

FCC Certification Report for the LA3021-100 WLAN PC Card Class II Permissive Change

EXHIBIT 2.1

TEST REPORT 2

Antennas: Micropac IEC PC-LP 6146

Conf # EA97674 Sumit Date: 5/23/2000 FCC ID: **H9PLA3021-100**

Radiated Emissions in Restricted Bands
Permissive Change Test Report
FCC Part 15.247 (c)
for
Symbol Technologies
on the

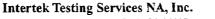
Spread Spectrum Frequency Hopping Radio Model: H9PLA3021-100

> Test Report #: 202567861 Date of Report: September 27, 2000

Job #: J200256786 Date of Test: September 20-21, 2000

Total No. of Pages Contained in this Report: 12 + data pages

Lab Code: 200201-01


Barry E. Smith, Test Engineer

David Chernomordik, Ph.D., EMC Site Manager

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government,

Symbol Technologies, Model No. H9PLA3021-100

Table of Contents

1.0	Sumi	nary of Tests								
2.0	Gene	ral Description								
	2.1	Product Description	3							
	2.3	Test Methodology								
	2.4	Test Facility								
3.0	System Test Configuration									
	3.1	Support Equipment								
	3.2	Block Diagram of Test Setup								
	3.3	Justification								
	3.4	Software Exercise Program								
	3.5	Mode of Operation During Test								
	3.6	Modifications Required for Compliance								
4.0	Meas	surement Results								
	4.1	Transmitter Radiated Emissions in Restricted Bands, FCC Ref: 15.247(c)								
	4.2	Radiated Emission Test Results	8							
	4.3	Radiated Emission Configuration Photograph								
5.0	Docu	ment History	12							

1365 Adams Ct. Menlo Park, CA 94025

Symbol Technologies, Model No. H9PLA3021-100

Date of Test: September 20-21, 2000

1.0 Summary of Tests

Symbol Technologies Inc. - Model No. H9PLA3021-100

TEST	REFERENCE	RESULTS
Radiated Emission in Restricted Bands	15.247(c)	Passed

Test Engineer:

Barry E Smith

Date

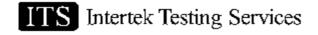
EMC Site Mgr.

David Cherhamordik

Date: 9/29/0

Model No. H9PLA3021-100 Date of Test: September 20-21, 2000

2.0 General Description


2.1 Product Description

The Symbol Technologies model H9PLA3021-100 is 2.4 GHz Spread Spectrum radio in the form of a PCMCIA card that is used for wireless communication from a computer to a LAN.

Overview of the EUT

Trade Name & Model No.	Symbol Technologies, Model No. H9PLA3021-100					
Frequency Range (MHz)	2402 – 2480					
Antenna(s)	Micropaq 50-21900-037 IEC PC-LP 60-20926-01 6146 10-35305-02					
Manufacturer name & address	Symbol Technologies 6480 Via Del Oro San Jose CA 95119					

Symbol Technologies, Model No. H9PLA3021-100

2.3 Test Methodology

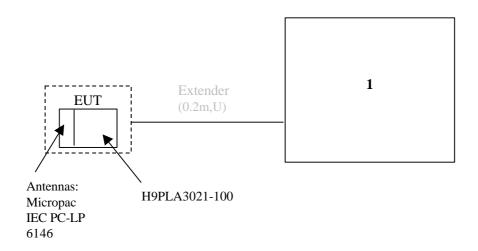
This report is designed to show that 3 new antennas, added to the previously certified device, complies with FCC regulations. Only radiated emissions in restricted bands were tested because the transmitter itself has not been modified.

Radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application.

2.4 Test Facility

The open area test site facility used to collect the radiated data is located at 1365 Adams Court, Menlo Park, CA 94025. This test facility and site measurement data have been fully placed on file with the FCC.

