

A Test Lab Techno Corp.

Changan Lab : No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C. Tel : 886-3-271-0188 / Fax : 886-3-271-0190

HAC EVALUATION REPORT

Test Report No.	: 0705FH12
Applicant	: WISTRON CORPORATION
Trade Name	: Symbol
Model Name	: MC3574
FCC ID	: H9PMC3574
EUT Type	: EDA(Enterprise Digital Assistant)
Dates of Test	: May. 15, 2007
Test Environment	: Ambient Temperature : 22 ± 3 $^\circ \!\!\! \mathbb{C}$
	Relative Humidity: 40 - 70 %
FCC Rule Part(s)	: FCC 47 CFR § 20.19.
HAC Standard	: ANSI PC63.19-2006
PC63.19 HAC Rated Category	: M3 (RF EMISSIONS)
Test Lab	: Changan Lab

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- 2. The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in ful

Country Huand 20070816

Testing Center Manager

Sam Chuang

Testing Engineer

Contents

1.	Description	n of Equipment Under Test (EUT)	. 3
2.	Introductio	n	. 4
3.	Test Equip	ment List	. 5
4.	Validation.		. 6
5.	Probe Mod	ulation Factor	. 8
6.	Test Resul	S	10
Ap	pendix A -	EUT with Accessories Picture	15
Ap	pendix B -	Details of WD signal	17
Ap	pendix C -	Validation	19
Ap	pendix D -	HAC distribution plots for E-Field and H-Field	24
Ap	pendix E -	Calibration	37

1. <u>Description of Equipment Under Test (EUT)</u>

Applicant :

Wistron Corporation

21F, 88 Sec.1 Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C

EUT Type	:	EDA(Enterprise Digital Assistant)
Trade Name	:	Symbol
Model Name	:	MC3574
FCC ID	:	H9PMC3574
Tx Frequency	:	824.2 - 848.8 MHz (GSM 850)
		1850.2 - 1909.8 MHz(GSM 1900)
Max. Output Power	:	32.50 dBm GSM 850
		30.10 dBm GSM 1900
HW Version	:	MC3574 Rev 1-MV
SW Version	:	X21
Antenna Type	:	Internal Type
		(Antenna Gain GSM 850 = -1.46 dBi / GSM 1900 =2.10 dBi)
Test Device	:	Production Unit
Device Category	:	Portable

This wireless portable device has performed Hearing Aid Compatibility (HAC) measurements for the portable cellular phone. The measurements were performed to ensure compliance to the ANSI PC63.19-2006 rd 3.12 standards, which is the same as the ANSI C63.19-2006 per the FCC public notice DA 06-1215.

2. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **Wistron Corporation Trade Name: Symbol Model(s)** : **MC3574.** The test procedures, as described in ANSI PC63.19-2006 standard were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment are included within this test report.

3. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration		
Wandacturer	Name of Equipment	турелиоцеі	Senai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ER3DV6	2302	Mar. 21,2007	Mar. 21,2008	
SPEAG	Dosimetric H-Filed Probe	H3DV6	6187	Mar. 21,2007	Mar. 21,2008	
SPEAG	835 MHz System Validation Kit	CD835V3	1052	Jan. 16, 2007	Jan. 16, 2008	
SPEAG	1880 MHz System Validation Kit	CD1880V3	1044	Jan. 16, 2007	Jan. 16, 2008	
SPEAG	Data Acquisition Electronics	DAE4	541	Oct. 16, 2006	Oct. 16, 2006	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	HAC Test Arch	SD-HAC-P01-BA	1038	NCR	NCR	
SPEAG	Robot	Staubli RX90L	F00/589B1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.7 Build 53	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.8 Build 172	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	Wireless Communication Test Set	8960(E5515C)	GB47020167	Feb. 14, 2007	Feb. 14, 2008	
Agilent	S-Parameter Network Analyzer	E5071B	MY42404655	Feb. 05, 2007	Feb. 05, 2008	
Agilent	Spectrum Analyzer(PSA)	E4445A	MY45300744	Nov. 11, 2006	Nov. 11, 2007	
Agilent	Power Meter	E4418B	GB40206143	Apr. 24, 2007	Apr. 24, 2007	
Agilent	Signal Generator	8648C	3847A05201	July 06, 2006	July 06, 2007	
Agilent	Power Sensor	8481H	3318A20779	Apr. 25, 2007	Apr. 25, 2008	
Agilent	Dual Directional Coupler	778D	50334	NCR	NCR	
Mini-Circuits	Power Amplifier	ZVE-8G	D042005 671800514	NCR	NCR	
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	NCR	

