

Specific Absorption Rate (SAR) Test Report for SYMBOL Technologies, Inc. on the

Mobile Computer

:	FA591501-2-2-01
:	SYMBOL
:	21-21160
:	MC3090BT (with 11a/b/g module)
	/ MC3070BT (with 11 b/g module)
:	H9PMC3090BT / H9PMC3070BT
:	Sep. 13, 2005
:	Sep. 21, 2005
:	Sep. 21, 2005
	::

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Report Version: Rev. 01

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

	ment of Compliance	
	inistration Data	
	Testing Laboratory	
	Detail of Applicant	
	Detail of Manufacturer	
	Application Detail	
	pe	
	Description of Device Under Test (DUT)	
	Product Photo	
3.3	Applied Standards:	.7
3.4	Device Category and SAR Limits	.8
	Test Conditons	
	3.5.1 Ambient Condition:	.8
	3.5.2 Test Configuration:	
4.Spec	ific Absorption Rate (SAR)	
4.1	Introduction	10
4.2	SAR Definition	10
	Measurement Setup	
5.1	DASY4 E-Field Probe System	
	5.1.1 ET3DV6 E-Field Probe Specification	
	5.1.2 ET3DV6 E-Field Probe Calibration	13
5.2	DATA Acquisition Electronics (DAE)	14
5.3	Robot	15
5.4	Measurement Server	15
	SAM Twin Phantom	
5.6	Data Storage and Evaluation	17
	5.6.1 Data Storage	
	5.6.2 Data Evaluation	
5.7	Test Equipment List	
	Je Simulating Liquids	
	ertainty Assessment	
	Measurement Evaluation	
	Purpose of System Performance check	
	System Setup	
	Validation Results	
	ription for DUT Testing Position	
	asurement Procedures	
	Spatial Peak SAR Evaluation	
	2Scan Procedures	
	3SAR Averaged Methods	
	R Test Results	
	Keypad Up with Touch	
11.2	2Keypad Down with Touch	33

11.3 Right Side	
11.4 Left Side	
11.5 Holster	
12. References	

Appendix A – System Performance Check Data Appendix B – SAR Measurement Data Appendix C – Calibration Data

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum result found during testing for the **SYMBOL Technologies**, **Inc. Mobile Computer MC3090BT/MC3070BT** are as follows (with expanded uncertainty 20.6%):

Item Model Name	802.11b body (W/kg)	802.11g body (W/kg)
MC3090BT/MC3070BT	0.267	0.081

It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Tested by

Heven Yeh

Steven Yeh Test Engineer

Approved by

Dr. C.H. Daniel Lee SAR Lab. Manager

©2004 SPORTON International Inc..SAR Testing Lab Page 1 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

2. Administration Data

2.1 <u>Testing Laboratory</u>

End of test :

Company Name : Department : Address : Telephone Number : Fax Number :	Sporton International Inc. Antenna Design/SAR No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. 886-3-327-3456 886-3-327-0973		
2.2 <u>Detail of Applicant</u>			
Company Name : Address :	SYMBOL Technologies, Inc. One Symbol Plaza Holtsville, New York, 11742-1300 U.S.A.		
2.3 <u>Detail of Manufacturer</u>			
Company Name : Address :	Universal Scientific Industrial Co., Ltd. 141, Lane 351, Taiping Road, Sec. 1, Tsao Tuen, Nan-Tou, Taiwan, R.O.C.		
Telephone Number :	886-49-2261876		
Fax Number :	886-49-2254838		
Contact Person :	tc1126@ms.usi.com.tw		
2.4 Application Detail			
Date of reception of application:	Sep. 13, 2005		
Start of test :	Sep. 13, 2005		
	G 12 2005		

Sep. 13, 2005

©2004 SPORTON International Inc..SAR Testing Lab Page 2 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

3. <u>Scope</u>

3.1 <u>Description of Device Under Test (DUT)</u>

DUT Type :	Mobile Computer		
Trade Name :	SYMBOL		
Model Name :	MC3090BT/MC3070BT		
FCC ID :	H9PMC3090BT / H9PMC3070BT		
Type of Modulation :	802.11b: DSSS (CCK/QPSK/BPSK) 802.11g: OFDM (16QAM/64 QAM)		
Frequency Band :	2400~2483.5 MHz		
Antenna Connector :	N/A		
Antenna Type :	PIFA Antenna		
Antenna Gain :	Antenna 1: 2.7 dBi Antenna 2: 3 dBi		
Maximum Output Power to Antenna :	802.11b: 19.27 dBm 802.11g: 19.14 dBm		
Power Rating (DC/AC Voltage) :	Battery: 3.7Vdc Adapter: 100Vac to 240Vac		
Temperature Range (Operating) :	-20 ~+55 0%~95%		
DUT Stage :	Production Unit		
Application Type :	Certification		
Accessory :	Battery: Symbol, 55-060112-86 Adapter: Delta, ADP-16GB		

3.2 Product Photo

©2004 SPORTON International Inc..SAR Testing Lab Page 4 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

Right Side View of DUT

Left Side View of DUT

Front View of Battery

Right View of Gun Type Holster

Left View of Gun Type Holster

©2004 SPORTON International Inc..SAR Testing Lab Page 5 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

Front View of Gun

3.3 <u>Applied Standards:</u>

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Mobile Computer is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 <u>Test Conditons</u>

3.5.1 Ambient Condition:

Item	802.11b/802.11g
Ambient Temperature (°C)	20~24
Tissue simulating liquid temperature (°C)	22.4
Humidity (%)	< 60%

3.5.2 <u>Test Configuration:</u>

The data rates for SAR testing are 11Mbps for 802.11b and 6Mbps for 802.11g. Engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

Display	1) Color W/Touch Panel
	2) Mono W/Touch Panel
	3) Color W/O Touch Panel
	4) Mono W/O Touch Panel
Keypad	1) 28
	2) 38
	3) 48
Scanner	1) SE800hP
	2) PICO Imager
Battery	1) 1X (SAMSUNG) 3.7V 2600mAh
	2) 2X (SANYO) 3.7V 4400mAh

The EUT was fixed at "Keypad Up" and "Keypad Down" testing position and was fixed at 802.11b channel 6 to search for the worst case component combinations. The tested combinations are (1) Mono/48/PICO/2X (2) Color/48/PICO/2X (3) Mono/28/PICO/2X (4) Mono/38/PICO/2X (5) Mono/38/SE800hp/2X and (6) Mono/38/SE800hp/1X.

The worst combination is combination (5) with keypad up. All the following testing is based on this combination. The Rotating type was tested in "Keypad Up" and "Keypad Down". The Gun type was tested in "Right Side" and " Left Side".

