

Schmid & Partner Engineering AG

spe a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

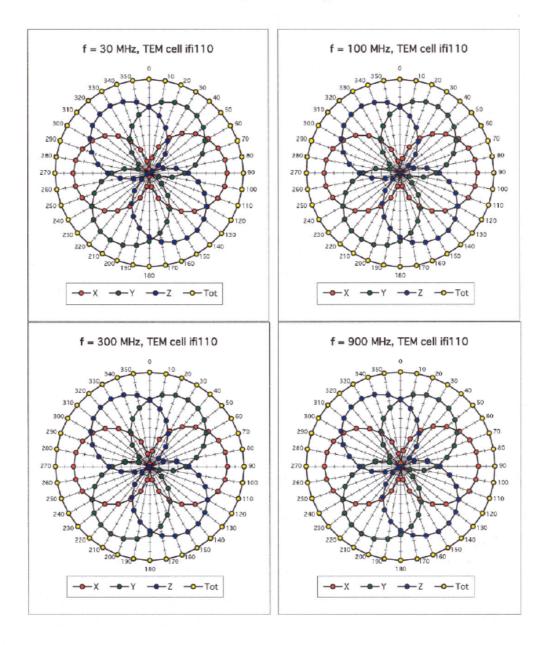
Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Page 1 of 10

ET3DV6 SN:1788

August 29, 2003


DASY - Parameters of Probe: ET3DV6 SN:1788

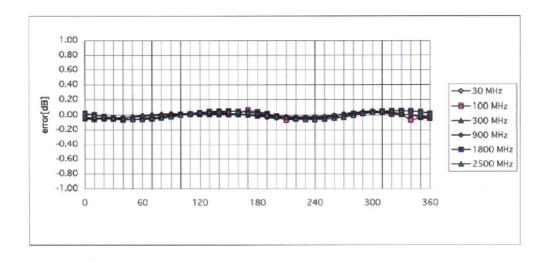
Sensitiv	ity in Free	Space		Diode Co	ompressio	on	
	NormX	1.68 µV/((V/m) ²		DCP X	95	mV
	NormY	1.62 μV/(DCP Y	95	mV
	NormZ	1.71 μV/(DCP Z	95	mV
Sensitivi	tv in Tissue	e Simulating Lic	nuid				
Head		0 MHz	ε _r = 41.5 ± 5%	6 o	= 0.97 ± 5%	6 mho/m	
Valid for f=8	00-1000 MHz v	with Head Tissue Simul	lating Liquid accordi	ing to EN 5036	1, P1528-200	х	
	ConvF X	6.6 ± 9.	5% (k=2)		Boundary e	effect:	
	ConvF Y	6.6 ± 9.	5% (k=2)		Alpha	0.34	
	ConvF Z	6.6 ± 9.	5% (k=2)		Depth	2.48	
Head	180	0 MHz	ε_r = 40.0 ± 5%	6 σ	= 1.40 ± 5%	6 mho/m	
Valid for f=1	710-1910 MHz	with Head Tissue Sim	ulating Liquid accore	ding to EN 503	61, P1 528-20	xoo	
	ConvF X	5.3 ±9.	5% (k=2)		Boundary e	effect:	
	ConvF Y	5.3 ±9.	5% (k=2)		Alpha	0.43	
	ConvF Z	5.3 ± 9.	5% (k=2)		Depth	2.80	
Bounda	ry Effect						
Head	90	0 MHz Typi	cal SAR gradient:	5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Correction	Algorithm		8.7	5.0	
	SAR _{be} [%]	With Correction Alg	gorithm		0.3	0.5	
Head	180	0 MHz Typi	cal SAR gradient:	10 % per mm			
nouu	100	o hinz i jpi	our orat gradient.	ie ze por min			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Correction	Algorithm		12.8	8.9	
	SAR _{be} [%]	With Correction Ale	gorithm		0.3	0.1	
Sensor	Offset						
	Probe Tip to	Sensor Center		2.7		mm	
	Optical Surfa	ce Detection		1.6 ± 0.2		mm	
			Page 2 of 10				

