Page: 1 of 24 # **Contents-Draft Version** ### **APPENDIX** | 1. Photographs of Test Setup | 02 | |---|----| | | 06 | | | 09 | | | 10 | | 5. Uncertainty Analysis | 19 | | | 20 | | 7. System Validation from Original equipment supplier | 21 | Report No. : ES/2007/20003 Page : 2 of 24 # **Appendix Photographs of Test Setup** Fig.1 Photograph of the SAR measurement System Fig.2.1 Photograph of the Tissue Simulant Fluid liquid depth 15cm for Left-head Side Fig.2.2 Photograph of the Tissue Simulant Fluid liquid depth 15cm for Right-head Side Page: 3 of 24 Fig.2.3 Photograph of the Tissue Simulant Fluid liquid depth 15cm for Flat (Body) Fig.2.4 Photograph of the Tissue Simulant Fluid liquid depth 15cm for Flat (Body) Fig.3 Right Head Section / Cheek-Touch Position Fig.4 Right Head Section / Ear-Tilt Position(15°) Page: 4 of 24 Fig.5 Left Head Section / Cheek-Touch Position Fig.6 Left Head Section / Ear-Tilt Position(15°) Fig.7 Body position- EUT back to flat phantom (testing in GPRS Mode) Report No.: ES/2007/20003 Page: 5 of 24 Fig.8 Body position- EUT front to flat phantom (testing in GPRS Mode) Report No. : ES/2007/20003 Page : 6 of 24 # Photographs of the EUT Fig.9 Front view of device Fig.10 Back view of device Report No. : ES/2007/20003 Page : 7 of 24 Fig.11 Right-side view of device Fig.12 Left-side view of device Report No. : ES/2007/20003 Page : 8 of 24 Fig.13 View of the EUT with Charger Page: 9 of 24 # **Photographs of the Battery** Fig.14 Front view of Battery Fig.15 Back view of Battery Page: 10 of 24 ### **DAE & Probe Calibration certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland - Schweizerischer Kalibrierdienst S Service suisse d'étalonnage - C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Certificate No: DAE4-679_Mar06 CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BA - SN: 679 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) March 21, 2006 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration SN: 6295803 7-Oct-05 (Sintrel, No.E-050073) Oct-06 Fluke Process Calibrator Type 702 Secondary Standards Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1002 29-Jun-05 (SPEAG, in house check) In house check Jun-06 Function Name Calibrated by: Daniel Steinacher Technician Fin Bomholt R&D Director Approved by: Issued: March 21, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-679_Mar06 Page 1 of 5 Page: 11 of 24 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client OKWAP (Auden) Certificate No: EX3-3578_Mar06 Accreditation No.: SCS 108 | Object | EX3DV4 - SN:3578 | | | | | | | | |---|--|--|---|--|--|--|--|--| | Calibration procedure(s) | STATE OF THE PARTY | QA CAL-01.v5 and QA CAL-14.v3 Calibration procedure for dosimetric E-field probes | | | | | | | | Calibration date: | March 20, 2006 | | | | | | | | | Condition of the calibrated item | In Tolerance | | | | | | | | | | | ory facility: environment temperature (22 ± 3)°C and | | | | | | | | Calibration Equipment used (M&T | TE critical for calibration) | | Scheduled Calibration | | | | | | | Calibration Equipment used (M&T | | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration May-06 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B | TE critical for calibration) | | Scheduled Calibration May-06 May-06 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B
Power sensor E4412A | TE critical for calibration) ID # GB41293874 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) | May-06 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B
Power sensor E4412A
Power sensor E4412A | ID # GB41293874 MY41495277 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) | May-06
May-06 | | | | | | | Calibration Equipment used (M&1 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator | ID # GB41293874 MY41495277 MY41498087 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) | May-06
May-06
May-06 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B
Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 30 dB Attenuator | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) | May-06
May-06
May-06
Aug-06
May-06
Aug-06 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B
Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 20 dB Attenuator
Reference Probe ES3DV2 | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) | May-06
May-06
May-06
Aug-06
May-06
Aug-06
Jan-07 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B
Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 20 dB Attenuator
Reference Probe ES3DV2 | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) | May-06
May-06
May-06
Aug-06
May-06
Aug-06 | | | | | | | Calibration Equipment used (M&T
Primary Standards
Power meter E4419B
Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 30 dB Attenuator
Reference Probe ES3DV2 | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) | May-06
May-06
May-06
Aug-06
May-06
Aug-06
Jan-07 | | | | | | | Calibration Equipment used (M&1 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 70 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) | May-06
May-06
May-06
Aug-06
May-06
Aug-06
Jan-07
Feb-07 | | | | | | | Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 70 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00497) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) | May-06
May-06
May-06
Aug-06
May-06
Aug-06
Jan-07