4. <u>Specific Absorption Rate (SAR)</u> 4.1 <u>Introduction</u>

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The FCC recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where is the conductivity of the tissue, is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. <u>SAR Measurement Setup</u>

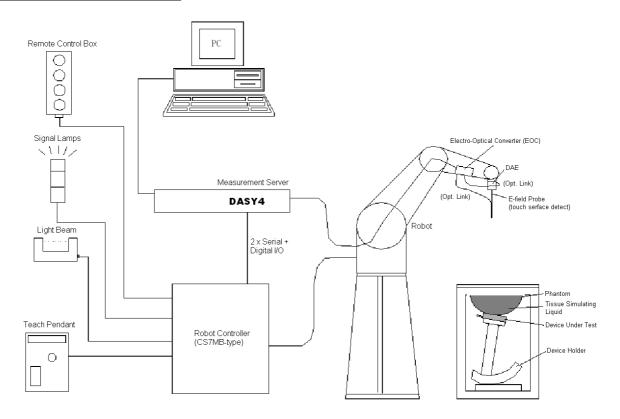


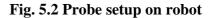
Fig. 5.1 DASY4 system

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- ➤ A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- > A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- ➢ A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System


The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 <u>ET3DV6 E-Field Probe Specification</u>

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents)	
Calibration	Simulating tissue at frequencies of 900MHz, 1.8GHz and 2.45GHz for brain and muscle (accuracy $\pm 8\%$)	
Frequency	10 MHz to $>$ 3 GHz	
Directivity	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)	
Dynamic Range	$5 \mu W/g \text{ to } > 100 \text{mW/g}; \text{ Linearity: } \pm 0.2 \text{dB}$	
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids on reflecting surface	
Dimensions	Overall length: 330mm	
	Tip length: 16mm	
	Body diameter: 12mm	
	Tip diameter: 6.8mm	
	Distance from probe tip to dipole centers: 2.7mm	
Application	2.7mm General dosimetry up to 3GHz	
ripplication	Compliance tests for mobile phones and	
	Wireless LAN	
	Fast automatic scanning in arbitrary phantoms	

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Sensitivity	X axis : 1.6	58 μV	Y ax	is : 1.70 μV	Z axis : 1.74 μV
Diode compression point	X axis : 94 mV		Y ax	xis : 94 mV	Z axis : 94 mV
Conversion factor (Head / Body)	Frequency (MHz)	X axis		Y axis	Z axis
	2350~2550	4.56 / 4.26		4.56 / 4.26	4.56 / 4.26
Boundary effect	Frequency (MHz)	Alp	oha	Depth	
(Head / Body)	2350~2550	0.65 /	0.72	2.22 / 2.00	

NOTE:

- 1. The probe parameters have been calibrated by the SPEAG.
- 2. For the detailed calibration data is shown in Appendix C.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Calibration data is attached in Appendix C.

5.3 <u>Robot</u>

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- ➢ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 <u>Measurement Server</u>

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 <u>SAM Twin Phantom</u>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- \succ Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids: *Water-sugar based liquid *Glycol based liquids

Fig. 5.3 Top view of twin phantom



Fig. 5.4 Bottom view of twin phantom

©2004 SPORTON International Inc..SAR Testing Lab Page 16 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

5.6 Data Storage and Evaluation

5.6.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.6.2 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel

can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

 V_i = compensated signal of channel i (i = x, y, z)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$$

H-field probes : $H_i = \sqrt{V_i \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}}$

with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g Etot = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/ cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.7 <u>Test Equipment List</u>

Manufacture	Norma of Family and	T-m - M - d-l	Serial Number	Cal	ibration
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 30, 2004	Sep. 30, 2006
SPEAG	835MHz System Validation Kit	D835V2	499	Feb. 12, 2004	Feb. 12, 2006
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 19, 2005	Jul. 19, 2007
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	Jul. 20, 2005	Jul. 20, 2007
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Feb. 17, 2004	Feb. 17, 2006
SPEAG	2450MHz System Validation Kit	D2450V2	712	Feb. 10, 2005	Feb. 10, 2007
SPEAG	5200MHz System Validation Kit	D5GHzV2	1006	Jan. 22, 2004	Jan. 22, 2006
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 17, 2004	Nov. 17, 2005
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.5Build 19	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 146	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	S-Parameter Network Analyzer (PNA)	E8358A	US40260131	Nov. 24, 2004	Nov. 24, 2005
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
R & S	Radio Communication Tester	CMU200	105934	Aug. 24, 2004	Aug. 24, 2006
Agilent	Power Meter	E4416A	GB41292344	Jan. 21, 2005	Jan. 21, 2006
Agilent	Signal Generator	E8247C	MY43320596	Feb. 10, 2004	Feb. 10, 2006
Agilent	Base Station Emulator	E5515C	GB43460754	Jan. 12, 2004	Jan. 12, 2006

Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the bottom of the phantom body is 15.2 centimeters, which is shown in Fig. 6.1.

The following ingredients for tissue simulating liquid are used:

- ▶ Water: deionized water (pure H₂0), resistivity \ge 16MΩ- as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittyvity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of tissue simulating liquid for frequency band 2450 MHz.

MSL-2450
698.3 ml
301.7 ml
1 liter (1.0 kg)
f = 2450MHz
$r = 52.5 \pm 5\%, = 2.00 \pm 5\%$ S/m
-

Table 6.1

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent E8358A Network Analyzer.

Table 6.2 shows the measuring results for muscle simulating liquid.

Frequency(MHz)	Permittivity (_r)	Conductivity ()	Measurement date
2412	52.6	1.96	
2437	52.2	1.98	Sep. 13, 2005
2462	52.1	2.01	
	2412 2437	2412 52.6 2437 52.2	Frequency(MHz) Permittivity (r) () 2412 52.6 1.96 2437 52.2 1.98

The measuring data are consistent with $r = 52.5 \pm 5\%$ and $r = 2.00 \pm 5\%$.

