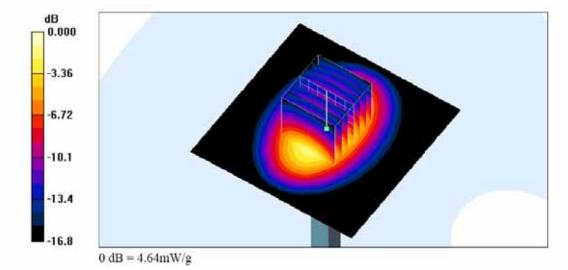
Date: 2008/4/5

Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.71 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.5 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 6.90 W/kg

SAR(1 g) = 4.08 mW/g; SAR(10 g) = 2.19 mW/gMaximum value of SAR (measured) = 4.64 mW/g

Date: 2008/4/8

System Check_Body_835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 835 MHz; $\sigma = 0.989$ mho/m; $\varepsilon_c = 56.3$; $\rho = 1000$ kg/m³

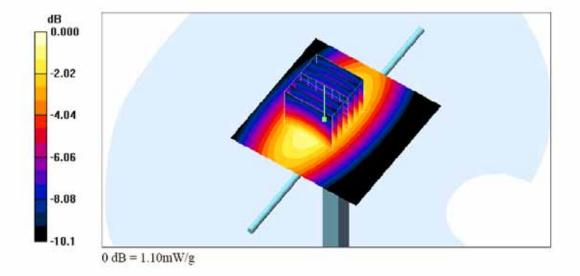
Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.995 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.4 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.673 mW/g

Maximum value of SAR (measured) = 1.10 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

System Check Body 1900MHz

DUT: Dipole 1900 MHz

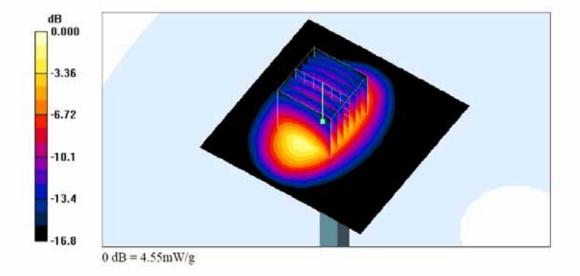
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon_c = 51.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.68 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.4 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 6.72 W/kg

SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.12 mW/gMaximum value of SAR (measured) = 4.55 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

Right Cheek GSM850 Ch189 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3

Medium: HSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.909$ mho/m; $\epsilon_{\perp} = 40.7$; $\rho = 1000$ kg/m³

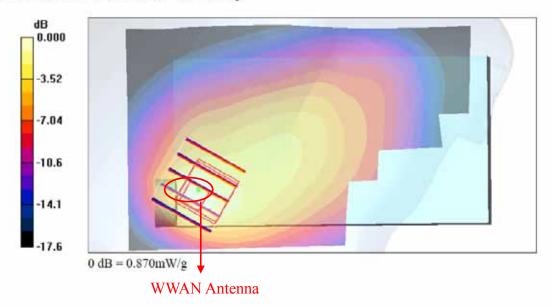
Test Report No : FA840317A

Ambient Temperature: 22.5 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.827 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.3 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 0.782 mW/g; SAR(10 g) = 0.390 mW/gMaximum value of SAR (measured) = 0.870 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

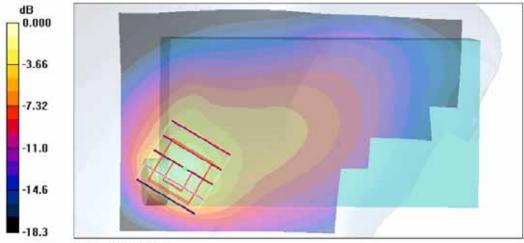
Right Tilted GSM850 Ch251 Sample A

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 850 Medium parameters used: f = 849 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_c = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.4 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 3.78 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.475 mW/gMaximum value of SAR (measured) = 1.26 mW/g

0 dB = 1.26 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

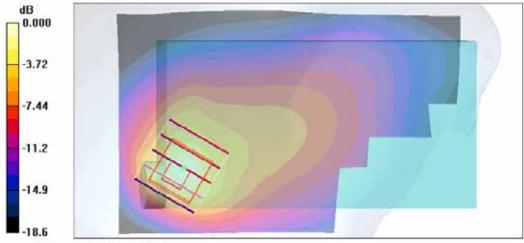
Right Tilted GSM850 Ch251 Sample B

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 850 Medium parameters used: f = 849 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_c = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.18 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.479 mW/gMaximum value of SAR (measured) = 1.26 mW/g

