

EMC Test Report

Application for Grant of Equipment Authorization pursuant to

FCC Part 15 Subpart C

Model: WLU6113-D69

FCC ID: H8N-WLU6113

APPLICANT: Askey Computer Corporation 10F, NO. 119 ChienKang Rd., Chung-Ho Taipei, Taiwan, R.O.C. 235

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5

REPORT DATE: March 29, 2010

FINAL TEST DATES:

February 17 and 22, March 19, 22, 23 and 24, 2010

AUTHORIZED SIGNATORY:

Mark E. Hill

Staff Engineer Elliott Laboratories

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	March 29, 2010	First release	

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	9
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	11 11
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	12
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	13
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	14
RADIATED EMISSIONS	14
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	17
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - KADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
t t	
APPENDIX B TEST DATA	2

SCOPE

An electromagnetic emissions test has been performed on the Askey Computer Corporation model WLU6113-D69, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Askey Computer Corporation model WLU6113-D69 complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Askey Computer Corporation model WLU6113-D69 and therefore apply only to the tested sample. The sample was selected and prepared by Jerry Chen of Askey Computer Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11g: 15.0 MHz 802.11b: 7.1 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11g: 17.3 dBm ^{Note 1} 0.054mW EIRP 802.11b: 17.2 dBm ^{Note 1} 0.052 mW EIRP	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11g: -3.4 dBm/3kHz 802.11b: 3.6 dBm/3KHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	N/A –All testing performed radiated	< -30dBc ^{Note 2}	N/A
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.9dBµV/m @ 2483.6MHz (-0.1dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies

Note 1: Power measured radiated, value reported is EIRP.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna is integral to the pcb		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	Not applicable receiv MF		Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	36.7dBµV @ 1.393MHz	Refer to standard	Complies (- 9.3 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11 and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Askey Computer Corporation model WLU6113-D69 is an 802.11bgn device that will connect to Blue-Ray DVD player allowing for wireless connectivity. The EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 5VDC.

The sample was received on February 17, 2010 and tested on February 17 and 22, March 19, 22, 23 and 24, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Askey Computer	WLU6113-D69	802.11 b/g n	N/A	H8N-WLU6113
Corporation		WLAN adaptor		

OTHER EUT DETAILS

The 802.11n mode is restricted to 20 MHz SISO operation only. The 802.11g Legacy was tested as representative of the 802.11n 20MHz SISO mode.

ANTENNA SYSTEM

The antenna system used with the Askey Computer Corporation model WLU6113-D69 consists of an integral antenna with approximately 0dBi gain.

ENCLOSURE

The EUTs enclosure is constructed of plastic, and measures approximately 6cm by 5cm by 3cm.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Company	Model	Description	Serial Number
Dell	PP10S	Laptop Computer	78983498010740
Dell	ADP-60NHB	Power Adaptor	NUW0527474112

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

Port		Cable(s)			
From	То	Description	Shielded/Unshielded	Length(m)	
USB - Laptop	EUT	Multiconductor	Shielded	1.5	
DC Power In -	AC/DC	Multiconductor	Shielded	2.0	
Laptop	Adapter				
AC/DC Adapter	AC Mains	3 Wire	Unshielded	1.5	

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION

During emissions testing the EUT was configured to transmit at the noted channel. The EUT was connected to a laptop via USB. The connection allowed for control of the radio and provided power.

Unless otherwise stated, all testing in 802.11b mode was performed at 1MBs. All testing in 802.11g mode was performed at 6Mbs. This was determined to be worse case during preliminary testing.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 17 and 22, March 19, 22, 23 and 24, 2010 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont,
Chamber 5	211948	2845B-5	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