Table 1. Test Equipment List

4. Validation

Validations of the DASY4 v4.7 test system were performed using the measurement equipment listed in Section 3.1. All validations occur in free space using the DASY4 test arch. Note that the 10mm probe to dipole separation is measured from the top edge of the dipole to the calibration reference point of the probe. SPEAG uses the center point of the probe sensor(s) as the reference point when establishing targets for their dipoles. Therefore, because SPEAG's dipoles and targets are used, it is appropriate to measure the 10mm separation distance to the center of the sensors as they do. This reference point was used for validation only. Validations were performed at 835 MHz and/or 1880 MHz. These frequencies are within each operating band and are within 2MHz of the mid-band frequency of the test device. The obtained results from the validations are displayed in the table below. The field contour plots are included in Appendix B.

Validations were performed to verify that measured E-field and H-field values are within +/- 25% from the target reference values provided by the manufacturer (Ref: Appendix D). Per Section 4.2.2.1 of the C63.19 standard, "Values within +/-25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty." Therefore, the E-Field and H-Field dipole verification results, shown in Table 4, are in accordance with the acceptable parameters defined by the standard.

Dipole	Freq. (MHz)	Protocol	Input Power (mW)	Target for Dipole (V/m)	E-Field Results (V/m)	% Deviation	Date
SN:1052	835	CW	100	166.6	175.4	5.28	May. 15, 2007
SN:1044	1880	CW	100	135.3	133.7	-1.18	May. 15, 2007

Table 2. Dipole E-Field Measurement Summary

Dipole	Freq. (MHz)	Protocol	Input Power (mW)	Target for Dipole (A/m)	H-Field Results (A/m)	% Deviation	Date
SN:1052	835	CW	100	0.450	0.481	6.89	May. 15, 2007
SN:1044	1880	CW	100	0.457	0.423	-7.44	May. 15, 2007

Table 3. Dipole H-Field Measurement Summary

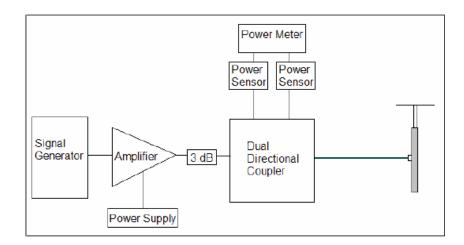


Figure 1. Setup for Validation

5. Probe Modulation Factor

After every probe calibration, the response of the probe to each applicable modulated signal (CDMA, GSM, etc) must be assessed at both 835 MHz, 1880 MHz. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. For each PMF assessment, a Signal Generator was used to replace the original CW signal with the desired modulated signal. The PMF results are shown in Tables 4. RF Field Probe Modulation Response was measured with the field probe and associated measurement equipment. The PMF was measured per ANSI PC63.19-2006 using a signal generator as follows:

- 1. Illuminate a dipole with a CW signal at the intended measured frequency.
- 2. Fix the probe at a set location relative to the dipole; typically located at the field reference point.
- 3. Record the reading of the probe measurement system of the CW signal.
- 4. Substitute a modulated signal of the same amplitude, using the same modulation as that used by the intended WD for the CW signal.
- 5. Record the reading of the probe measurement system of the modulated signal.
- 6. The ratio of the CW to modulated signal reading is the probe modulation factor.
- 7. Spectrum analyzer settings:
 - Center Frequency: nominal center frequency of channel
 - Span: zero
 - Resolution bandwidth >= emission bandwidth
 - Video bandwidth >= 20kHz.
 - Detection: RMS detection.
 - Trigger: Video or IF trigger, adjusted to give a stable display of the transmission.
 - Sweep rate: Set to show a complete transmission cycle.
 - Line max hold may be used temporarily to ease the peak reading.