0 dB = 1.26 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

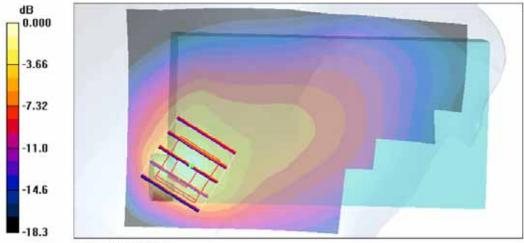
Right Tilted_GSM850 Ch251_Sample C

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 850 Medium parameters used: f = 849 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_c = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.07 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = -0.148 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.469 mW/gMaximum value of SAR (measured) = 1.24 mW/g

0 dB = 1.24 mW/g

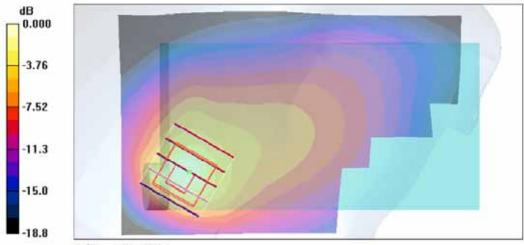
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

Right Tilted GSM850 Ch251 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 850 Medium parameters used: f = 849 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_c = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:


- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.32 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.1 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 4.25 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.512 mW/gMaximum value of SAR (measured) = 1.33 mW/g

0 dB = 1.33 mW/g

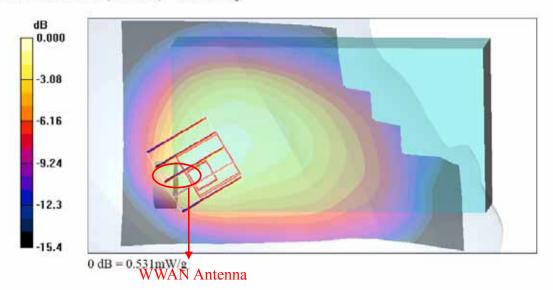
Left Cheek_GSM850 Ch189_Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.909$ mho/m; $\epsilon_c = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

Test Report No : FA840317A

DASY4 Configuration:


- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.579 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.4 V/m; Power Drift = -0.182 dB

Peak SAR (extrapolated) = 0.953 W/kg

SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.306 mW/gMaximum value of SAR (measured) = 0.531 mW/g

Left Tilted GSM850 Ch189 Sample D

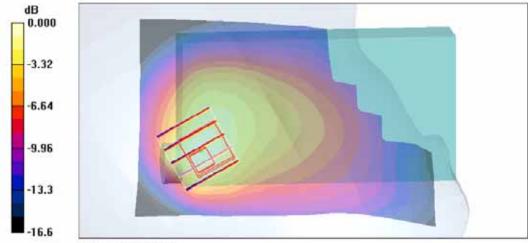
DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.909$ mho/m; $\varepsilon_c = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C: Liquid Temperature: 21.3 °C

Test Report No : FA840317A

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.528 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.3 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.254 mW/gMaximum value of SAR (measured) = 0.489 mW/g

0 dB = 0.489 mW/g

Right Cheek_GSM1900 Ch512_Sample A

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_z = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

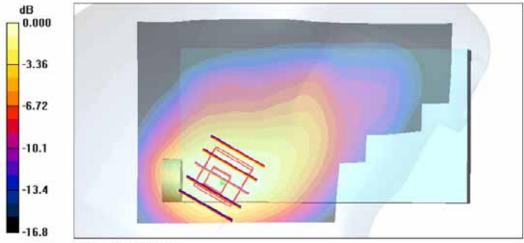
Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.697 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.947 W/kg

SAR(1 g) = 0.572 mW/g; SAR(10 g) = 0.347 mW/g

Maximum value of SAR (measured) = 0.616 mW/g

0 dB = 0.616 mW/g

Right Cheek_GSM1900 Ch512_Sample B

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_c = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

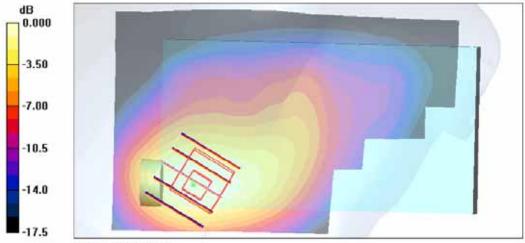
Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.653 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 0.956 W/kg

SAR(1 g) = 0.570 mW/g; SAR(10 g) = 0.334 mW/g

Maximum value of SAR (measured) = 0.624 mW/g

0 dB = 0.624 mW/g

Right Cheek_GSM1900 Ch512_Sample C

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_z = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