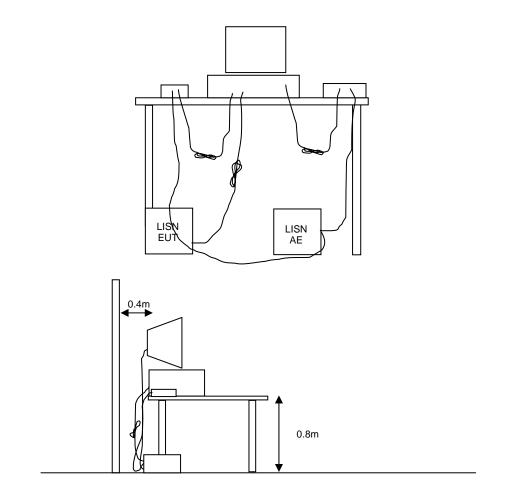
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

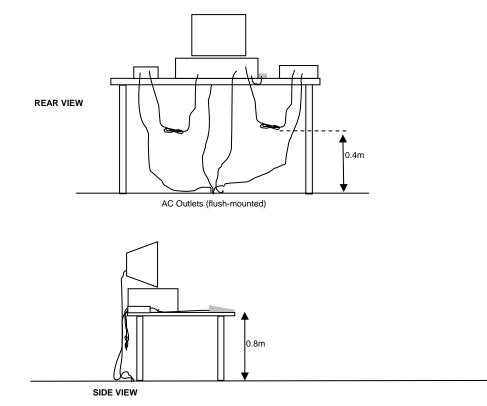

TEST PROCEDURES

EUT AND CABLE PLACEMENT

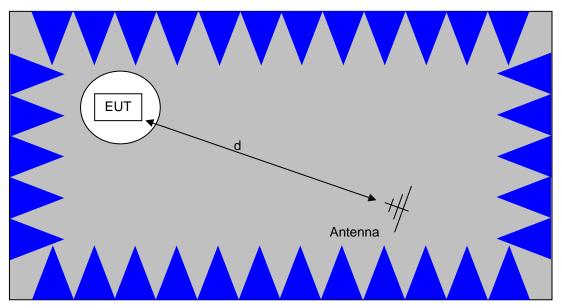
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

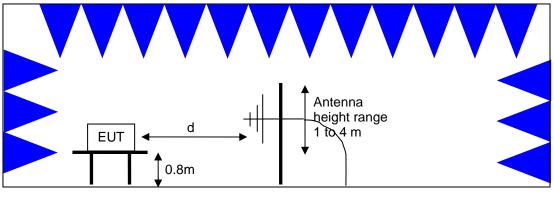

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_{d} = 20*LOG_{10} (D_{m}/D_{s})$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

 $M = R_c - L_s$

where:

and

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_{S} = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

Appendix A Test Equipment Calibration Data

Conducted Emissions	s - AC Power Ports, 17-Feb-10			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	<u>Cal Due</u>
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	7/15/2010
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	5/18/2010
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	812	2/3/2011
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	3/6/2010
Radiated Emissions,	30 - 18,000 MHz, 20-Mar-10 thru 25	5-Mar-10		
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 30 Hz -40 GHz, SV (SA40) Red	<u>Model</u> 8564E (84125C)	<u>Asset #</u> 1148	<u>Cal Due</u> 4/12/2010
	SpecAn 30 Hz -40 GHz, SV			
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	4/12/2010
Hewlett Packard EMCO	SpecAn 30 Hz -40 GHz, SV (SA40) Red Antenna, Horn, 1-18 GHz Band Reject Filter, 2400-2500	8564E (84125C) 3115	1148 1561	4/12/2010 6/10/2010