ET3DV6 SN:1788

August 29, 2003

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

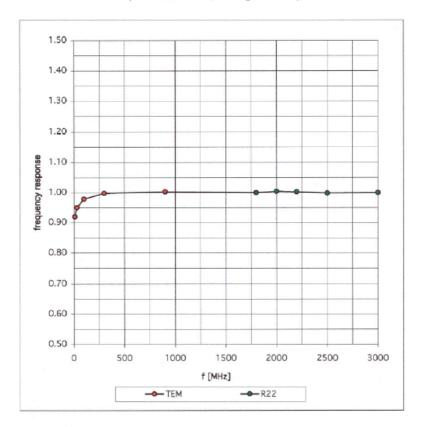
Page 3 of 10



ET3DV6 SN:1788

August 29, 2003

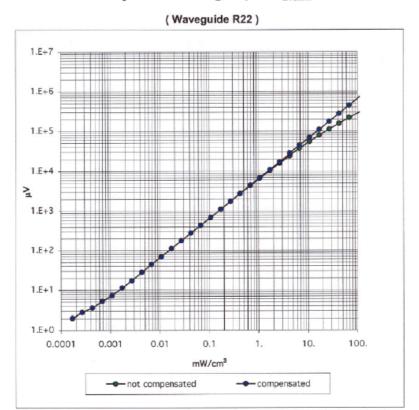
Isotropy Error (ϕ), $\theta = 0^{\circ}$


Page 4 of 10

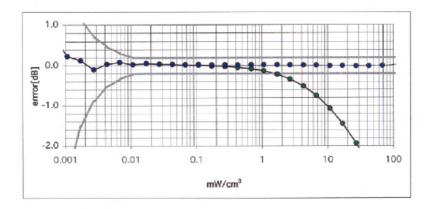
ET3DV6 SN:1788

August 29, 2003

Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

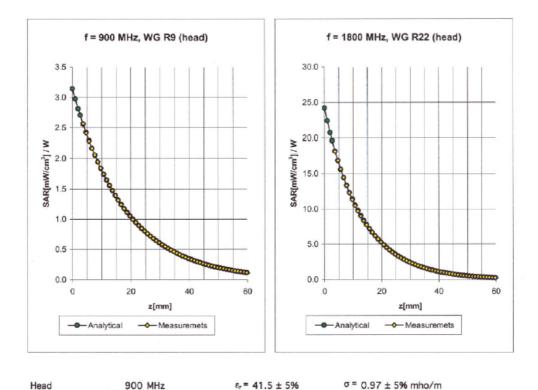
Page 5 of 10



ET3DV6 SN:1788

August 29, 2003

Dynamic Range f(SAR_{brain})



Page 6 of 10

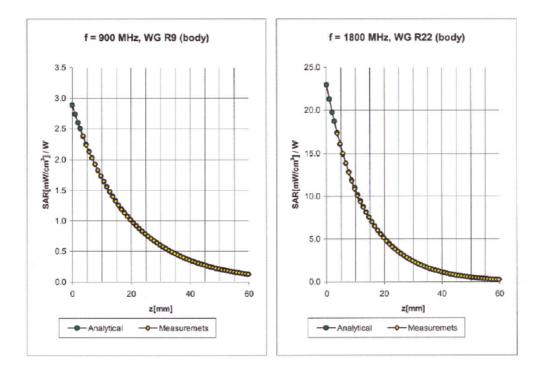
ET3DV6 SN:1788

August 29, 2003

 $\epsilon_r = 41.5 \pm 5\%$

Conversion Factor Assessment

Valid for f=8	300-1000 MHz with Head	Tissue	e Simulating Liquid according to EN 5036	51, P1528-200X	
	ConvF X	6.6	± 9.5% (k=2)	Boundary effect:	
	ConvF Y	6.6	± 9.5% (k=2)	Alpha	0.34
	ConvF Z	6.6	± 9.5% (k=2)	Depth	2.48
Head	1800 MHz		$\epsilon_r = 40.0 \pm 5\%$ $\sigma =$	1.40 ± 5% mho/n	n
		d Tiss	$\epsilon_r = 40.0 \pm 5\%$ $\sigma =$		n
					n
	710-1910 MHz with Hea	5.3	ue Simulating Liquid according to EN 503	361, P1528-200X	0.43
	710-1910 MHz with Hea ConvF X	5.3 5.3	ue Simulating Liquid according to EN 503 ± 9.5% (k=2)	861, P1528-200X Boundary effect:	7