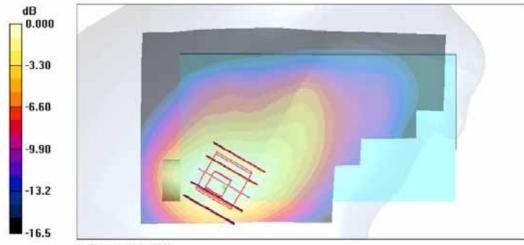
Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.694 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = -0.122 dB

Peak SAR (extrapolated) = 0.950 W/kg

SAR(1 g) = 0.583 mW/g; SAR(10 g) = 0.352 mW/g

Maximum value of SAR (measured) = 0.628 mW/g

0 dB = 0.628 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

Right Cheek_GSM1900 Ch512_Sample D

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_z = 39.2$; $\rho = 1000 \text{ kg/m}^3$

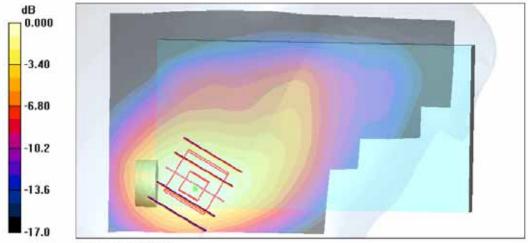
Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.800 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.106 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.401 mW/g

Maximum value of SAR (measured) = 0.744 mW/g

0 dB = 0.744 mW/g

Right Tilted_GSM1900 Ch661_Sample D

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon_c = 39.1$; $\rho = 1000$ kg/m³

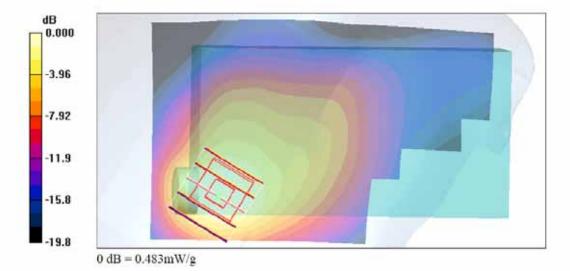
Date: 2008/4/5

Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.534 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.766 W/kg

SAR(1 g) = 0.443 mW/g; SAR(10 g) = 0.252 mW/gMaximum value of SAR (measured) = 0.483 mW/g

Left Cheek GSM1900 Ch661 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon_c = 39.1$; $\rho = 1000$ kg/m³

Test Report No : FA840317A

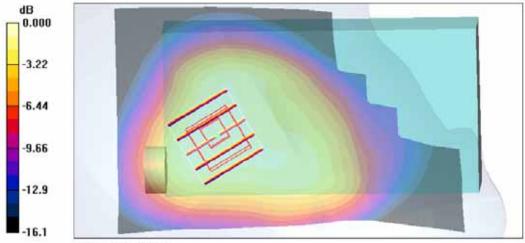
Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.309 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.414 W/kg

SAR(1 g) = 0.284 mW/g; SAR(10 g) = 0.184 mW/g

Maximum value of SAR (measured) = 0.306 mW/g

0 dB = 0.306 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/5

Left Tilted GSM1900 Ch661 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

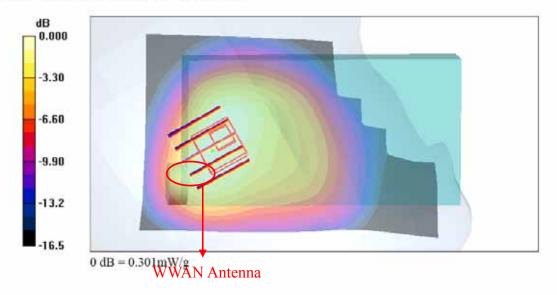
Medium: HSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon_c = 39.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.303 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.413 W/kg

SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.174 mW/gMaximum value of SAR (measured) = 0.301 mW/g

Body GSM850 Ch189 Front Face with 0cm Gap GPRS8 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon_{\perp} = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.784 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.718 mW/g; SAR(10 g) = 0.364 mW/g

Maximum value of SAR (measured) = 0.761 mW/g

0 dB = 0.761 mW/g

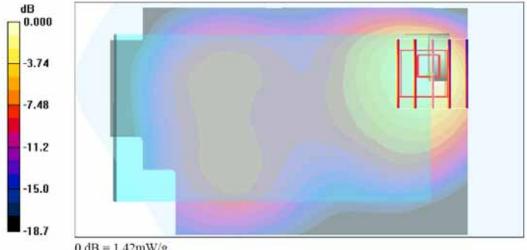
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM850 Ch251 Front Face with 0cm Gap GPRS10 Sample A