Feb-07 | | | | | | | Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-0049) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | May-06 May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06 | | | | | | | Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: | ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 | Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-0049) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | May-06 May-06 May-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06 | | | | | | Page: 12 of 24 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization o φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 ### Methods Applied and Interpretation of Parameters: - NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3578 Mar06 Page 2 of 9 Page: 13 of 24 EX3DV4 SN:3578 March 20, 2006 # Probe EX3DV4 SN:3578 Manufactured: Calibrated: November 4, 2005 March 20, 2006 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3578_Mar06 Page 3 of 9 Page: 14 of 24 EX3DV4 SN:3578 March 20, 2006 ### DASY - Parameters of Probe: EX3DV4 SN:3578 | Sensitivity in Fre | e Space ^A | Diode C | ompression ^B | | |--------------------|----------------------|-----------------|-------------------------|-------| | NormX | 0.500 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 93 mV | | NormY | 0.506 ± 10.1% | $\mu V/(V/m)^2$ | DCP Y | 93 mV | | NormZ | 0.550 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z | 93 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ### **Boundary Effect** | TSL | 900 MHz | Typical SAR | gradient: 5 % p | per mm | |-----|---------|-------------|-----------------|--------| |-----|---------|-------------|-----------------|--------| | Sensor Cente | er to Phantom Surface Distance | 2.0 mm | 3.0 mm | |-----------------------|--------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 3.1 | 1.1 | | SAR _{be} [%] | With Correction Algorithm | 0.2 | 0.4 | ### TSL 1750 MHz Typical SAR gradient: 10 % per mm | Sensor Cente | er to Phantom Surface Distance | 2.0 mm | 3.0 mm | |-----------------------|--------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 2.5 | 1.0 | | SAR _{be} [%] | With Correction Algorithm | 0.2 | 0.3 | ### Sensor Offset Probe Tip to Sensor Center 1.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter; uncertainty not required. Report No. : ES/2007/20003 Page : 15 of 24 EX3DV4 SN:3578 March 20, 2006 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Report No. : ES/2007/20003 Page : 16 of 24 March 20, 2006 EX3DV4 SN:3578 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Report No. : ES/2007/20003 Page : 17 of 24 March 20, 2006 EX3DV4 SN:3578 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Report No. : ES/2007/20003 Page : 18 of 24 ### EX3DV4 SN:3578 ### March 20, 2006 ### **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|----------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.66 | 0.66 | 8.38 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | 40.1 ± 5% | 1.37 ± 5% | 0.59 | 0.80 | 7.30 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | $1.40 \pm 5\%$ | 0.59 | 0.80 | 6.98 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.52 | 0.80 | 6.47 ± 11.8% (k=2) | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.78 | 0.64 | 8.15 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.4 ± 5% | 1.49 ± 5% | 0.63 | 0.68 | 7.03 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.42 | 0.87 | 6.75 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | $1.95 \pm 5\%$ | 0.59 | 0.73 | 6.47 ± 11.8% (k=2) | | 5200 | ± 50 / ± 100 | Body | 49.0 ± 5% | $5.30 \pm 5\%$ | 0.35 | 1.75 | 4.11 ± 13.1% (k=2) | | 5800 | ± 50 / ± 100 | Body | 48.2 ± 5% | 6.00 ± 5% | 0.32 | 1.75 | 3.89 ± 13.1% (k=2) | $^{^{\}mathrm{C}}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Report No. : ES/2007/20003 Page : 19 of 24 **Uncertainty Analysis** ### DASY4 Uncertainty Budget According to IEEE P1528 [1] | | riccord. | ng to n | | 1020 | 1 | | | | |------------------------------|--------------|---------|------------|---------|---------|---------------|--------------|-----------| | | Uncertainty | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | | Error Description | value | Dist. | | Ìg | 10g | (1g) | (10g) | v_{eff} | | Measurement System | | | | | | | | | | Probe Calibration | $\pm 4.8 \%$ | N | 1 | 1 | 1 | ±4.8 % | ±4.8 % | ∞ | | Axial Isotropy | $\pm 4.7 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | $\pm 1.9 \%$ | $\pm 1.9 \%$ | ∞ | | Hemispherical Isotropy | $\pm 9.6 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | $\pm 3.9 \%$ | $\pm 3.9 \%$ | ∞ | | Boundary Effects | $\pm 1.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6 \%$ | ±0.6 % | ∞ | | Linearity | $\pm 4.7 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.7 \%$ | ±2.7 % | ∞ | | System Detection Limits | $\pm 1.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6 \%$ | ±0.6 % | ∞ | | Readout Electronics | ±1.0 % | N | 1 | 1 | 1 | ±1.0% | ±1.0 % | ∞ | | Response Time | ±0.8 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.5 \%$ | ±0.5 % | ∞ | | Integration Time | $\pm 2.6 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 1.5 \%$ | ±1.5 % | ∞ | | RF Ambient Conditions | ±3.0 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 1.7 \%$ | $\pm 1.7 \%$ | ∞ | | Probe Positioner | $\pm 0.4 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.2 \%$ | $\pm 0.2 \%$ | ∞ | | Probe Positioning | $\pm 2.9 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 1.7 \%$ | $\pm 1.7 \%$ | ∞ | | Max. SAR Eval. | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6 \%$ | ±0.6 % | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | $\pm 2.9 \%$ | N | 1 | 1 | 1 | $\pm 2.9 \%$ | ±2.9 % | 875 | | Device Holder | $\pm 3.6 \%$ | N | 1 | 1 | 1 | $\pm 3.6 \%$ | ±3.6 % | 5 | | Power Drift | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.9 \%$ | $\pm 2.9 \%$ | ∞ | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | $\pm 4.