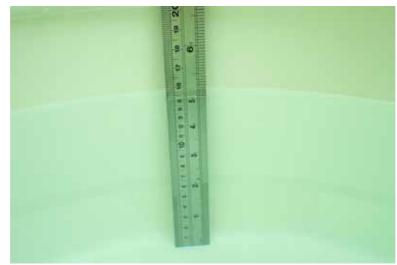


Fig. 6.1

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	$_{1/k}$ (b)	1/ 3	1/ 6	1/ 2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
 (b) is the coverage factor

Table 7.1

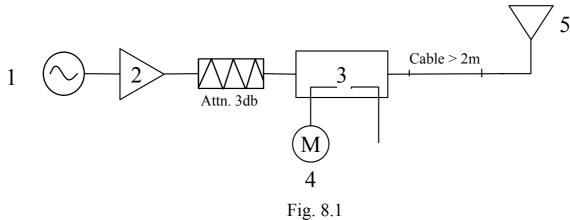
The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci 1g	Standard Unc. (1-g)	vi or Veff
Measurement System		l			1	
Probe Calibration	± 5.9	Normal	1	1	±5.9 %	
Axial Isotropy	± 4.7	Rectangular	$\sqrt{3}$	0.7	±1.9 %	
Hemispherical Isotropy	± 9.6	Rectangular	$\sqrt{3}$	0.7	±3.9 %	
Boundary Effect	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6 %	
Linearity	± 4.7	Rectangular	$\sqrt{3}$	1	±2.7 %	
System Detection Limit	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6 %	
Readout Electronics	± 0.3	Normal	1	1	±0.3 %	
Response Time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5 %	
Integration Time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5 %	
RF Ambient Conditions	± 3.0	Rectangular	$\sqrt{3}$	1	±1.7 %	
Probe Positioner	± 0.4	Rectangular	$\sqrt{3}$	1	±0.2 %	
Probe Positioning	± 2.9	Rectangular	$\sqrt{3}$	1	±1.7 %	
Max. SAR Eval.	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6 %	
Test Sample Related		•				
Device Positioning	±2.9	Normal	1	1	±2.9 %	145
Device Holder	±3.6	Normal	1	1	±3.6 %	5
Power Drift	±5.0	Rectangular	$\sqrt{3}$	1	±2.9 %	
Phantom and Setup					·	
Phantom Uncertainty	±4.0	Rectangular	$\sqrt{3}$	1	±2.3 %	
Liquid Conductivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8 %	
Liquid Conductivity (meas.)	±2.5	Normal	1	0.64	±1.6 %	
Liquid Permittivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7 %	
Liquid Permittivity (meas.)	±2.5	Normal	1	0.6	±1.5 %	
Combined Std. Uncertainty					±10.8 %	330
Expanded STD Uncertainty					±21.6 %	

Table 7.2. Uncertainty Budget of DASY

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 <u>Purpose of System Performance check</u>

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 100 mW (20 dBm) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by Speag, the validation data should within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Bands		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date
ISM band (2450 MHz)	SAR (1g)	51.7	56.3	8.9 %	Sam 12 2005
	SAR (10g)	24	24.8	3.3 %	Sep. 13, 2005

Table 8.1

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 5 different positions. This first one is "Keypad Up with Touch" for rotating type shown in Fig. 9.1, and the second one is "Keypad Down with Touch" for rotating type shown in Fig. 9.2, and the third one is "Right Side" for Gun Type shown in Fig. 9.3, and the four one is "Left Side" for Gun Type shown in Fig. 9.5.

Fig. 9.1 Keypad Up with Touch

Fig. 9.2 Keypad Down with Touch

Fig. 9.3 Right Side for Gun Type

Fig. 9.4 Left Side for Gun Type

Fig. 9.5 Holster

©2004 SPORTON International Inc..SAR Testing Lab Page 30 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

10. Measurement Procedures

The measurement procedures are as follows:

- Plugging DUT into the notebook
- ▷ Using engineering software to transmit RF power continuously (continuous Tx) in the low channel
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- Repeat the previous steps for the middle and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First **Area Scan** is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an **Area Scan** is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, **Zoom Scan** is required. The **Zoom Scan** measures 7x7x7 points with step size 5, 5 and 5 mm. The **Zoom Scan** is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 <u>SAR Averaged Methods</u>

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11.<u>SAR Test Results</u>

11.1 <u>Keypad Up with Touch</u>

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	1	2412(Low)	ССК	18.92	-0.041	0.267	1.6	Pass
802.11b	6	2437(Mid)	CCK	19.27	0.074	0.256	1.6	Pass
	11	2462(High)	CCK	19.14	0.142	0.198	1.6	Pass
	1	2412(Low)	OFDM	16.47	-	-	-	-
802.11g	6	2437(Mid)	OFDM	19.14	0.013	0.081	1.6	Pass
	11	2462(High)	OFDM	17.14	-	-	-	-

11.2 Keypad Down with Touch

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
802.11b	1	2412(Low)	CCK	18.92	-	-	-	-
	6	2437(Mid)	CCK	19.27	-	-	-	-
	11	2462(High)	CCK	19.14	-	-	-	-
	1	2412(Low)	OFDM	16.47	-	-	-	-
802.11g	6	2437(Mid)	OFDM	19.14	-0.1	0.07	1.6	Pass
	11	2462(High)	OFDM	17.14	-	-	-	-

11.3 <u>Right Side</u>

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
802.11b	1	2412(Low)	CCK	18.92	-	-	-	-
	6	2437(Mid)	CCK	19.27	-0.18	0.121	1.6	Pass
	11	2462(High)	CCK	19.14	-	-	-	-
	1	2412(Low)	OFDM	16.47	-	-	-	-
802.11g	6	2437(Mid)	OFDM	19.14	0	0.051	1.6	Pass
	11	2462(High)	OFDM	17.14	-	-	-	-

©2004 SPORTON International Inc..SAR Testing Lab Page 33 of 35 This report shall not be reproduced except in full, without the written approval of Sporton. Rev. 01

11.4 Left Side

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	1	2412(Low)	CCK	18.92	-	-	-	-
802.11b	6	2437(Mid)	CCK	19.27	-	-	-	-
	11	2462(High)	CCK	19.14	-	-	-	-
	1	2412(Low)	OFDM	16.47	-	-	-	-
802.11g	6	2437(Mid)	OFDM	19.14	-0.124	0.035	1.6	Pass
	11	2462(High)	OFDM	17.14	_	-	-	-

11.5 <u>Holster</u>

The SAR value is too law to be taken.

Remark :

The worst position is based on 802.11g channel 6. 802.11b testing is focused on worst position.