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4 Medium: MSL 850 Medium parameters used: f = 849 MHz; $\sigma = 1$ mho/m; $\varepsilon_c = 56.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:


- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.51 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.6 V/m; Power Drift = -0.133 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.678 mW/gMaximum value of SAR (measured) = 1.42 mW/g

0 dB = 1.42 mW/g

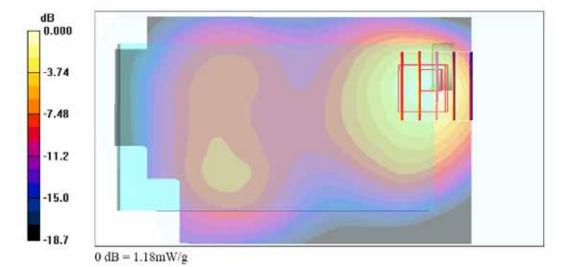
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM850 Ch251 Front Face with 0cm Gap GPRS10 Sample C

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4 Medium: MSL 850 Medium parameters used: f = 849 MHz; $\sigma = 1$ mho/m; $\varepsilon_c = 56.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:


- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.29 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.5 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.583 mW/gMaximum value of SAR (measured) = 1.18 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM850 Ch251 Front Face with 0cm Gap GPRS10 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: MSL 850 Medium parameters used: f = 849 MHz; $\sigma = 1$ mho/m; $\varepsilon_c = 56.1$; $\rho = 1000$ kg/m³

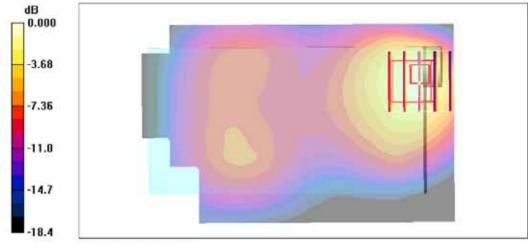
Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g


Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.2 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 3.18 W/kg

SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.657 mW/g

Maximum value of SAR (measured) = 1.33 mW/g

0 dB = 1.33 mW/g

Body GSM850 Ch189 Front Face with 0cm Gap GPRS12 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon_{\perp} = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

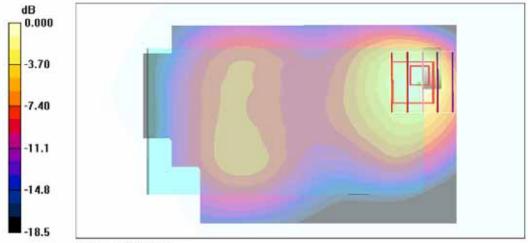
Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.919 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = -0.129 dB

Peak SAR (extrapolated) = 2.27 W/kg

SAR(1 g) = 0.869 mW/g; SAR(10 g) = 0.438 mW/g

Maximum value of SAR (measured) = 0.895 mW/g

0 dB = 0.895 mW/g

Date: 2008/4/8

Test Report No : FA840317A

Body GSM850 Ch189 Front Face with 0cm Gap EDGE8 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon_{\perp} = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

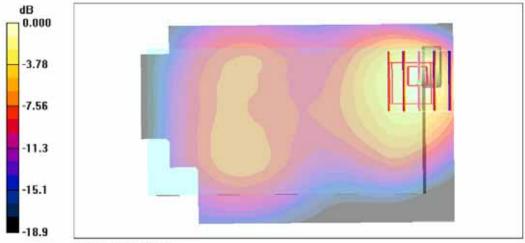
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.249 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.230 mW/g; SAR(10 g) = 0.117 mW/g

Maximum value of SAR (measured) = 0.242 mW/g

0 dB = 0.242 mW/g

Body GSM850 Ch189 Front Face with 0cm Gap EDGE10 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon_{\perp} = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Date: 2008/4/8

Test Report No : FA840317A

Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

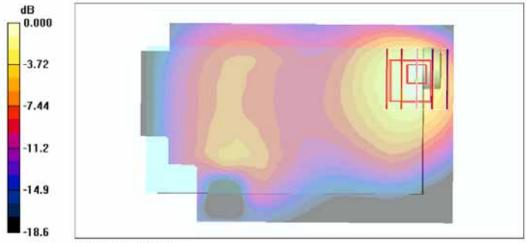
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.300 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 0.723 W/kg

SAR(1 g) = 0.292 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 0.312 mW/g