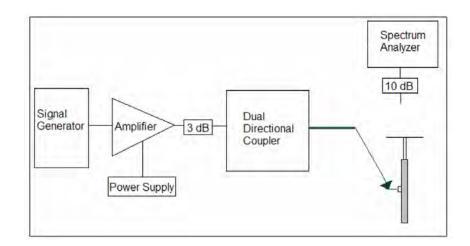


Figure 2. Setup to Dipole

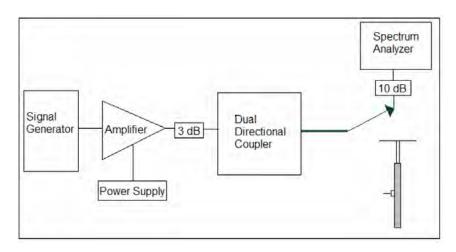


Figure 3. Setup for Desired Peak Power using Spectrum Analyzer

F	Peak Power			ield SN:2256	H-Field Probe SN:6076	
(MHz)	Protocol	(mW)	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor
	CW	100	151.20		0.53	
836.5	80% AM	100	94.14	1.61	0.32	1.65
	GSM	100	57.62	2.62	0.20	2.73
	CW	100	162.00		0.65	
1880	80% AM	100	104.69	1.55	0.41	1.57
	GSM	100	62.79	2.58	0.27	2.40

Table 4. PMF Measurement Summary

Note: PMF measurements were verified at WD's power as an input to the dipole.

6. <u>Test Results</u>

The phone was tested in all normal configurations for the ear use. When applicable, each configuration is tested with the antenna in its fully extended and fully retracted positions. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode; for example, GSM, CDMA and TDMA.

The signal was setup by creating and maintaining an over the air connection between the DUT and an Agilent 8960 Wireless Communications Test Set. The test equipment was configured to use maximum output power, PCL=5 (33dBm) for GSM850 and PCL=0 (30dBm) for GSM1900. The CDMA radio is available on CDMA 2000(1X) and IS-95. The test equipment was configured to use "all up bits" for RC1 / SO2 on J-STD-008 for CDMA 1900 and TSB-84 for CDMA 800 MHz. The Wideband and Zero Span spectrum analyzer plots are shown in Appendix A.

The DASY4 v4.6 measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAG[™] setup. The default settings for the grid spacing of the scan were set to 5mm as shown in the Field plots included in Appendix B and C. The 5cm x 5cm area measurement grid is centered on the acoustic output of the device. The Test Arch provided by SPEAG is used to position the DUT. The WD reference plane is parallel to the device and contains the highest point on its contour in the area of the phone that normally rests against the user's ear. The measurement plane contains the nearest point on the probe sensor(s) relative to the WD. The pictures of the setup are included in 7.3.

The device is positioned such that the WD reference plane is located 10mm from, and parallel to, the measurement plane. This is in accordance with section 4.3 of the standard, which states that "The WD reference plane is a plane parallel with the front "face" of the WD and containing the highest point on its contour in the area of the phone that normally rests against the user's ear."

The following figure shows the position of the measurement grid with respect to the device under test.

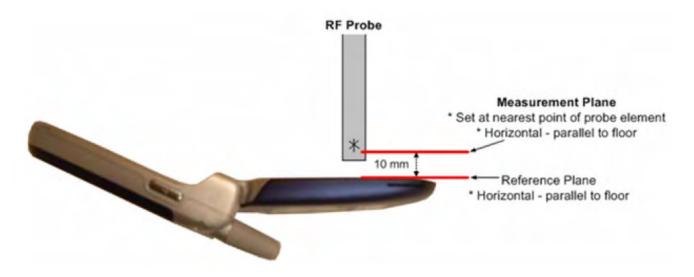


Figure 4. Clarification of Figure A-2 from the Standard

The HAC Rating results for E-Field and H-field are shown in 7.1 and 7.2. Also shown are the measured conducted output powers, the measured drifts, excluded areas, and the peak fields. PMF measurements are taken from Section 5. The worst-case test conditions are indicated with bold numbers in the tables and are detailed in Appendix C: HAC distribution plots for E-Field and H-Field.