12.<u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003.
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

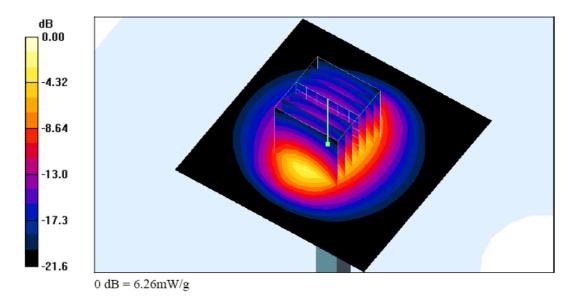
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 2:04:41 PM

System Check_Body_2450MHz_20050913

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.4 °C; Liquid Temperature : 21.9 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.37 mW/g

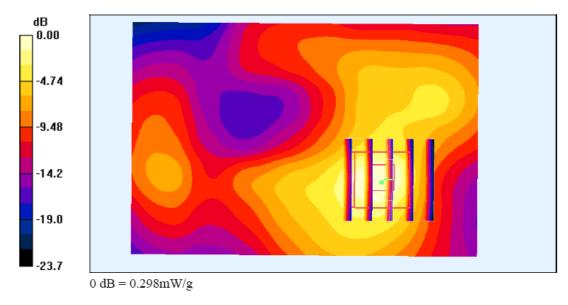
Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.1 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 13.0 W/kg SAR(1 g) = 5.63 mW/g; SAR(10 g) = 2.48 mW/g Maximum value of SAR (measured) = 6.26 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 9/13/2005 11:22:32 PM

Body 802.11b Ch11 Keypad UP With Touch 20050913

DUT: 591501; Type: Mobile Computer; Serial: Rotating


Communication System: 802.11b ; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 20.9 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.285 mW/g

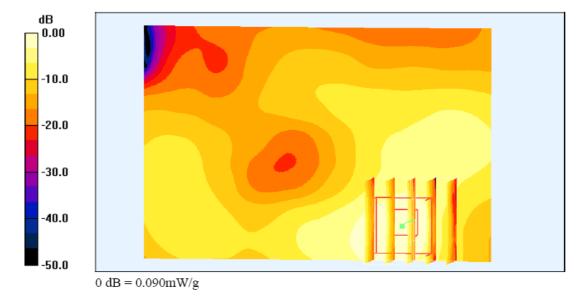
Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.39 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 0.578 W/kg SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.128 mW/g Maximum value of SAR (measured) = 0.298 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 10:11:33 PM

Body_802.11g Ch6_Keypad UP With Touch_20050913

DUT: 591501; Type: Mobile Computer; Serial: Rotating


Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 20.9 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch6/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.090 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.14 V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 0.175 W/kg SAR(1 g) = 0.081 mW/g; SAR(10 g) = 0.039 mW/g Maximum value of SAR (measured) = 0.090 mW/g

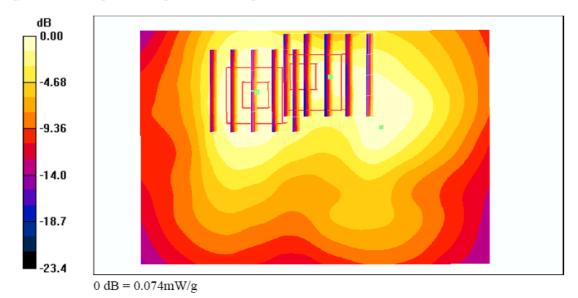
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 10:26:34 PM

Body_802.11g Ch6_Keypad down With Touch_20050913

DUT: 591501; Type: Mobile Computer; Serial: Rotating

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 20.8 °C; Liquid Temperature : 20.5 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch6/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.076 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.03 V/m; Power Drift = -0.100 dBPeak SAR (extrapolated) = 0.134 W/kgSAR(1 g) = 0.070 mW/g; SAR(10 g) = 0.040 mW/gMaximum value of SAR (measured) = 0.074 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.03 V/m; Power Drift = -0.100 dB Peak SAR (extrapolated) = 0.130 W/kg SAR(1 g) = 0.061 mW/g; SAR(10 g) = 0.032 mW/g

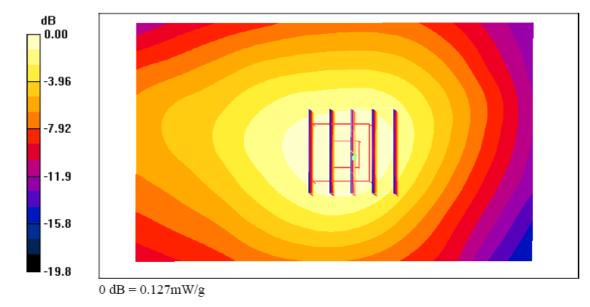
©2004 SPORTON International Inc..SAR Testing Lab

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 7:39:14 PM

Body_802.11b Ch6_Right Touch_20050913_Holster

DUT: 591501; Type: Mobile Computer; Serial: GUN


Communication System: 802.11b; Frequency: 2442 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2442 MHz; σ = 1.99 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 21.9 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch7/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.129 mW/g

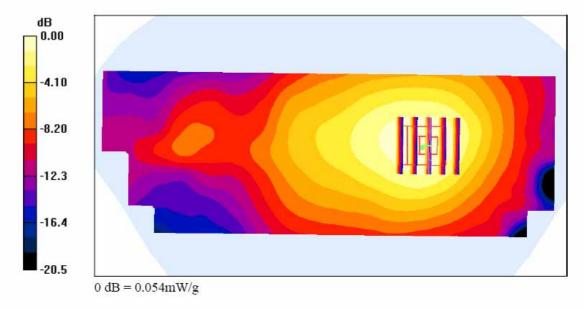
Ch7/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.25 V/m; Power Drift = -0.180 dB Peak SAR (extrapolated) = 0.236 W/kg SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.069 mW/g Maximum value of SAR (measured) = 0.127 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 4:02:46 PM

Body_802.11g Ch6_Right Touch_20050913_Holster

DUT: 591501; Type: Mobile Computer; Serial: GUN


Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 22.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch6/Area Scan (61x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.055 mW/g

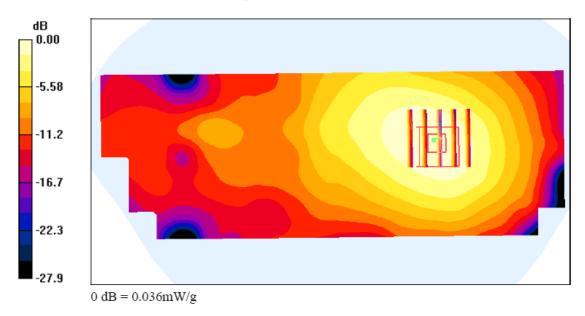
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.73 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.097 W/kg SAR(1 g) = 0.051 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.054 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 3:06:29 PM

Body_802.11g Ch6_Left Touch_20050913_Holster

DUT: 591501; Type: Mobile Computer; Serial: GUN


Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch6/Area Scan (61x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.036 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.72 V/m; Power Drift = -0.124 dB Peak SAR (extrapolated) = 0.072 W/kg SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.036 mW/g