0 dB = 0.312 mW/g

Body GSM850 Ch189 Front Face with 0cm Gap EDGE12 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon_{\perp} = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

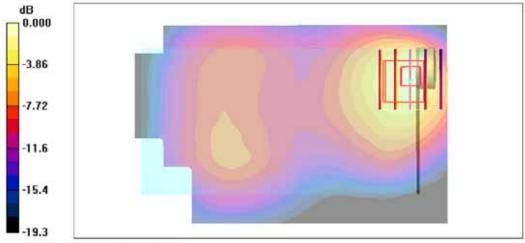
Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.228 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.261 mW/g; SAR(10 g) = 0.120 mW/g

Maximum value of SAR (measured) = 0.278 mW/g

0 dB = 0.278 mW/g

Body GSM850 Ch189 Rear Face with 0cm Gap GPRS12 Sample D

DUT: 840317

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

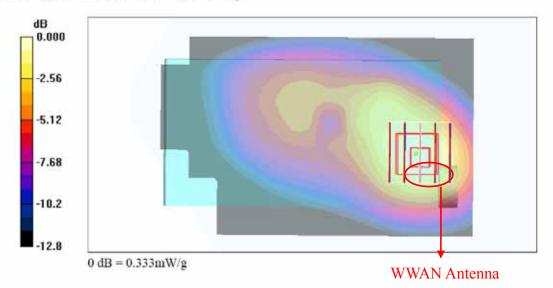
Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon_{\perp} = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch189/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.331 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.0 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.313 mW/g; SAR(10 g) = 0.198 mW/gMaximum value of SAR (measured) = 0.333 mW/g

Body_GSM1900 Ch661_Front Face with 0cm Gap_GPRS12_Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_c = 51.3$; $\rho = 1000$ kg/m³

Date: 2008/4/8

Test Report No : FA840317A

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

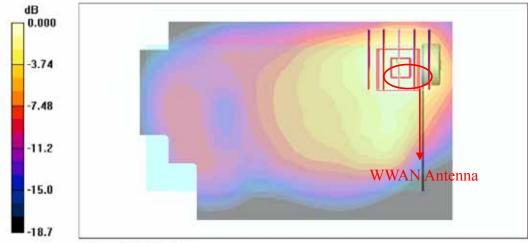
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.702 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.3 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.997 W/kg

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.334 mW/g

Maximum value of SAR (measured) = 0.626 mW/g

0 dB = 0.626 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM1900 Ch661 Rear Face with 0cm Gap GPRS8 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

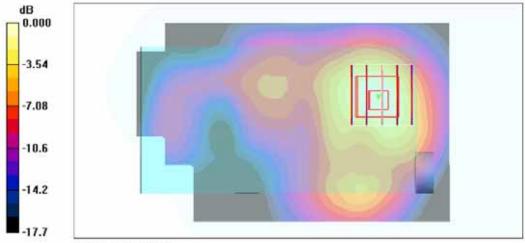
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_c = 51.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.565 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.789 W/kg

SAR(1 g) = 0.499 mW/g; SAR(10 g) = 0.285 mW/gMaximum value of SAR (measured) = 0.543 mW/g

0 dB = 0.543 mW/g

Body GSM1900 Ch512 Rear Face with 0cm Gap GPRS10 Sample A

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

Test Report No : FA840317A

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

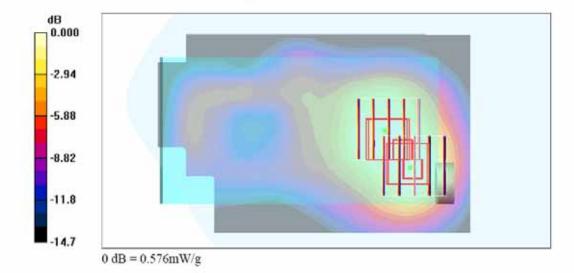
Maximum value of SAR (interpolated) = 0.666 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.169 dB

Peak SAR (extrapolated) = 0.982 W/kg

SAR(1 g) = 0.575 mW/g; SAR(10 g) = 0.333 mW/g


Maximum value of SAR (measured) = 0.626 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.169 dB

Peak SAR (extrapolated) = 0.874 W/kg

SAR(1 g) = 0.483 mW/g; SAR(10 g) = 0.320 mW/gMaximum value of SAR (measured) = 0.576 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM1900 Ch512 Rear Face with 0cm Gap GPRS10 Sample B

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_c = 51.4$; $\rho = 1000$ kg/m³