Drift was measured using the typical DASY4 v4.7 measurement routines. The field is measured at the reference location (center of the ear piece) at the beginning of the test. Then after completion of the E or H field measurement, the probe returns to the same reference location and takes another measurement. The drift is the delta between these two values and is included in the test report scans.

The cellular phone model covered by this report has the following battery options:

Battery -

- 1. BTRY-MC35EABOE 3.7V 1370mAh
- 2. BTRY-MC35EABO2 3.7V 2740mAh

6.1 HAC E-Field measurement results:

Band	Rating E-Field	
GSM 850	МЗ	149.6 to 266.1 V/m
G2M 820	M4	< 149.6 V/m
CSM 1000	М3	47.3 to 84.1 V/m
GSM 1900	M4	<47.3 V/m

Table 5. Emissions Limits

Band	Channel	Conducted Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
0.014	128	32.50		0.054	6,8,9	157.10	M3
GSM 850	190	32.30	2.62	-0.086	6,8,9	192.80	M3
	251	32.30		0.006	6,8,9	230.30	M3
	512	30.10		-0.081	7,8,9	63.40	M3
GSM 1900	661	29.40	2.58	-0.010	7,8,9	69.40	M3
	810	28.60		0.064	7,8,9	80.20	M3

Note:

- 1. HAC E-Field measurement results for the portable cellular telephone at highest possible output power.
- 2. The test modes open function of WLAN.

6.2 HAC H-Field measurement results:

Band	Rating	H-Field
GSM 850	М3	0.45 to 0.80 A/m
G2M 020	M4	< 0.45 A/m
GSM 1900	М3	0.14 to 0.25 A/m
	M4	<0.14 A/m

Table 6. Emissions Limits

Band	Channel	Conducted Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Rating
	128	32.50		-0.031	2,3,6	0.407	M4
GSM 850	190	32.30	2.62	0.025	2,3,6	0.495	M3
	251	32.30		-0.073	2,3,6	0.586	M3
	512	30.10		-0.016	2,3,6	0.219	M3
GSM 1900	661	29.40	2.58	-0.048	2,3,6	0.240	M3
	810	28.60		0.002	6,8,9	0.229	M3

Note:

- 1. HAC E-Field measurement results for the portable cellular telephone at highest possible output power.
- 2. The test modes open function of WLAN.

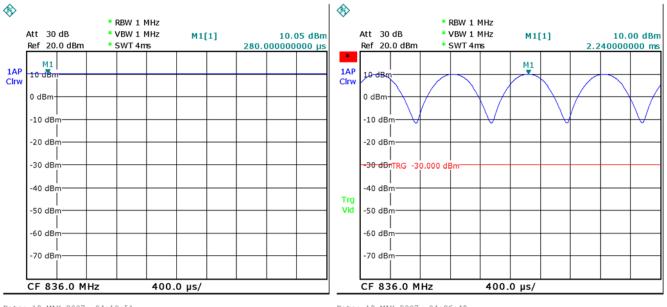
6.3 Pictures of Test Setup:



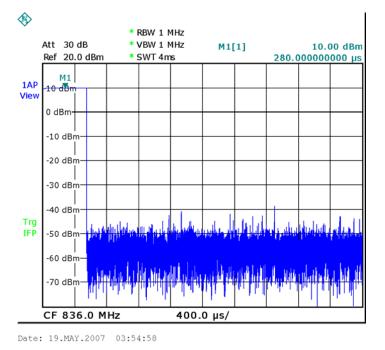

Figure 5. View from the front

Figure 6. View from the side

Appendix A - EUT with Accessories Picture

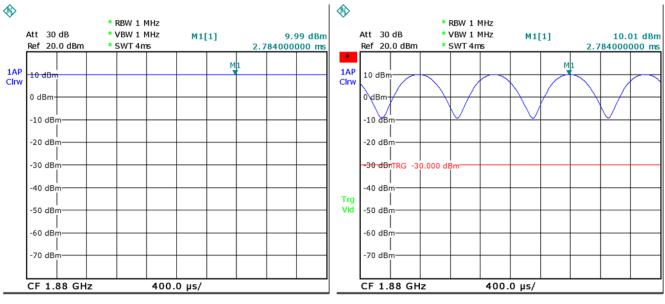


Appendix B - Details of WD signal


836 MHz

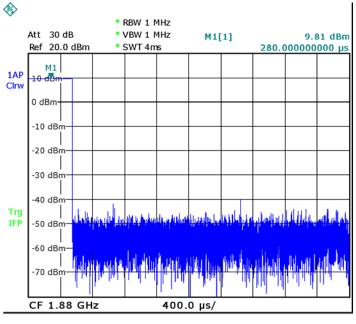
Date: 19.MAY.2007 04:10:51

Date: 19.MAY.2007 04:26:49


80% AM Signal

GSM Signal

1880 MHz



Date: 19.MAY.2007 04:54:26

Date: 19.MAY.2007 04:44:32

80% AM Signal

Date: 19.MAY.2007 05:22:02

GSM Signal

Appendix C - Validation

See following Attached Pages for Validation.

Date/Time: 5/15/2007 3:35:17 PM

Test Laboratory: A Test Lab Techno Corp.

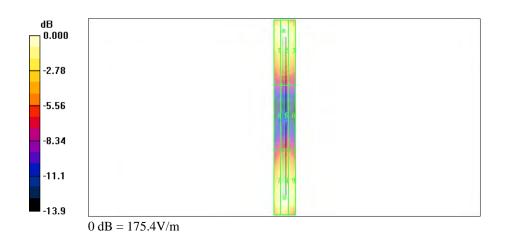
HAC_System Performance Check at 835MHz_200750515_ E

DUT: Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN:1052

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe tip 10mm above Device Reference/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 175.4 V/m Probe Modulation Factor = 1.00 Reference Value = 127.8 V/m; Power Drift = -0.042 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m					
Grid 1	Grid 2	Grid 3			
172.5	175.4	167.5			
Grid 4	Grid 5	Grid 6			
86.1	90.9	88.5			
Grid 7					
166.3	174.6	168.7			

Date/Time: 5/15/2007 4:41:30 PM

Test Laboratory: A Test Lab Techno Corp.

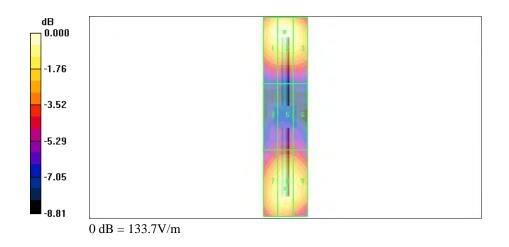
HAC_System Performance Check at 1880MHz_20070515_ E

DUT: Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN:1044

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe tip 10mm above Device Reference/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 133.7 V/m Probe Modulation Factor = 1.00 Reference Value = 129.0 V/m; Power Drift = 0.002 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m		
Grid 1	Grid 2	Grid 3
131.0	133.7	126.6
Grid 4	Grid 5	Grid 6
79.2	83.6	81.4
		Grid 9
120.8	125.7	121.2

Date/Time: 5/15/2007 2:57:54 PM

Test Laboratory: A Test Lab Techno Corp.

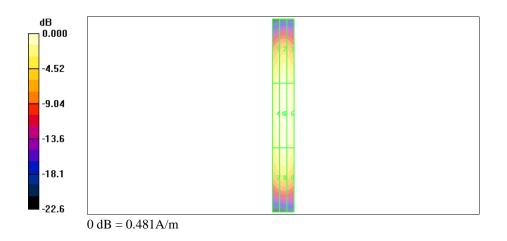
HAC_System Performance Check at 835MHz_20070515_H

DUT: Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN:1052

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DVV6 probe tip 10mm above Device Reference/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.481 A/m Probe Modulation Factor = 1.00 Reference Value = 0.516 A/m; Power Drift = -0.068 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m		
Grid 1	Grid 2	Grid 3
0.403	0.434	0.418
Grid 4	Grid 5	Grid 6
0.448	0.481	0.466
Grid 7	Grid 8	Grid 9
0.396	0.428	0.414

Date/Time: 5/15/2007 4:59:46 PM

Test Laboratory: A Test Lab Techno Corp.