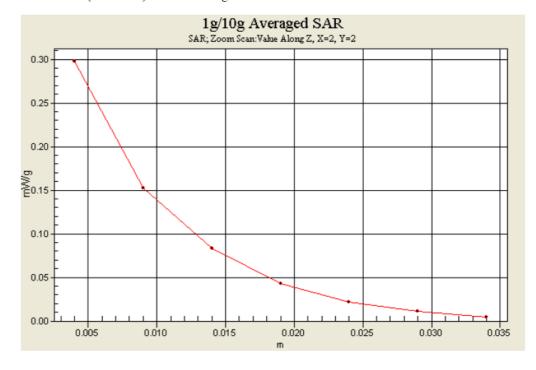
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 11:22:32 PM

Body_802.11b Ch11_Keypad UP With Touch_20050913

DUT: 591501; Type: Mobile Computer; Serial: Rotating

Communication System: 802.11b ; Frequency: 2462 MHz;Duty Cycle: 1:1


Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 20.9 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.285 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.39 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 0.578 W/kg SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.128 mW/g Maximum value of SAR (measured) = 0.298 mW/g

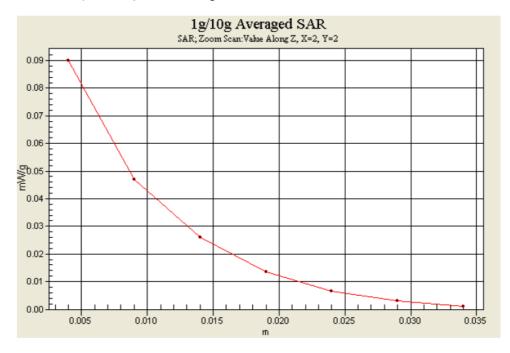
©2004 SPORTON International Inc..SAR Testing Lab

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 9/13/2005 10:11:33 PM

Body_802.11g Ch6_Keypad UP With Touch_20050913

DUT: 591501; Type: Mobile Computer; Serial: Rotating


Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 20.9 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch6/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.090 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.14 V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 0.175 W/kg SAR(1 g) = 0.081 mW/g; SAR(10 g) = 0.039 mW/g Maximum value of SAR (measured) = 0.090 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

Object(s)	D2450V2 - SI	N 736	
alibration procedure(s)	QA CAL-05.v Calibration pr	ocedure for dipole validation kits	
alibration date:	August 27, 20	003	
condition of the calibrated item	In Tolerance	(according to the specific calibratic	on document)
7025 international standard. Il calibrations have been conduc		E used in the calibration procedures and conformity to the calibration procedures and conformity to the calibration of the cali	
valoration Equipment used (M&1			
	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
todel Type IF generator R&S SML-03 fower sensor HP 8481A fower sensor HP 8481A fower meter EPM E442	ID # 100698 MY41092317 US37292783 GB37480704 US37390585	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0238) 18-Oct-01 (Agilent, No. 248R1033101)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03
todel Type IF generator R&S SML-03 fower sensor HP 8481A fower meter EPM E442 letwork Analyzer HP 8753E	100698 MY41092317 US37292783 GB37480704	27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function	In house check: Mar-05 Oct-04 Oct-03 Oct-03
odel Type F generator R&S SML-03 ower sensor HP 8481A ower sensor HP 8481A ower meter EPM E442 etwork Analyzer HP 8753E	100698 MY41092317 US37292783 GB37480704 US37390585 Name	27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function	In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03
Iodel Type IF generator R&S SML-03 rower sensor HP 8481A rower sensor HP 8481A rower meter EPM E442 letwork Analyzer HP 8753E salibrated by:	100698 MY41092317 US37292783 GB37480704 US37390585 Name	27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function	In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03
Autoration Equipment used (WA 1 Iodel Type UF generator R&S SML-03 lower sensor HP 8481A lower meter EPM E442 letwork Analyzer HP 8753E calibrated by: http://www.sensor.org/librated/lib	100698 MY41092317 US37292783 GB37480704 US37390585 Name Jadht Mueller	27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function	In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03

©2004 SPORTON International Inc..SAR Testing Lab

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003 Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	38.2	$\pm 5\%$
Conductivity	1.89 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

 averaged over 1 cm³ (1 g) of tissue:
 55.6 mW/g \pm 16.8 % (k=2)¹

 averaged over 10 cm³ (10 g) of tissue:
 25.0 mW/g \pm 16.2 % (k=2)¹

1 validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.158 ns	(one direction)
Transmission factor:	0.983	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re{Z} = 52.5 \Omega$
	Im $\{Z\} = 3.6 \Omega$
Return Loss at 2450 MHz	-27.5 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	50.8	± 5%
Conductivity	2.03 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue:	56.0 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm3 (10 g) of tissue:	$\textbf{25.8 mW/g} \pm 16.2 \ \% \ (k{=}2)^2$

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re{Z} = 48.7 \Omega$
	Im $\{Z\} = 4.8 \Omega$
Return Loss at 2450 MHz	-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

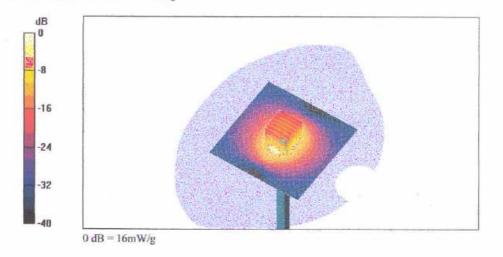
©2004 SPORTON International Inc..SAR Testing Lab

Page 1 of 1 Date/Time: 08/27/03 15:43:04

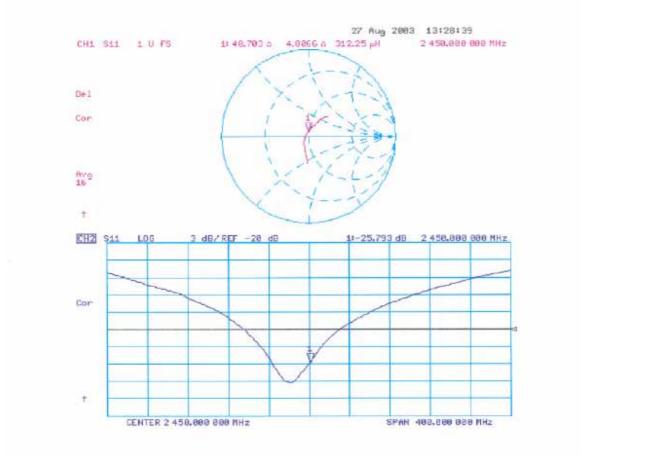
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_M2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: Muscle 2450 MHz (σ = 2.03 mho/m, ϵ_r = 50.75, ρ = 1000 kg/m³) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91 V/m Power Drift = -0.02 dB Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