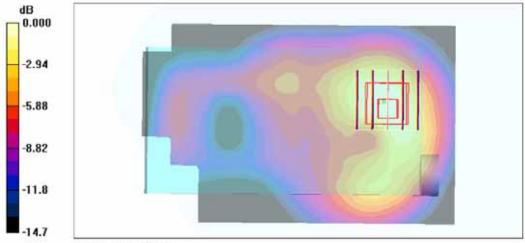
Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.722 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.9 V/m; Power Drift = -0.129 dB

Peak SAR (extrapolated) = 0.958 W/kg

SAR(1 g) = 0.624 mW/g; SAR(10 g) = 0.374 mW/g

Maximum value of SAR (measured) = 0.672 mW/g

0 dB = 0.672 mW/g

Body GSM1900 Ch512 Rear Face with 0cm Gap GPRS10 Sample C

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

Test Report No : FA840317A

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.798 mW/g

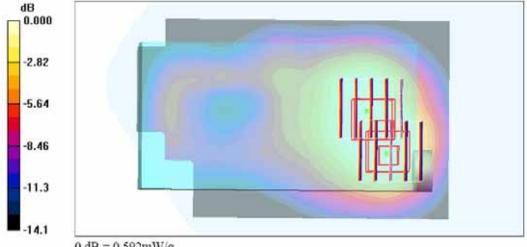
Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.368 mW/g

Maximum value of SAR (measured) = 0.723 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 0.885 W/kg

SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.305 mW/g

Maximum value of SAR (measured) = 0.592 mW/g

0 dB = 0.592 mW/g

Body GSM1900 Ch512 Rear Face with 0cm Gap GPRS10 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_c = 51.4$; $\rho = 1000$ kg/m³

Test Report No : FA840317A

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.757 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.5 V/m; Power Drift = -0.146 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.402 mW/gMaximum value of SAR (measured) = 0.728 mW/g

dB 0.000 -3.28-6.569.84 -13.1-16.4

0 dB = 0.728 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM1900 Ch661 Rear Face with 0cm Gap GPRS12 Sample C

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

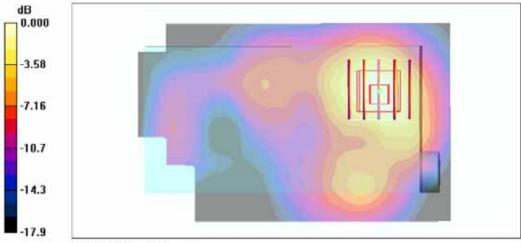
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_{\rm s} = 51.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.645 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.6 V/m; Power Drift = 0.180 dB

Peak SAR (extrapolated) = 0.927 W/kg

SAR(1 g) = 0.580 mW/g; SAR(10 g) = 0.330 mW/gMaximum value of SAR (measured) = 0.620 mW/g

0 dB = 0.620 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM1900 Ch661 Rear Face with 0cm Gap EDGE8 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

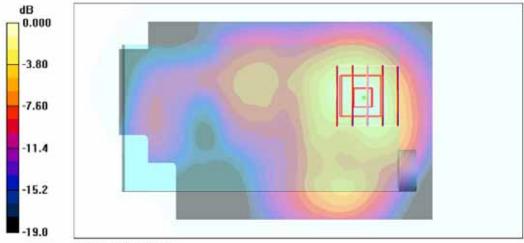
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_c = 51.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.220 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 0.314 W/kg

SAR(1 g) = 0.196 mW/g; SAR(10 g) = 0.112 mW/gMaximum value of SAR (measured) = 0.214 mW/g

0 dB = 0.214 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM1900 Ch661 Rear Face with 0cm Gap EDGE10 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:4

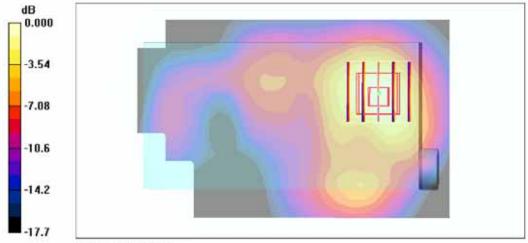
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_{\rm s} = 51.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.308 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.437 W/kg

SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.158 mW/gMaximum value of SAR (measured) = 0.296 mW/g

0 dB = 0.296 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/4/8

Body GSM1900 Ch661 Rear Face with 0cm Gap EDGE12 Sample D

DUT: 840317

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

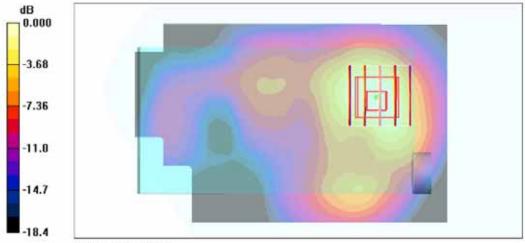
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_c = 51.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.256 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.128 mW/gMaximum value of SAR (measured) = 0.241 mW/g

