FccID: H9PLA2400

### Conf Num: EA99056

Corespondence # 17366

# WLAN PC Card, 1 Mbps, CR-1

### Class II Permissive Change

Date Emailed: 12/12/00

| Question 1(a)                                                                                                                                                                                   | Answer:                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| The antenna list dated Tuesday, October 17,<br>2000 has included two IBM antennas (antenna<br>#5 & #6) that are not on the antenna list dated<br>Tuesday, November 14, 2000.                    | There were four broken links in my data<br>base. These two and two others under<br>different FCC IDs were affected. I have<br>uploaded a corrected list. |
| Question 1(b)                                                                                                                                                                                   | Answer:                                                                                                                                                  |
| The Previous Class II grant indicates there are<br>6 hand-held and 1 belt-worn configurations.<br>But the latest antenna list dated November 14,<br>2000 has included 9 antenna configurations. | Two of the antennas #6 and #8 were<br>withdrawn. I have uploaded a corrected list.                                                                       |
| Question <sup>2</sup>                                                                                                                                                                           | Answer:                                                                                                                                                  |
| Please provide supporting info for the duty factor indicated on the antenna list.                                                                                                               | I have attached the duty cycle calculations.                                                                                                             |



#### **Network Systems Organization**

#### **Duty Cycle Calculations**

The maximum duty cycle of a 802.11 compliant transmitter is dependent on the data rate and the processing speed of the device the transmitter is installed in. The duty cycle is the ratio of the maximum transmitter on time divided by the total cycle time which is composed of the maximum on time and the minimum off time. The maximum on time is dependent on the data rate. The 802.11 spec mandates what the maximum data payload for a packet may be. The data pay load along with packet addressing and other network overhead information determine the maximum size of a packet. The maximum transmitter on time is the longest time that it will take the radio to transmit the packet. In the case of Symbol's Spectrum 24 products the 1 Mbps data rate is the slowest.

For the cycle time the minimum off time consists of an acknowledgement from the receiver, the shortest carrier sense time and the shortest packet construction time. The acknowledgment and carrier sense times are driven by the 802.11 protocol while the packet construction time is driven by the processing power of the radio host. For access points , laptops, and workstations with fast processors the construction time is fairly short. While for hand held battery powered terminals with slower processors the construction time can be really significant.

Directly related to the duty cycle is data throughput of a link. The lower the duty cycle the lower the data throughput.

#### Longest On Time

| N = Maximum # of data bytes /    |
|----------------------------------|
| packet                           |
| OP = Overhead bytes/packet       |
| Ton = ((N + OP) * 8 bits/byte) / |
| $10^{6}$ bits/sec = $4.872$ mS   |

#### Maximum Duty Cycle Factor DCF = Ton / (Ton + Toff)

CST = Carrier Sense Time APA = AP Ack time PCT = Packet Construction Time Toff = CST + APA + PCT

| LA2400 | CR-1     | 1Mbps  | FH |
|--------|----------|--------|----|
| LA3020 | Duo      | 2Mbps  | FH |
| LA3021 | Proj C   | 2Mbps  | FH |
| LA4111 | T1       | 11Mbps | DS |
| LA4121 | T2       | 11Mbps | DS |
| XX3010 | FH Phone | 1Mbps  | FH |
| DM4026 | DS Phone | 11Mbps | DS |

**Radios** 

| Duty Cycle Variables |     |     |     |     |     |      |     |               |      |       |
|----------------------|-----|-----|-----|-----|-----|------|-----|---------------|------|-------|
| Radio                | 1   | N   | 0   | P   | CST | (uS) | APA | ( <b>uS</b> ) | РСТ  | (uS)  |
|                      | AP  | Rmt | AP  | Rmt | AP  | Rmt  | AP  | Rmt           | AP   | Rmt   |
| LA2400               | 548 | 548 | 61  | 61  | 100 | 100  | 220 | 220           | 3000 | 10000 |
| LA3020               | 548 | 548 | 61  | 61  | 100 | 100  | 220 | 220           | 2000 | 2000  |
| LA3021               | 548 | 548 | 61  | 61  | 100 | 100  | 220 | 220           | 2280 | 2370  |
| LA4111               | 548 | 548 | 61  | 61  | 100 | 100  | 220 | 220           | 1640 | 1660  |
| LA4121               | 548 | 548 | 61  | 61  | 100 | 100  | 220 | 220           | 1600 | 1690  |
| NP3010               | N/A | 32  | N/A | 80  | N/A | 100  | N/A | 220           | N/A  | 7119  |
| DP3010               | N/A | 32  | N/A | 80  | N/A | 100  | N/A | 220           | N/A  | 7119  |
| DM4026               | N/A | 32  | N/A | 80  | N/A | 100  | N/A | 220           | N/A  | 7119  |

# Duty Cycle Calculations

| Duty Cycle Factors |           |                 |                   |  |  |
|--------------------|-----------|-----------------|-------------------|--|--|
| Radio              | Data Rate | AP              | Remote            |  |  |
| LA2400             | 1 Mbps    | 60% / -4.4 dB   | 32 % / -9.9 dB    |  |  |
| LA3020             | 1 Mbps    | 68% / -3.4 dB   | 68% / -3.4 dB     |  |  |
| LA3021             | 1 Mbps    | 65% / -3.7 dB   | 64% / -3.9 dB     |  |  |
| LA4111             | 1 Mbps    | 71.3% / -2.9 dB | 71.1% / -3.0dB    |  |  |
| LA4121             | 1 Mbps    | 71.8% / -2.9 dB | 70.8% / -3.0dB    |  |  |
| NP3010             | 1 Mbps    | N/A             | 10.75% / -19.4 dB |  |  |
| DP3010             | 1 Mbps    | N/A             | 10.75% / -19.4 dB |  |  |
| DM4026             | 1 Mbps    | N/A             | 10.75% / -19.4 dB |  |  |