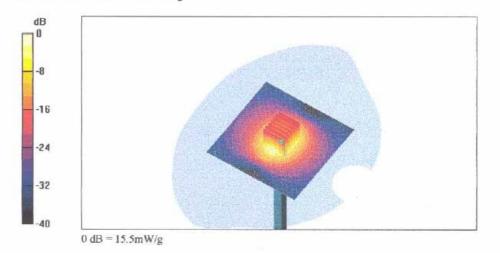
Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/g Reference Value = 91 V/m Power Drift = -0.02 dB Maximum value of SAR = 16 mW/g

Page 1 of 1 Date/Time: 08/27/03 11:42:12

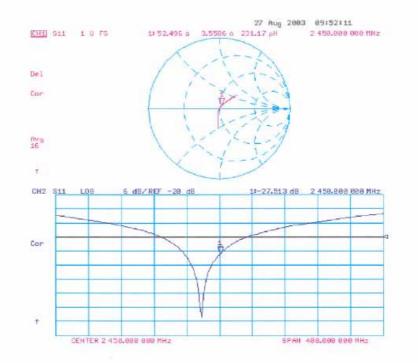
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL 2450 MHz (σ = 1.89 mho/m, ϵ_r = 38.19, ρ = 1000 kg/m³) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91.5 V/m Power Drift = -0.04 dB Maximum value of SAR = 15.3 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 30.2 W/kgSAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/gReference Value = 91.5 V/mPower Drift = -0.04 dBMaximum value of SAR = 15.5 mW/g

		CAP			
ccredited by the Swiss Federal The Swiss Accreditation Servic fulfilateral Agreement for the r	e is one of the signator	ies to the EA	: SCS 108		
Client Sporton (Aude	02		T3-1788_Sep04		
CALIBRATION (CERTIFICAT	E			
Object	ET3DV6 - SN:1	ET3DV6 - SN:1788			
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes			
Calibration date:	September 30, 3	2004			
Condition of the colibrated item	In Tolerance	CONTRACTOR OF THE			
The measurements and the unce All calibrations have been condu	ertainties with confidence	itional standards, which realize the physical units of probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C are	e part of the certificate.		
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence cted in the closed laborat TE critical for calibration)	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C and	e part of the certificate. d humidity < 70%,		
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primory Standards	ertainties with confidence cted in the closed laborat TE critical for calibration)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C an Gol Dote (Calibrated by, Confifcate No.)	e part of the certificate. d humidity < 70%, Scheduled Calibration		
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primery Standards Power mater E44198	etainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gal Data (Calibratod by, Confifcato No.) 5-May-04 (METAS, No. 251-00388)	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05		
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primery Standards Power mater E44198 Power sonsor E4412A	etainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C an Got Dote (Colibrated by, Costificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388)	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M8 Primery Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator	etainties with confidence cled in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: S5054 (3c)	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gol Doto (Colibratod by, Confificato No.) 5-May-O4 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00388)	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05 Aug 05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M8 Primery Stondards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 30 B Attenuator	etainties with confidence cled in the closed laborat TE critical for calibration) ID # 0841293874 MY41485277 SN: 55054 (3c) SN: 55086 (20b)	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gol Doto (Colibratod by, Confificato No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 May-05 May-05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primery Standards Power motor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator	etainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	probability are given on the following pages and an tory facility: environment temperature (22 ± 3)*C and Got Doto (Galibratod by, Cotificato No.) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Aug-05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primery Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe E53DV2	etainties with confidence cled in the closed laborat TE critical for calibration) ID # 0841293874 MY41485277 SN: 55054 (3c) SN: 55086 (20b)	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gol Doto (Colibratod by, Confificato No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 May-05 May-05		
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primery Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	artainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 917	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Got Date (Galibratod by, Confifcato No.) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 25-May-04 (SPEAG, No. DAE4-617_May04)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 May-05 May-06 Jan-05 May-05 May-05 May-05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	etainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: S129 SN: S12 ID #	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gol Duto (Calibratod by, Confificato No.) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. DAE4-617_May04) 28-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house)	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05 Aug-06 May-05 Jan-05 May-05 May-05 Scheduled Check		
The measurements and the unix All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power motor E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E33DV2 DAE4 Secondary Standards Power center HP 8481A	artainties with confidence cled in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 55058 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 5013 SN: 617 ID # MY41092180	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gol Doto (Colibratod by, Confificato No.) 5-May-O4 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 25-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03)	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M8 Primery Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E33DV2 DAE4 Secondary Standards Power sonsor HP 8481A RF generator HP 8648C	artainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 5129 SN: 917 ID # ID # ID # ID # ID # ID #	probability are given on the following pages and an boy facility: environment temperature (22 ± 3)*C an Gol Doto (Colibratod by, Cortificato No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00403) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 25-May-04 (SPEAG, No. ES3-3013_Jan04) 25-May-04 (SPEAG, No. DAE4-617_May04) Check Date [in house] 18-Sop-02 (SPEAG, in house check Oct-03) 4-Aug 99 (SPEAG, in house check Dec-05)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Dec-05		
The measurements and the unor All calibrations have been condu Calibration Equipment used (M8 Primery Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 9 robe E330V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	artainties with confidence cled in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 55058 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 5013 SN: 617 ID # MY41092180	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Gol Doto (Colibratod by, Confificato No.) 5-May-O4 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 25-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03)	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05		
The measurements and the unix All calibrations have been condu Calibration Equipment used (M& Primory Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E33DV2 DAE4 Sucondary Standards Power sensor HP 8481A RF generator HP 8481A RF generator HP 8482 Network Analyzer HP 8753E	artainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 817 ID # MY41092180 US37390505 Name	probability are given on the following pages and an boy facility: environment temperature (22 ± 3)*C and Got Doto (Galibratod by, Cotificato No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, In house check Oct-03) 4-Aug-09 (SPEAG, In house check Doc-03) 18-Oct-01 (SPEAG, In house check Nov-03) Function	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05 Aug-06 May-06 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Nov 04 Signature		
The measurements and the unix All calibrations have been condu Calibration Equipment used (M& Primory Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E33DV2 DAE4 Sucondary Standards Power sensor HP 8481A RF generator HP 8481A RF generator HP 8482 Network Analyzer HP 8753E	artainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: 55054 (3c) SN: 55054	probability are given on the following pages and an boy facility: environment temperature (22 ± 3)*C and Gat Date (Galibrated by, Cotificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, No. ES3	e part of the certificate. d humidity < 70%, Scheduled Calibration May-05 May-05 Aug-06 May-06 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Nov 04 Signature		
The measurements and the unce	artainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41485277 SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 817 ID # MY41092180 US37390505 Name	probability are given on the following pages and an boy facility: environment temperature (22 ± 3)*C and Got Doto (Galibratod by, Cotificato No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, In house check Oct-03) 4-Aug-09 (SPEAG, In house check Doc-03) 18-Oct-01 (SPEAG, In house check Nov-03) Function	e part of the certificate. d humidity < 70%. Scheouled Calibration May-05 May-05 Aug-05 Aug-05 Jan-05 May-05 Scheouled Check In house check: Dec-05		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788_Sep04