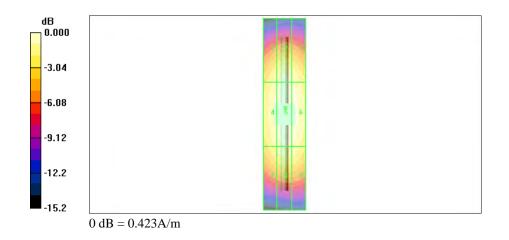
HAC_System Performance Check at 1880MHz_20070515_H

DUT: Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN:1044

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DVV6 probe tip 10mm above Device Reference/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.423 A/m Probe Modulation Factor = 1.00 Reference Value = 0.448 A/m; Power Drift = -0.003 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m		
Grid 1	Grid 2	Grid 3
0.364	0.395	0.380
Grid 4	Grid 5	Grid 6
0.392	0.423	0.410
Grid 7	Grid 8	Grid 9
0.351	0.381	0.370

Appendix D - HAC distribution plots for E-Field and H-Field

See following Attached Pages for HAC distribution plots for E-Field and H-Field.

Date/Time: 5/15/2007 8:38:52 PM

Test Laboratory: A Test Lab Techno Corp.

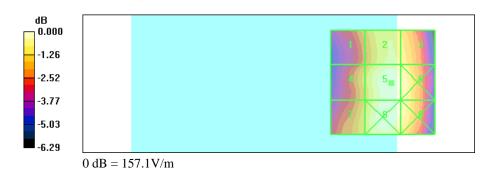
HAC_GSM850_CH128_E

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: GSM850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 157.1 V/mProbe Modulation Factor = 2.62Reference Value = 61.0 V/m; Power Drift = 0.054 dBHearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m		
Grid 1	Grid 2	Grid 3
128.4	146.4	143.2
Grid 4	Grid 5	Grid 6
133.8	157.1	151.5
Grid 7	Grid 8	Grid 9
137.3	156.1	150.0

Date/Time: 5/15/2007 8:45:11 PM

Test Laboratory: A Test Lab Techno Corp.

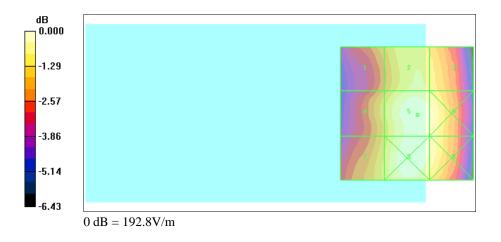
HAC_GSM850_CH190_E

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 192.8 V/m Probe Modulation Factor = 2.62 Reference Value = 75.5 V/m; Power Drift = -0.086 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m		
		Grid 3
157.8	179.2	174.4
		Grid 6
164.9	192.8	186.9
	Grid 8	
169.3	191.8	183.7

Date/Time: 5/15/2007 8:53:53 PM

Test Laboratory: A Test Lab Techno Corp.

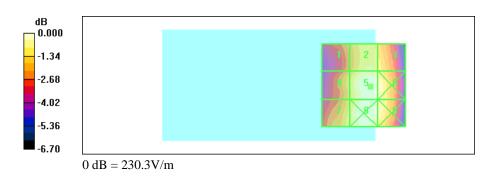
HAC_GSM850_CH251_E

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 230.3 V/m Probe Modulation Factor = 2.62 Reference Value = 90.2 V/m; Power Drift = 0.006 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m		
Grid 1	Grid 2	Grid 3
184.8	212.6	207.0
Grid 4	Grid 5	Grid 6
197.4	230.3	222.7
Grid 7	Grid 8	Grid 9
204.1	229.6	220.0

Date/Time: 5/15/2007 8:07:59 PM

Test Laboratory: A Test Lab Techno Corp.