0 dB = 0.241 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Right Tilted 802.11g Ch6_Volume Scan

DUT: 840317

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- · Measurement SW: DASY4, V4.7 Build 55

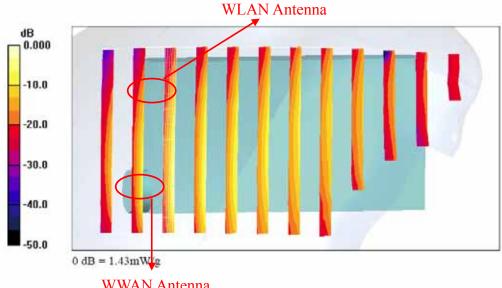
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Right Tilted_GSM850 Ch251_Volume Scan

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³


Phantom section: Right Section

Measurement Standard; DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55

Multi Band Result:

SAR(1 g) = 1.34 mW/g; SAR(10 g) = 0.551 mW/gMaximum value of SAR (measured) = 1.43 mW/g

Left Tilted_802.11g Ch6_Volume Scan

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.83 \text{ mho/m}$; $\epsilon_c = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- · Measurement SW: DASY4, V4.7 Build 55

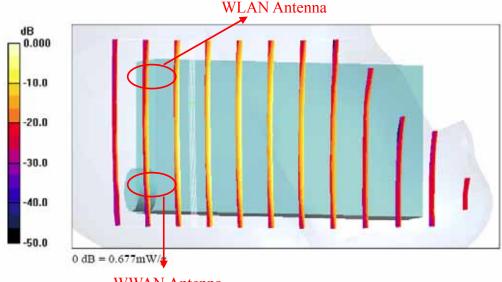
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Tilted GSM1900 Ch512 Volume Scan

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³


Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 \$N1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- · Measurement SW: DASY4, V4.7 Build 55

Multi Band Result:

SAR(1 g) = 0.649 mW/g; SAR(10 g) = 0.398 mW/gMaximum value of SAR (measured) = 0.677 mW/g

CC SAR Test Report Test Report No : FA840317A

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body_802.11g Ch6_Front Face with 0cm Gap_Volume Scan

DUT: 840317

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55

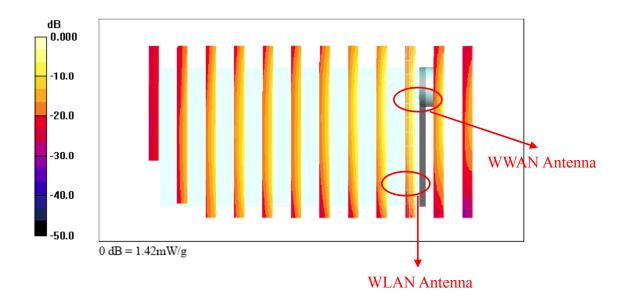
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body_GSM850 Ch251_Front Face with 0cm Gap_Volume Scan

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³


Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55

Multi Band Result:

SAR(1~g) = 1.30~mW/g; SAR(10~g) = 0.710~mW/gMaximum value of SAR (measured) = 1.42 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body_802.11g Ch6_Front Face with 0cm Gap_Volume Scan

DUT: 840317

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_s = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- · Measurement SW: DASY4, V4.7 Build 55

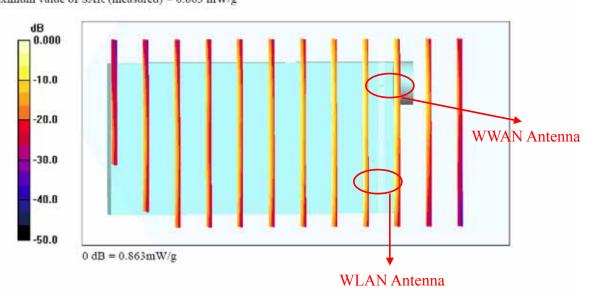
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body GSM1900 Ch512 Front Face with 0cm Gap_Volume Scan

DUT: 840317

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; G = 1.17 mho/m; $\epsilon_{\rho} = 51.4$; $\rho = 1000 \text{ kg/m}^3$


Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55

Multi Band Result:

SAR(1 g) = 0.805 mW/g; SAR(10 g) = 0.479 mW/g Maximum value of SAR (measured) = 0.863 mW/g