Page 2 of 9

ET3DV6 SN:1788

September 30, 2004

Probe ET3DV6

SN:1788

Manufactured: Last calibrated: Recalibrated: May 28, 2003 August 29, 2003 September 30, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep04

Page 3 of 9

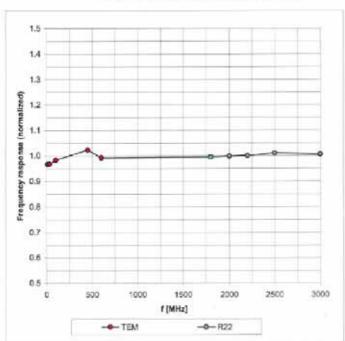
ET3DV6 SN:1788

September 30, 2004

DASY - Parameters of Probe: ET3DV6 SN:1788

Sen	sitivity in Fre	e Space ^A		Diode	Compression
	NormX	1.68 ± 9.9%	μV/(V/m) ²	DCP X	94 mV
	NormY	1.70 ± 9.9%	$\mu V/(V/m)^2$	DCP Y	94 mV
	NormZ	$\textbf{1.74} \pm \textbf{9.9\%}$	μ V/(V/m) ²	DCP Z	94 mV
Sens	sitivity in Tis	sue Simulating L	iquid (Convers	ion Factor	s)
Please	e see Page 8.				
Bour	ndary Effect	λ.			
TSL	9	00 MHz Typical S	AR gradient: 5 % p	er mm	
	Sensor Cente	r to Phanlom Surface I	Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Without Correction	Algorithm	8.1	4.4
	SAR _{be} [%]	With Correction Alg	orithm	0.7	0.1
TSL	18	10 MHz Typical S	AR gradient: 10 %	per mm	
	Sensor Cente	r to Phantom Surface I	Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Without Correction	Algorithm	12.0	8.2
	SAR [%]	With Correction Alg	orithm	0.9	0.1
Sen	sor Offset				
	Probe Tip to 5	Sensor Center		2.7 mm	
meas	surement mult	rtainty of measuren liplied by the covera coverage probability	age factor k=2, wh	ich for a nor	

Certificate No: ET3-1788_Sep04


Page 4 of 9

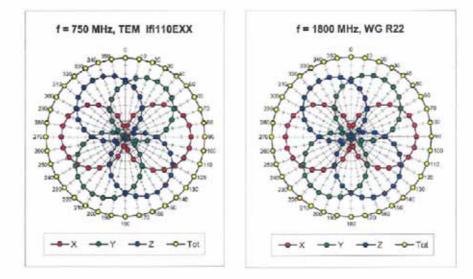
ET3DV6 SN:1788

September 30, 2004

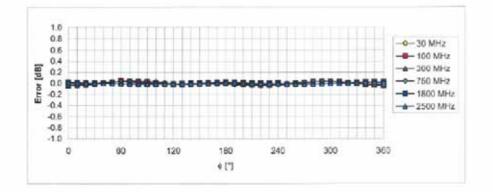
Frequency Response of E-Field

(TEM-Cell:Ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1788_Sep04

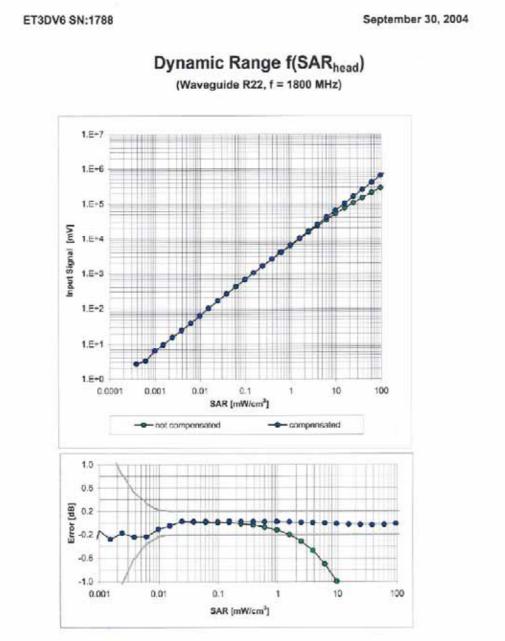
Page 5 of 9



ET3DV6 SN:1788

September 30, 2004

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

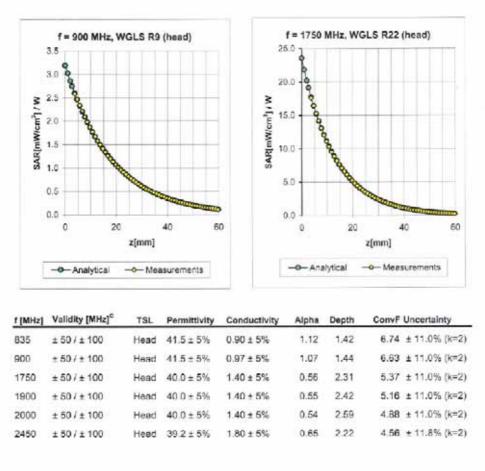
Certificate No: ET3-1788_Sep04

Page 6 of 9

©2004 SPORTON International Inc..SAR Testing Lab

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1788_Sep04


Page 7 of 9

©2004 SPORTON International Inc..SAR Testing Lab

ET3DV6 SN:1788

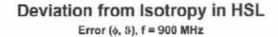
September 30, 2004

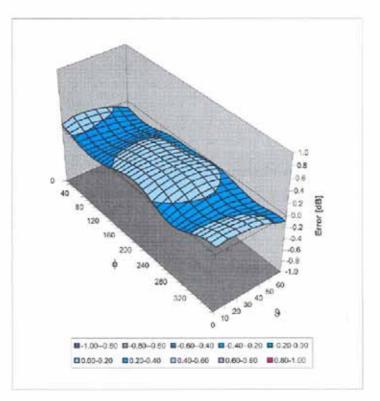
Conversion Factor Assessment

835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	1.04	1.52	6.53 ± 11.0% (k=2)
900	± 50/±100	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.99	1.56	6.17 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.53	2.74	4.73 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.82	4.56 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	$1.52\pm5\%$	0.54	2.98	4.43 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.72	2.00	4.26 ± 11.8% (k=2)