HAC_PCS_CH512_E

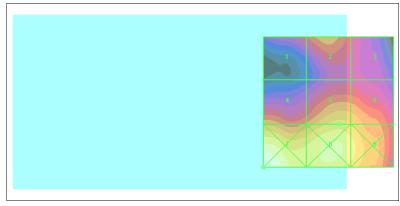
DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Device Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 63.4 V/m Probe Modulation Factor = 2.58 Reference Value = 22.4 V/m; Power Drift = -0.081 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
53.3	58.1	51.5
Grid 4	Grid 5	Grid 6
58.2	63.4	61.9
	63.4 Grid 8	

0 dB = 75.9 V/m

Date/Time: 5/15/2007 8:14:06 PM

Test Laboratory: A Test Lab Techno Corp.

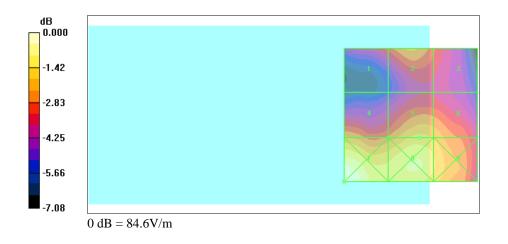
HAC_PCS_CH661_E

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 69.4 V/m Probe Modulation Factor = 2.58 Reference Value = 24.5 V/m; Power Drift = -0.010 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m		
Grid 1	Grid 2	Grid 3
59.5	65.3	58.8
Grid 4	Grid 5	Grid 6
64.9	69.4	67.7
Grid 7	Grid 8	Grid 9
84.6	76.5	72.5

Date/Time: 5/15/2007 8:30:27 PM

Test Laboratory: A Test Lab Techno Corp.

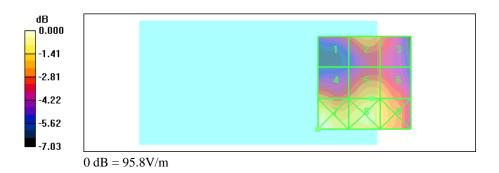
HAC_PCS_CH810_E

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: PCS; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ER3DV6 SN2302; ConvF(1, 1, 1); Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - ER3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 80.2 V/m Probe Modulation Factor = 2.58 Reference Value = 28.2 V/m; Power Drift = 0.064 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m			
Grid 1	Grid 2	Grid 3	
67.6	75.4	69.8	
Grid 4	Grid 5	Grid 6	
73.7	80.2	77.8	
Grid 7	Grid 8	Grid 9	
95.8	87.6	83.0	

Date/Time: 5/15/2007 9:05:48 PM

Test Laboratory: A Test Lab Techno Corp.

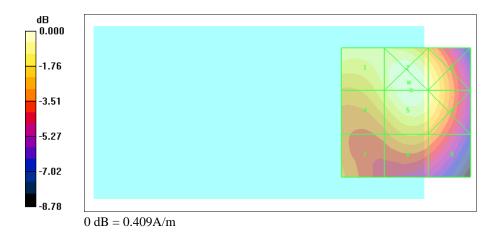
HAC_GSM850_CH128_H

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.407 A/m Probe Modulation Factor = 2.73 Reference Value = 0.135 A/m; Power Drift = -0.031 dB Hearing Aid Near-Field Category: M4 (AWF -5 dB)

Peak H-field in A/m		
		Grid 3
0.373	0.409	0.380
Grid 4	Grid 5	Grid 6
0.355	0.407	0.380
Grid 7	Grid 8	Grid 9
0.298	0.316	0.301

Date/Time: 5/15/2007 9:12:10 PM

Test Laboratory: A Test Lab Techno Corp.

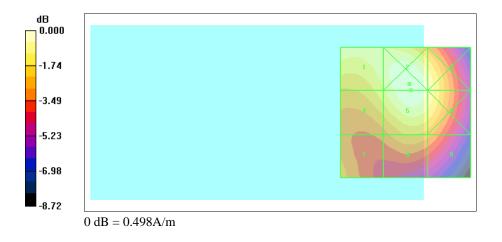
HAC_GSM850_CH190_H

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.495 A/m Probe Modulation Factor = 2.73 Reference Value = 0.164 A/m; Power Drift = 0.025 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m		
Grid 1		
0.455	0.498	0.463
Grid 4	Grid 5	Grid 6
0.431	0.495	0.463
Grid 7		
0.370	0.384	0.367

Date/Time: 5/15/2007 9:17:51 PM

Test Laboratory: A Test Lab Techno Corp.

