Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 C | SGS (Auden) | | Certificate No | : AM1DV2-1030_Apr0 | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------| | CALIBRATION C | CERTIFICA | TE | | | Object | AM1DV2 - SN | : 1030 | | | Calibration procedure(s) | QA CAL-24.v2<br>Calibration pro<br>audio range | coedure for AM1D magnetic field pro | obes and TMFS in the | | Calibration date | April 16, 2008 | | | | Condition of the calibrated item | In Tolerance | | | | Calibration Equipment used (M&T<br>Primary Standards<br>Keithley Multimeter Type 2001<br>Reference Probe AM1DV2 | ID#<br>SN: 0810278<br>SN: 1008 | Cal Date (Certificate No.)<br>03-Oct-07 (No. 5465)<br>23-Jan-08 (No. AM1D-1008_Jan08) | Scheduled Calibration<br>Oct-08<br>Jan-09 | | DAE4 | SN: 781 | 2-Oct-07 (No. DAE4-781_Oct07) | Oct-08 | | Secondary Standards | ID W | Check Date (in house) | Scheduled Check | | AMCC | 1050 | 15-Aug-07 (in house check Aug-07) | Aug-09 | | Calibrated by | Name<br>Mike Melli | Function<br>RF Technician | Signature<br>T. Peik | | Approved by: | Fin Bomholt | R&D Director | | | | Mathematics. | 7 | F. Britist | | | | | Issued: April 17, 2008 | Certificate No: AM1D-1030\_Apr08 #### References ANSI C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. [2] DASY4 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension #### Description of the AM1D probe The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding. #### Handling of the item The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter). ### Methods Applied and Interpretation of Parameters - Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to "southwest" orientation. - Functional Test: The functional test preceding calibration includes test of Noise level RE immunity (1kHz AM modulated signal). The shield of the grobe cable must RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 5 kHz. - Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and -120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil. - Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane. - Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil. # AM1D probe identification and configuration data | Item | AM1DV2 Audio Magnetic 1D Field Probe | | | |-----------|--------------------------------------|--|--| | Type No | SP AM1 001 AE | | | | Serial No | 1030 | | | | Overall length | 296 mm | |--------------------|------------------------------------| | Tip diameter | 6.0 mm (at the tip) | | Sensor offset | 3.0 mm (centre of sensor from tip) | | Internal Amplifier | 40 dB | | Manufacturer / Origin | Schmid & Partner Engineering AG, Zürich, Switzerland | |-----------------------|------------------------------------------------------| | Manufacturing date | 2006 | | Last calibration date | N/A (probe replacement) | ### Calibration data Connector rotation angle (in DASY system) 251.6 ° +/- 3.6 ° (k=2) Sensor angle (in DASY system) - 0.11 " +/- 0.5 " (k=2) Sensitivity at 1 kHz (in DASY system) 0.0648 V / (A/m) +/- 2.2 % (k=2) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 ### Certificate No: DAE3-577\_Nov08 Sporton (Auden) CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 577 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) November 12, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Fluke Process Calibrator Type 702 SN: 6295803 30-Sep-08 (No: 7673) Sep-09 Keithley Multimeter Type 2001 SN: 0810278 30-Sep-08 (No: 7670) Sep-09 Secondary Standards ID# Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 06-Jun-08 (in house check) In house check: Jun-09 Name Function Calibrated by: Andrea Guntli Technician Approved by: Fin Bomholt R&D Director Issued: November 12, 2008 Certificate No: DAE3-577\_Nov08 Page 1 of 5 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner **Engineering AG** Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-577 Nov08 # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$ , full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.437 ± 0.1% (k=2) | 403.882 ± 0.1% (k=2) | 404.321 ± 0.1% (k=2) | | Low Range | 3.93985 ± 0.7% (k=2) | 3.94699 ± 0.7% (k=2) | 3.94542 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 268 ° ± 1 ° | |-------------------------------------------|-------------| |-------------------------------------------|-------------| # **Appendix** 1. DC Voltage Linearity | High Range | Input (μV) | Reading (µV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 200000 | 200000.5 | . 