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.3 \%$ | $\pm 2.3 \%$ | ∞ | | Liquid Conductivity (target) | ±5.0 % | R | $\sqrt{3}$ | 0.64 | 0.43 | $\pm 1.8 \%$ | $\pm 1.2 \%$ | ∞ | | Liquid Conductivity (meas.) | $\pm 2.5 \%$ | N | 1 | 0.64 | 0.43 | $\pm 1.6 \%$ | ±1.1 % | ∞ | | Liquid Permittivity (target) | ±5.0 % | R | $\sqrt{3}$ | 0.6 | 0.49 | ±1.7% | ±1.4 % | ∞ | | Liquid Permittivity (meas.) | $\pm 2.5 \%$ | N | 1 | 0.6 | 0.49 | $\pm 1.5 \%$ | $\pm 1.2 \%$ | ∞ | | Combined Std. Uncertainty | | | | | | $\pm 10.3 \%$ | ±10.0 % | 331 | | Expanded STD Uncertain | ty | | | | 6 | $\pm 20.6\%$ | $\pm 20.1\%$ | | Page: 20 of 24 ### **Phantom description** Schmid & Partner Engineering AG e a g P Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com ### Certificate of Conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 | |--------------|---| | Type No | QD 000 P40 C | | Series No | TP-1150 and higher | | Manufacturer | SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerland | #### Tests The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item. | Test | Requirement | Details | Units tested | |--------------------------------|---|---|--| | Dimensions | Compliant with the geometry according to the CAD model. | IT'IS CAD File (*) | First article,
Samples | | Material thickness
of shell | Compliant with the requirements according to the standards | 2mm +/- 0.2mm in flat
and specific areas of
head section | First article,
Samples,
TP-1314 ff. | | Material thickness
at ERP | Compliant with the requirements according to the standards | 6mm +/- 0.2mm at ERP | First article,
All items | | Material
parameters | Dielectric parameters for required frequencies | 300 MHz – 6 GHz:
Relative permittivity < 5,
Loss tangent < 0.05 | Material samples | | Material resistivity | The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material compatibility. | DEGMBE based
simulating liquids | Pre-series,
First article,
Material
samples | | Sagging | Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid. | < 1% typical < 0.8% if
filled with 155mm of
HSL900 and without
DUT below | Prototypes,
Sample
testing | #### Standards - CENELEC EN 50361 IEEE Std 1528-2003 - IEC 62209 Part I - FCC OET Bulletin 65, Supplement C, Edition 01-01 - The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents. #### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4]. 07.07.2005 Signature / Stamp Schmito & Pariner Engineering AG Zoughauss lesse 43, 8004 Zurich Switzerland Phone 141-145 9700/Fax-441 245 9779 Info@speag.com, http://www.speag.com Page: 21 of 24 ### System Validation from Original equipment supplier ### **DASY4 Validation Report for Head TSL** Date/Time: 28.02.2006 15:50:36 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:168 Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(5.8, 5.8, 5.8); Calibrated: 28.10.2005 · Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 4.9L; Type: QD000P49AA;; Measurement SW: DASY4, V4.7 Build 4; Postprocessing SW: SEMCAD, V1.8 Build 160 Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.89 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.9 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 4.04 W/kg SAR(1 g) = 2.67 mW/g; SAR(10 g) = 1.71 mW/g Maximum value of SAR (measured) = 2.91 mW/g Certificate No: D900V2-168_Mar06 Report No. : ES/2007/20003 Page : 22 of 24 #### **DASY4 Validation Report for Body TSL** Date/Time: 01.03.2006 15:13:51 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:168 Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 900 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(5.76, 5.76, 5.76); Calibrated: 28.10.2005 · Sensor-Surface: 4mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 15.12.2005 · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ; Measurement SW: DASY4, V4.7 Build 5; Postprocessing SW: SEMCAD, V1.8 Build 160 Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.92 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.7 V/m; Power Drift = 0.033 dB Peak SAR (extrapolated) = 3.84 W/kg SAR(1 g) = 2.68 mW/g; SAR(10 g) = 1.76 mW/gMaximum value of SAR (measured) = 2.90 mW/g Report No.: ES/2007/20003 Page: 23 of 24 ### **DASY4 Validation Report for Head TSL** Date/Time: 14.03.2006 15:20:51 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ### DASY4 Configuration: - Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 15.12.2005 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; - Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165 Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.0 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 11.3 mW/g 0 dB = 11.3 mW/g Report No.: ES/2007/20003 Page: 24 of 24 ### **DASY4 Validation Report for Body TSL** Date/Time: 21.03.2006 12:56:12 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10; Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005 • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; • Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 Pin = 250 mW; d = 10 mm 2/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.1 mW/g # Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.5 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.5 mW/g Maximum value of SAR (measured) = 11.8 mW/g 0 dB = 11.8 mW/g