Page 7 of 10

Head

ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

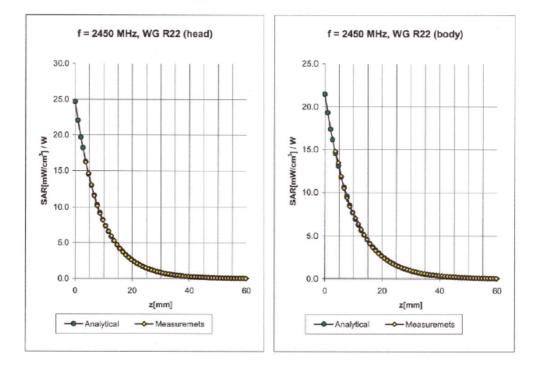
Valid for f=80	00-1000 MHz with Body	Tissue	Simulating Liquid according to OET 65	Suppl. C	
	ConvF X	6.5	±9.5% (k=2)	Boundary effect:	
	ConvF Y	6.5	±9.5% (k=2)	Alpha	0.31
	ConvF Z	6.5	±9.5% (k=2)	Depth	2.92
Body	1800 MHz		$\epsilon_r = 53.3 \pm 5\%$ or	1.52 ± 5% mho/n	n
Valid for f=17	710-1910 MHz with Body	/ Tissu	e Simulating Liquid according to OET 6	5 Suppl. C	
	ConvF X	5.0	±9.5% (k=2)	Boundary effect:	
	ConvF Y	5.0	± 9.5% (k=2)	Alpha	0.51
	ConvF Z	5.0	± 9.5% (k=2)	Depth	2.78

 $e_r = 55.0 \pm 5\%$

 σ = 1.05 ± 5% mho/m

Page 8 of 10

Body


©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. **Rev.01**

900 MHz

ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Valid for f=240	00-2500 MHz with Head	Tissu	e Simulating Liquid according to EN 503	61, P1528-200X	
	ConvF X	4.7	± 8.9% (k=2)	Boundary effect:	
	ConvF Y	4.7	± 8.9% (k=2)	Alpha	0.99
(ConvF Z	4.7	± 8.9% (k=2)	Depth	1.81
Body	2450 MHz		ε _r = 52.7 ± 5% σ=	1.95 ± 5% mho/n	n
Valid for f=240	00-2500 MHz with Body	/ Tissu	e Simulating Liquid according to OET 65	Suppl. C	
	ConvF X	4.5	± 8.9% (k=2)	Boundary effect:	
(ConvF Y	4.5	± 8.9% (k=2)	Alpha	1.01
	ConvF Z	4.5	± 8.9% (k=2)	Depth	1.74

 $e_r = 39.2 \pm 5\%$

 $\sigma = 1.80 \pm 5\%$ mho/m

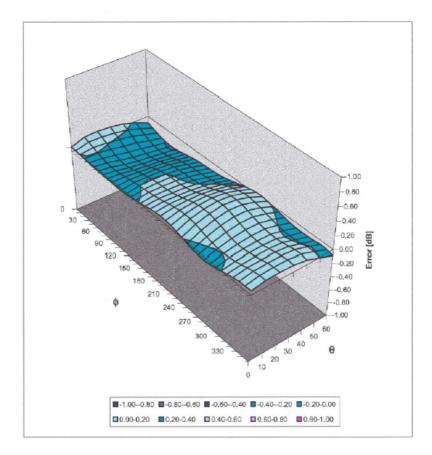
Page 9 of 10

©2004 SPORTON International Inc..SAR Testing Lab

Head

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

2450 MHz



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Page 10 of 10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CI	In	-		
CI	le	n	ι	

Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedur	re for the data acquisit	ion unit (DAE)
Calibration date.	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific cali	ibration document)
This calibration statement docum 17025 international standard	ents traceability of M&TE used in	the calibration procedures and c	onformity of the procedures with the ISO/IEI
All calibrations have been conduc	ted in the closed laboratory facilit	ly environment temperature 22 *	/- 2 degrees Celsius and humidity < 75%.
	The second day and have been as		
Calibration Equipment used (M&1	E critical for calibration)		
Model Type	ID #	Cai Date 8-Sep-03	Scheduled Calibration Sep-05
Model Type	ID #		
Calibration Equipment used (M&1 Model Type Fluke Process Calibrator Type 70	ID #		
Model Type Fluke Process Calibrator Type 70	ID # 2 SN. 6295803	8-Sep-03 Function	Sep-05
Model Type	ID # 2 SN. 6295803 Namo	8-Sep-03 Function	Sep-05
Model Type Fluke Process Calibrator Type 70 Calibrated by:	ID # 2 SN. 6295803 Name Philipp Storchanegger	8-Sep-03 Function	Sep-05

DAE3 SN: 577

1. Cal Lab. Incoming Inspection & Pre Test

DATE: 21.11.2003

Modification Status	Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	400 mV
Low Range:	1LSB =	61nV ,	full range =	4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DATE: 21.11.2003

Low Range

3 sec

High/Lov		Measuring time:
in μV	Common mode Input Voltage	High Range Reading

	Input Voltage	Reading	Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec,

Measuring time: 3 sec

high Rang	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28

Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

Page 3 of 4

DAE3	SN:	: 577

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec, Number of measurements:

Measuring time: 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97

Page 4 of 4