0.00 | | Channel X + Input | 20000 | 20006.28 | 0.03 | | Channel X - Input | 20000 | -19997.96 | -0.01 | | Channel Y + Input | 200000 | 199999.8 | 0.00 | | Channel Y + Input | 20000 | 20003.35 | 0.02 | | Channel Y - Input | 20000 | -20003.31 | 0.02 | | Channel Z + Input | 200000 | 200000.3 | 0.00 | | Channel Z + Input | 20000 | 20006.28 | 0.03 | | Channel Z - Input | 20000 | -19999.42 | 0.00 | | Low Range | Input (μV) | Reading (µV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 2000 | 2000 | 0.00 | | Channel X + Input | 200 | 200.64 | 0.32 | | Channel X - Input | 200 | -199.61 | -0.19 | | Channel Y + Input | 2000 | 2000 | 0.00 | | Channel Y + Input | 200 | 199.39 | -0.31 | | Channel Y - Input | 200 | -201.03 | 0.52 | | Channel Z + Input | 2000 | 2000 | 0.00 | | Channel Z + Input | 200 | 199.42 | -0.29 | | Channel Z - Input | 200 | -200.73 | 0.36 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.38 | 13.83 | | | - 200 | -13.53 | -13.82 | | Channel Y | 200 | -5.55 | -6.09 | | | - 200 | 5.06 | 5.66 | | Channel Z | 200 | -1.00 | -0.72 | | | - 200 | -0.80 | -0.52 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.66 | 0.50 | | Channel Y | 200 | 1.90 | - | 3.95 | | Channel Z | 200 | -0.95 | 0.48 | • | ### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15967 | 16080 | | Channel Y | 15851 | 16385 | | Channel Z | 16197 | 16100 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 1.13 | -1.22 | 2.29 | 0.58 | | Channel Y | -1.51 | -2.99 | 0.83 | 0.52 | | Channel Z | 0.02 | -0.89 | 0.92 | 0.38 | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2000 | 198.6 | | Channel Y | 0.2001 | 199.4 | | Channel Z | 0.2000 | 198.8 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com ### Certificate of conformity | Item | Audio Magnetic Calibration Coil AMCC | | |-----------------------|-----------------------------------------------------|--| | Type No | SD HAC P02 A | | | Series No | 1001 ff. | | | Manufacturer / Origin | Schmid & Partner Engineering AG Zurich, Switzerland | | Description of the item The Audio Magnetic Calibration coil (AMCC) is a Helmholtz Coil designed according to standard [1], section D.9 for calibration of the AM1D probe. Two horizontal coils are positioned above a non-metallic base plate and generate a homogeneous magnetic field in the z direction (normal to it). Configuration The AMCC consists of two parallel coils of 20 turns with radius 143 mm connected in parallel in a distance of 143 mm. With this design, a current of 10 mA produces a field of 1 A/m. The DC input resistance at the input BNC socket is adjusted by a series resistor to a DC resistance of approximately 50 Ohm. The voltage required to produce a field of 1 A/m is consequently approx. 500 To current through the coil is monitored via a shunt resistor of 10 Ohm +/- 1%. The voltage is available on a BNO socket with 100 mV corresponding to 1 A/m. Handling of the item The coil shall be positioned in a non-metallic environment to avoid distortion of the magnetic field. #### Tests | Test | Requirement | Details | Units tested | |----------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------| | Number of turns | N = 20 per coil | Resistance measurment | all . | | Orientation of coils | parallel coils with same direction of windings | Magnetic field variation in<br>the AMCC axis | all | | Coil radius | r = 143 mm | mechanical dimension | First article | | Coil distance | d = 143 mm<br>distance between coil centers | mechanical dimension | First article | | Input resistance | 51.7 +/- 2 Ohm | DC resistance at BNC input connector | all | | Shunt resistance | R = 10.0 Ohm +/- 1 % | DC resistance at BNO<br>output connector | all | | Shunt sensitivity | Hc = 1 A/m per 100 mV<br>according to formula<br>Hc = (U / R) * N / r / (1.25^1.5) | Field measurement<br>compared with Narda<br>ELT400 + BN2300/90.10 | First article | Standards [1] ANSI PC63.19-2006 Draft 3.12 Conformity Based on the tests above, we certify that this item is in compliance with the requirements of [1]. 22.5.2006 Stamp / Signature Schmid & Partney Engineering AG Zeughausstrasse 43, 8004 Zuich Canadand Phong +4151 245-900 bek 4415 445 9779 info@speag.com, http://www.speag.com Doc No 880 - SD HAC P02 A - A Page 1 (1)