File: 202567861.doc Version 1.0 Page 4 of 12


Date of Test: September 20-21, 2000

3.0 System Test Configuration

3.1 Support Equipment

Item #	Description	Model No.	Serial No.	FCC ID
1	Compaq Notebook Computer	2860A	7448HJJ53R518	CNT75MB2CA

3.2 Block Diagram of Test Setup

m: Length in meters U: Unshielded

Symbol Technologies, Model No. H9PLA3021-100

3.3 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.5 Mode of Operation During Test

For emissions testing, the unit was setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Symbol Technologies Inc. prior to compliance testing):

No modifications were made to the EUT by Intertek Testing Services.

Symbol Technologies, Model No. H9PLA3021-100

4.0 Measurement Results

4.1 Transmitter Radiated Emissions in Restricted Bands, FCC Ref: 15.247(c)

Radiated emission measurements were performed from 30 MHz to 25000 MHz. Analyzer resolution is 100 kHz or greater for frequencies from 30 MHz to 1000 MHz and 1 MHz for frequencies above 1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection and average detection (above 1 GHz) unless otherwise specified.

On the following pages, the emissions on the harmonics frequencies, the limits, and the margin of compliance are presented. These tests were made when the transmitter is in full radiated power. Duty cycle correction was not used.

For the test results, refer to the following radiated emission data sheets.

Note: It was verified that radiated emission data from digital portion of the EUT is not worse than the data previously measured and presented in the original report.

File: 202567861.doc Version 1.0 Page 7 of 12

1365 Adams Ct. Menlo Park, CA 94025

Date of Test: September 20-21, 2000

Symbol Technologies, Model No. H9PLA3021-100

4.2 Radiated Emission Test Results

See attachment test data sheets.

ITS Intertek Testing Services

Radiated Emissions Test Data

Company:	Symbol	Model #: 3021w/5	0-21900-037	Standard_	FCC § 15.247
EUT:	LA3021-100 Freq Hopper	S/N #:	1	Limits	(R.B.)
Project #:	J200256786	Test Date: SEP 20,	2000	Test Distance_	200000000000000000000000000000000000000
Test Mode:	Xmit with Micropac	Engineer: Barry S.		Duty Relaxation	

Anter	ina Used		Pre-A	np Used		Cable t	Jsed		TransducerTised	8
Number: 8	21	0	8	12	13	21	0	0	0	3
Model: EMCO 3115	3160-9	None	CDLP100	ACC/180	ACO/400	Gm_M+L	None	None	None	

Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.		Pre-Amp		D.C.	Net	Limit	Margin
MHz	dB(µV)	P/A/Q	#	#	HV	Factor dB(1/m)	dB	Loss dB	F.	dB(µV/m)	@3m dB(pV/m)	
2402	77.4	Peak	8	***********	Н	29.1	0.0	2.3	2 0000000000000000000000000000000000000	*************	ap(haui)	dB
4804	29.0	Peak	8	8	H	33.9	28.1	3.2	0.0	108.8	74.0	
4804	20.0	Ave.	8	8	Н	33.9	28.1	3.2	0.0	38.0	74.0	-36.0
12010	34.8	Peak	8	12	H	42.1	32.4	5.9	0.0	29.0	54.0	-25.0
12010	26.8	Ave.	8	12	Н	42.1	32.4	5.9	0.0	50.4	74.0	-23.6
19216	37.7	Peak	21	13	Н	40.2	23.3	7.7	-9.5	42.4	54.0	-11.6
19216	30.0	Ave.	21	13	H	40.2	23.3	7.7	-9.5	52.8	74.0	-21.2
					· · · · · · · · · · · · · · · · · · ·	40.2	25.5	7.1	-9.5	45.1	54.0	-8.9
2440	79.9	Peak	8		Н	29.1	0.0	2.3	0.0	111.3		
4880	29.3	Peak	8	8	Н	33.9	28.1	3.2	0.0	38.3	74.0	05.7
4880	22.5	Ave.	8	8	Н	33.9	28.1	3.2	0.0	31.5	74.0	-35.7
7320	36.2	Peak	8	8	н	36.8	28.0	4.3	0.0	49.3	54.0	-22.5
7320	30.8	Ave.	8	8	Н	36.8	28.0	4.3	0.0	43.9	74.0	-24.7
12220	34.4	Peak	8	12	H	42.1	32.4	5.9	0.0	50.0	54.0	-10.1
12220	26.6	Ave.	8	12	H	42.1	32.4	5.9	0.0	42.2	74.0 54.0	-24.0
19520	37.7	Peak	21	13	H	40.3	23.3	7.7	-9.5	52.9	74.0	-11.8
19520	30.0	Ave.	21	13	Н	40.3	23.3	7.7	-9.5	45.2	54.0	-21.1
							20.0		-3.5	40.2	34.0	-8.8
2480	78.3	Peak	8		Н	29.1	0.0	2.3	0.0	109.7		
4960	28.7	Peak	8	8	Н	33.9	28.1	3.2	0.0	37.7	74.0	-36.3
4960	22.4	Ave.	8	8	Н	33.9	28.1	3.2	0.0	31.4	54.0	-22.6
7440	34.4	Peak	8	8	Н	36.8	28.0	4.3	0.0	47.5	74.0	-26.5
7440	28.5	Ave.	8	8	Н	36.8	28.0	4.3	0.0	41.6	54.0	-12.4
12400	34.6	Peak	8	12	Н	42.1	32.4	5.9	0.0	50.2	74.0	-12.4
12400	27.0	Ave.	8	12	н	42.1	32.4	5.9	0.0	42.6	54.0	-11.4
19840	35.5	Peak	21	13	Н	40.3	23.3	7.7	-9.5	50.7	74.0	-23.3
19840	25.6	Ave.	21	13	Н	40.3	23.3	7.7	-9.5	40.8	54.0	-13.2
22320	40.1	Peak	21	13	Н	40.3	23.3	7.9	-9.5	55.5	74.0	-13.2 -18.5
22320	31.2	Ave.	21	13	Н	40.3	23.3	7.9	-9.5	46.6	54.0	-7.4
Subtract 9 d	B for all i	readings	to a	ccour	t for duty	cycle		1.0	0.0	70.0	34.0	-7.4
DCF of -9.5	were take	n at 1 me	eter	with F	RBW at 30	00kHz				<u> </u>		

Notes: a) D.C.F.:Distance Correction Factor

- b) Insert. Loss (dB) = Cable A + Cable B + Cable C .
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss. Transducer Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

ITS Intertek Testing Services

Radiated Emissions Test Data

Company:	Symbol	Model #: LA3021w/60-20926-01	Standard_ FCC § 15.247				
EUT:	LA3021-100 Frequency Hopper	S/N #:	Limits 11				
Project #:	J200256786	Test Date: SEP 21, 2000	Test Distance 3 meters				
Test Mode:	Xmit with antenna IEC PC-LP	Engineer: Barry S.	Duty Relaxation 0 dB				

	Antenn			Pre-At			Cable L	Jsed		Transducert	ised :
Number:	8	21	0	8	12	13	21	0	0	0	**********
Model: I	MCO 3115	3160-9	None		ACO/180			None		None	

Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit	Margin
MHz	dB(µV)	P/A/Q	#	#	HM	dB(f/m)	dB	dB	df)	d8(µV/m)	(£ 93m d8(µV/m)	dB.
2402	86.4	Peak	8		Н	29.1	0.0	2.3	0.0	117.8		
4804	47.8	Peak	8	8	Н	33.9	28.1	3.2	0.0	56.8	74.0	-17.2
4804	46.6	Ave.	8	8	Н	33.9	28.1	3.2	0.0	55.6	54.0	1.6
12010	34.2	Peak	8	12	Н	42.1	32.4	5.9	0.0	49.8	74.0	-24.2
12010	26.9	Ave.	8	12	Н	42.1	32.4	5.9	0.0	42.5	54.0	-11.5
19216	37.9	Peak	21	13	Н	40.2	23.3	7.7	-9.5	53.0	74.0	-21.0
19216	30.1	Ave.	21	13	Н	40.2	23.3	7.7	-9.5	45.2	54.0	-8.8
2440	82.6	Peak	8		Н	29.1	0.0	2.3	0.0	114.0		
4880	46.2	Peak	8	8	H	33.9	28.1	3.2	0.0	55.2	74.0	-18.8
4880	44.2	Ave.	8	8	H	33.9	28.1	3.2	0.0	53.2	54.0	-0.8
7320	36.5	Peak	8	8	Н	36.8	28.0	4.3	0.0	49.6	74.0	-24.4
7320	31.4	Ave.	8	8	Н	36.8	28.0	4.3	0.0	44.5	54.0	-9.5
12220	31.7	Peak	8	12	Н	42.1	32.4	5.9	0.0	47.3	74.0	-26.7
12220	26.2	Ave.	8	12	Н	42.1	32.4	5.9	0.0	41.8	54.0	-12.2
19520	35.1	Peak	21	13	Н	40.3	23.3	7.7	-9.5	50.3	74.0	-23.7
19520	29.9	Ave.	21	13	Н	40.3	23.3	7.7	-9.5	45.1	54.0	-8.9
											•	
2480	83.0	Peak	8		V	29.1	0.0	2.3	0.0	114.4		
4960	45.5	Peak	8	8	Н	33.9	28.1	3.2	0.0	54.5	74.0	-19.5
4960	44.4	Ave.	8	8	Н	33.9	28.1	3.2	0.0	53.4	54.0	-0.6
7440	34.7	Peak	8	8	Н	36.8	28.0	4.3	0.0	47.8	74.0	-26.2
7440	28.6	Ave.	8	8	Н	36.8	28.0	4.3	0.0	41.7	54.0	-12.3
12400	34.8	Peak	8	12	H	42.1	32.4	5.9	0.0	50.4	74.0	-23.6
12400	26.9	Ave.	8	12	H	42.1	32.4	5.9	0.0	42.5	54.0	-11.5
19840	36.0	Peak	21	13	H	40.3	23.3	7.7	-9.5	51.2	74.0	-22.8
19840	27.3	Ave.	21	13	Н	40.3	23.3	7.7	-9.5	42.5	54.0	-11.5
22320	40.1	Peak	21	13	Н	40.3	23.3	7.9	-9.5	55.5	74.0	-18.5
22320	31.0	Ave.	21	13	Н	40.3	23.3	7.9	-9.5	46.4	54.0	-7.6
Subtract 9 c	IB for all	readings	to a	ccour	nt for dut	y cycle						
DCF of -9.5	were take	en at 1 m	eter	with F	RBW at 30	OOkHz						

Notes:

- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C .
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss. Transducer Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

ITS Intertek Testing Services

Radiated Emissions Test Data


Company:	Symbol	Model #: LA3021w/10-35305-02	Standard_ FCC § 15.247 (R.B.)
EUT:	LA3021-100 Frequency Hopper	S/N #:	Limits 11
Project #:	J200256786	Test Date: SEP 21, 2000	Test Distance_ 3 melers
Test Mode:	Xmit with antenna 6146	Engineer: Barry S.	Dirty Relaxation 0 dB

Anten	na useo		F TE-M	np Used		Cable L	ised		Transducer Used	Character
Number: 8	21	0	8	12	13	21	0	0	0	2
Model: EMCG				ACO/180	000000000000000000000000000000000000000		None	None	None	

Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.	Ant	Pre-Amp	inseri. Loss	D.C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	Factor dB(1/m)	dB	dB dB	αB	dB(µV/m)	dB(pV/m)	d₿
2402	87.9	Peak	8		Н	29.1	0.0	2.3	0.0	119.3		
4804	34.4	Peak	8	8	Н	33.9	28.1	3.2	0.0	43.4	74.0	-30.6
4804	30.5	Ave.	8	8	Н	33.9	28.1	3.2	0.0	39.5	54.0	-14.5
12010	29.4	Peak	8	12	Н	42.1	32.4	5.9	0.0	45.0	74.0	-29.0
12010	25.0	Ave.	8	12	Н	42.1	32.4	5.9	0.0	40.6	54.0	-13.4
19216	41.1	Peak	21	13	Н	40.2	23.3	7.7	-9.5	56.2	74.0	-17.8
19216	30.7	Ave.	21	13	Н	40.2	23.3	7.7	-9.5	45.8	54.0	-8.2
2440	88.6	Peak	8		Н	29.1	0.0	2.3	0.0	120.0		
4880	33.1	Peak	8	8	Н	33.9	28.1	3.2	0.0	42.1	74.0	-31.9
4880	28.0	Ave.	8	8	Н	33.9	28.1	3.2	0.0	37.0	54.0	-17.0
7320	35.4	Peak	8	8	Н	36.8	28.0	4.3	0.0	48.5	74.0	-25.5
7320	30.1	Ave.	8	8	Н	36.8	28.0	4.3	0.0	43.2	54.0	-10.8
12220	42.0	Peak	8	12	Н	42.1	32.4	5.9	-9.5	48.1	74.0	-25.9
12220	31.1	Ave.	8	12	Н	42.1	32.4	5.9	-9.5	37.2	54.0	-16.8
19520	42.3	Peak	21	13	Н	40.3	23.3	7.7	-9.5	57.5	74.0	-16.5
19520	30.5	Ave.	21	13	Н	40.3	23.3	7.7	-9.5	45.7	54.0	-8.3
2480	87.9	Peak	8		Н	29.1	0.0	2.3	0.0	119.3		
4960	23.9	Peak	8	8	Н	33.9	28.1	3.2	0.0	32.9	74.0	-41.1
4960	16.3	Ave.	8	8	Н	33.9	28.1	3.2	0.0	25.3	54.0	-28.7
7440	35.2	Peak	8	8	Н	36.8	28.0	4.3	0.0	48.3	74.0	-25.7
7440	30.3	Ave.	8	8	Н	36.8	28.0	4.3	0.0	43.4	54.0	-10.6
12400	31.2	Peak	8	12	Н	42.1	32.4	5.9	0.0	46.8	74.0	-27.2
12400	28.4	Ave.	8	12	Н	42.1	32.4	5.9	0.0	44.0	54.0	-10.0
19840	33.3	Peak	21	13	Н	40.3	23.3	7.7	-9.5	48.5	74.0	-25.5
19840	24.0	Ave.	21	13	Н	40.3	23.3	7.7	-9.5	39.2	54.0	-14.8
22320	39.9	Peak	21	13	Н	40.3	23.3	7.9	-9.5	55.3	74.0	-18.7
22320	30.0	Ave.	21	13	Н	40.3	23.3	7.9	-9.5	45.4	54.0	-8.6
Subtract 9 dB for all readings to account for duty cycle											<u> </u>	
DCF of -9.5 were taken at 1 meter with RBW at 300kHz										1	1	

Notes:

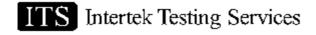
- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss. Transducer Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

odel No. H9PLA3021-100 Date of Test: September 20-21, 2000

4.3 Radiated Emission Configuration Photograph

Radiated Emissions Setup Antenna Micropac

Date of Test: September 20-21, 2000


Radiated Emissions Setup Antenna IEC PC-LP

Date of Test: September 20-21, 2000

Radiated Emissions Setup Antenna 6146

1365 Adams Ct. Menlo Park, CA 94025

Date of Test: September 20-21, 2000

Symbol Technologies, Model No. H9PLA3021-100

5.0 Document History

Revision/Job Number	Date	Change				
1.0 / J200256786	9/27/00	Original document				

File: 202567861.doc Version 1.0 Page 12 of 12