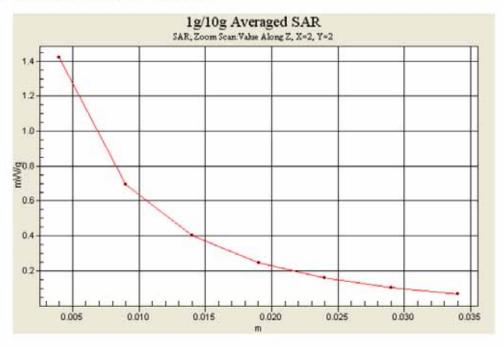
Body GSM850 Ch251 Front Face with 0cm Gap GPRS10 Sample A 2D

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4 Medium: MSL 850 Medium parameters used: f = 849 MHz; $\sigma = 1$ mho/m; $\varepsilon_c = 56.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

Test Report No : FA840317A

DASY4 Configuration:


- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.51 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.6 V/m; Power Drift = -0.133 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.678 mW/gMaximum value of SAR (measured) = 1.42 mW/g

Right Cheek GSM1900 Ch512 Sample D 2D

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

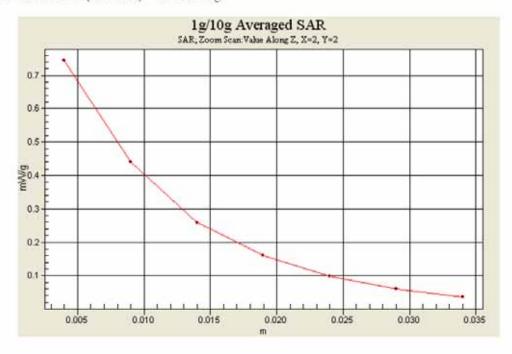
Medium: HSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA840317A

Ambient Temperature: 22.6 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.800 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.106 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.401 mW/gMaximum value of SAR (measured) = 0.744 mW/g

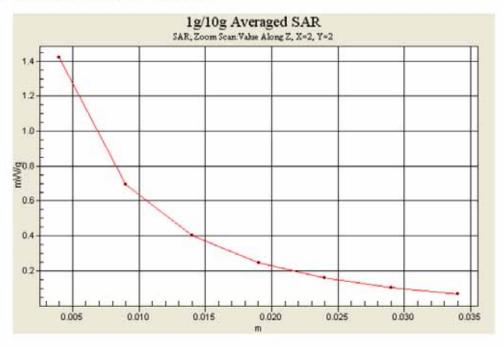
Body GSM850 Ch251 Front Face with 0cm Gap GPRS10 Sample A 2D

DUT: 840317

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4 Medium: MSL 850 Medium parameters used: f = 849 MHz; $\sigma = 1$ mho/m; $\varepsilon_c = 56.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

Test Report No : FA840317A

DASY4 Configuration:


- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
 Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.51 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.6 V/m; Power Drift = -0.133 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.678 mW/gMaximum value of SAR (measured) = 1.42 mW/g

Body_GSM1900 Ch512_Rear Face with 0cm Gap_GPRS10_Sample D_2D

DUT: 840317

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

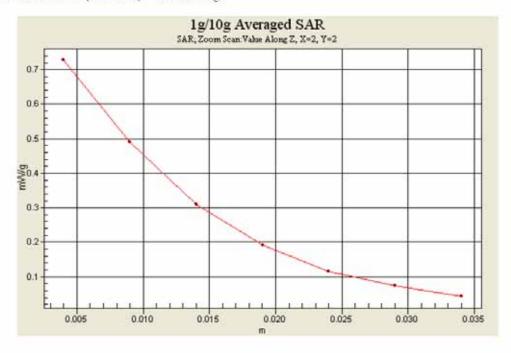
Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon_c = 51.4$; $\rho = 1000$ kg/m³

Test Report No : FA840317A

Ambient Temperature: 22.4 °C: Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch512/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.757 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.5 V/m; Power Drift = -0.146 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.402 mW/g Maximum value of SAR (measured) = 0.728 mW/g

Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Test Report No : FA840317A

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Cartificate No. D835\/2-400 Mar08

Accreditation No.: SCS 108

C

	CERTIFICATE		
Object	D835V2 - SN: 499		
Calibration procedure(s)	QA CAL-05.v7 Calibration procedure for dipole validation kits		
Calibration date:	March 17, 2008		
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (M&	TE critical for calibration)		
	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736)	Oct-08 Oct-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2	ID# GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Oct-08 Oct-08 Aug-08 Mar-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00738) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID# MY41092317 100005	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 Name	04-Oct-07 (METAS, No. 217-00738) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) Function	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Certificate No: D835V2-499_Mar08

Page 1 of 9