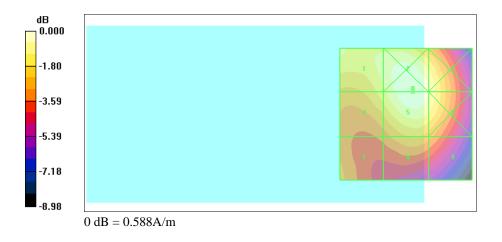
HAC_GSM850_CH251_H

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.586 A/m Probe Modulation Factor = 2.73 Reference Value = 0.194 A/m; Power Drift = -0.073 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m		
		Grid 3
0.527	0.588	0.549
Grid 4	Grid 5	Grid 6
0.502	0.586	0.549
Grid 7	Grid 8	Grid 9
0.430	0.451	0.429

Date/Time: 5/15/2007 9:28:31 PM

Test Laboratory: A Test Lab Techno Corp.

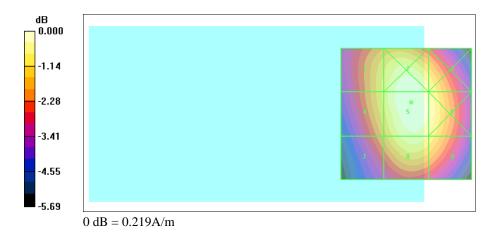
HAC_PCS_CH512_H

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.219 A/m Probe Modulation Factor = 2.40 Reference Value = 0.091 A/m; Power Drift = -0.016 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m			
Grid 1	Grid 2	Grid 3	
0.195	0.217	0.205	
Grid 4	Grid 5	Grid 6	
0.195	0.219	0.210	
Grid 7	Grid 8	Grid 9	
0.179	0.208	0.199	

Date/Time: 5/15/2007 9:34:32 PM

Test Laboratory: A Test Lab Techno Corp.

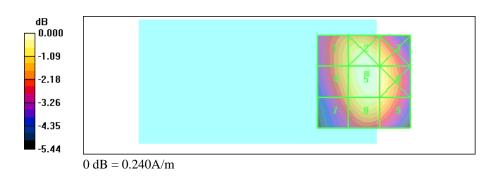
HAC_PCS_CH661_H

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Device Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.240 A/m Probe Modulation Factor = 2.40 Reference Value = 0.100 A/m; Power Drift = -0.048 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m			
Grid 1	Grid 2	Grid 3	
0.215	0.238	0.225	
		Grid 6	
0.215	0.240	0.231	
Grid 7			
0.198	0.228	0.220	

Date/Time: 5/16/2007 11:24:04 AM

Test Laboratory: A Test Lab Techno Corp.

HAC_PCS_CH810_H

DUT: MC3574; Type: PDA; FCC ID:H9PMC3574

Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Device Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6187; ; Calibrated: 3/21/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn541; Calibrated: 10/16/2006
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - H3DV6 probe center 10mm above Device Reference/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of peak Total field = 0.229 A/m Probe Modulation Factor = 2.40 Reference Value = 0.096 A/m; Power Drift = 0.002 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m			
Grid 1	Grid 2	Grid 3	
0.214	0.223	0.211	
Grid 4	Grid 5	Grid 6	
0.216	0.229	0.221	
Grid 7	Grid 8	Grid 9	
0.209	0.224	0.217	

Appendix E - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ CD835V3 SN:1052 Calibration No.CD835V3-1052_Jan06
- Dipole _ CD1880V3 SN:1044 Calibration No.CD1880V3-1044_ Jan06
- Probe _ ER3DV6 SN: 2302 Calibration No. ER3-2302_Mar07
- Probe _ H3DV6 SN: 6187 Calibration No. H3-6187_ Mar07
- DAE _ DAE4 SN:541 Calibration No.DAE4-541_Oct06