^C The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1788_Sep04


Page 8 of 9


©2004 SPORTON International Inc..SAR Testing Lab

ET3DV6 SN:1788

September 30, 2004

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep04

Page 9 of 9

©2004 SPORTON International Inc..SAR Testing Lab

chmid & Partner Engineering AG sughausstrasse 43, 8004 Zurich,	Switzerland	CRUSERATO	C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
ccredited by the Swiss Federal Off he Swiss Accreditation Service i luitilateral Agreement for the rec	s one of the signatories	to the EA	tion No.: SCS 108
lient Sporton (Auden)	Certificat	© No: DAE3-577_Nov04
CALIBRATION CI	ERTIFICATE		
Dbject	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v10 Calibration proceed	lure for the data acquisition u	ınit (DAE)
Calibration date:	November 17, 200	04	
	In Tolerance		
his calibration certificate document he measurements and the uncertain	nts the traceability to natio ainties with confidence pro	nal standards, which realize the physic obability are given on the following page racility: environment temperature (22 ±	s and are part of the certificate.
his calibration certificate document he measurements and the uncerta all calibrations have been conducte Calibration Equipment used (M&TE	ts the traceability to natio ainties with confidence pro ad in the closed laboratory critical for calibration)	obability are given on the following page	as and are part of the certificate. : 3)°C and humidity < 70%.
This calibration certificate document The measurements and the uncertain Il calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ts the traceability to natio ainties with confidence pro ad in the closed laboratory critical for calibration)	obability are given on the following page	as and are part of the certificate. : 3)°C and humidity < 70%.
This calibration certificate document The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Tuke Process Calibrator Type 702	ts the traceability to natio ainties with confidence pro- ed in the closed laboratory contical for calibration) ID # SN: 6295803	bability are given on the following page facility: environment temperature (22 ± <u>Cal Date (Calibrated by, Certificate No</u> 7-Sep-04 (Sintrel, No.E-040073)	as and are part of the certificate. : 3)°C and humidity < 70%. 5.) Scheduled Calibration Sep-05
he measurements and the uncerta	ts the traceability to natio ainties with confidence pro- ed in the closed laboratory cortical for calibration) ID # SN: 6295803 ID #	bability are given on the following page facility: environment temperature (22 ± Cal Date (Calibrated by, Certificate No	as and are part of the certificate. : 3)°C and humidity < 70%. 2.) Scheduled Calibration
This calibration certificate documen The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ts the traceability to natio ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002	bability are given on the following page facility: environment temperature (22 ± <u>Cal Date (Calibrated by, Certificate No</u> 7-Sep-04 (Sintrel, No.E-040073) <u>Check Date (in house)</u> 16-Jul-04 (SPEAG, in house check)	as and are part of the certificate. : 3)*C and humidity < 70%. (a) Scheduled Calibration Sep-05 Scheduled Check In house check Jul-05
This calibration certificate document The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ts the traceability to natio ainties with confidence pro- ed in the closed laboratory cortical for calibration) ID # SN: 6295803 ID #	bability are given on the following page facility: environment temperature (22 ± Cal Date (Calibrated by, Certificate No 7-Sep-04 (Sintrel, No.E-040073) Check Date (in house)	is and are part of the certificate. : 3)°C and humidity < 70%. 5.) Scheduled Calibration Sep-05 Scheduled Check
This calibration certificate document The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	tis the traceability to natio ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002	Cal Date (Calibrated by, Certificate No 7-Sep-04 (Sintrel, No.E-040073) Check Date (in house) 16-Jul-04 (SPEAG, in house check)	as and are part of the certificate. : 3)*C and humidity < 70%. (a) Scheduled Calibration Sep-05 Scheduled Check In house check Jul-05
This calibration certificate document the measurements and the uncerta all calibrations have been conducte calibration Equipment used (M&TE trimary Standards duke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	tis the traceability to natio ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002	Cal Date (Calibrated by, Certificate No 7-Sep-04 (Sintrel, No.E-040073) Check Date (in house) 16-Jul-04 (SPEAG, in house check)	as and are part of the certificate. : 3)*C and humidity < 70%. (a) Scheduled Calibration Sep-05 Scheduled Check In house check Jul-05

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle digital acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov04

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	ution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	arameters: Aut	o Zero Time: 3	sec; Measuring t	time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.437 ± 0.1% (k=2)	$403.891 \pm 0.1\%$ (k=2)	$404.359 \pm 0.1\%$ (k=2)
Low Range	3.94121 ± 0.7% (k=2)	3.89867 ± 0.7% (k=2)	3.95408 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	127 ° ± 1 °
---	-------------

Certificate No: DAE3-577_Nov04

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.6	0.00
Channel X + Input	20000	20001.77	0.01
Channel X - Input	20000	-19991.81	-0.04
Channel Y + Input	200000	199999.7	0.00
Channel Y + Input	20000	19999.20	0.00
Channel Y - Input	20000	-19994.82	-0.03
Channel Z + Input	200000	200000.2	0.00
Channel Z + Input	20000	19996.22	-0.02
Channel Z - Input	20000	-19996.74	-0.02

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Inpu	rt 2000	2000	0.00
Channel X + Inpu	rt 200	200.05	0.03
Channel X - Inpu	t 200	-200.88	0.44
Channel Y + Inpu	rt 2000	1999.9	0.00
Channel Y + Inpu	nt 200	199.73	-0.13
Channel Y - Inpu	t 200	-200.53	0.27
Channel Z + Inpu	rt 2000	2000.1	0.00
Channel Z + Inpu	nt 200	199.25	-0.38
Channel Z - Inpu	t 200	-201.42	0.71

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.15	12.30
	- 200	-12.61	-12.86
Channel Y	200	-7.43	-7.53
	- 200	6.30	6.52
Channel Z	200	-0.16	0.31
	- 200	-1.51	-1.48

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.90	-0.22
Channel Y	200	1.47	-	4.60
Channel Z	200	-1.40	-0.08	

Certificate No: DAE3-577_Nov04

Page 4 of 5

©2004 SPORTON International Inc..SAR Testing Lab

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15948	15814
Channel Y	15960	16073
Channel Z	16236	16172

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.03	-3.07	1.24	0.58
Channel Y	-0.66	-2.19	1.96	0.55
Channel Z	-0.91	-2.82	0.42	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.3
Channel Y	0.2000	200.4
Channel Z	0.2001	199.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

10. Common Mode Bit Generation (verified during pre test)

Typical values	Bit set to High at Common Mode Error (VDC)	
Channel X, Y, Z	+1.25	

Certificate No: DAE3-577_Nov04