Appendix B Test Data

T78124 36 Pages

©Elliott

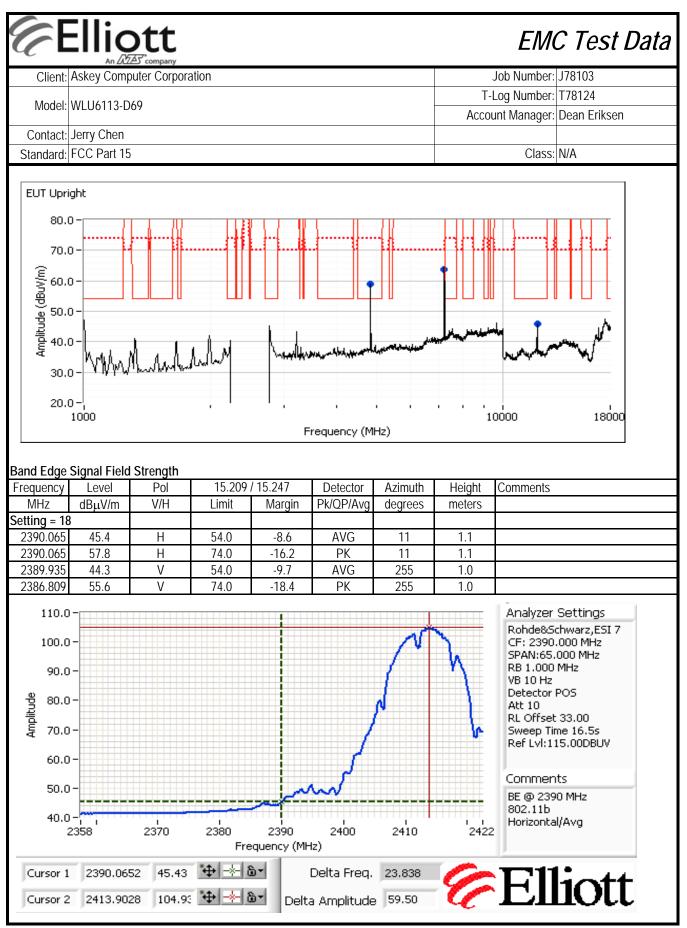
EMC Test Data

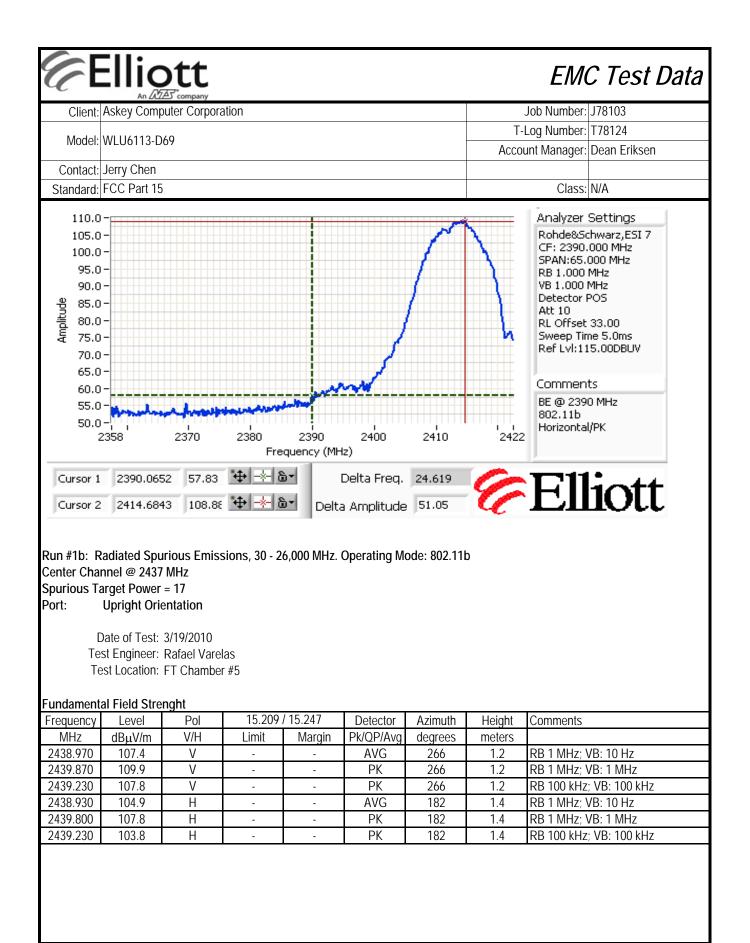
An LALLE) company		
Client:	Askey Computer Corporation	Job Number:	J78103
Model:	WLU6113-D69	T-Log Number:	T78124
		Account Manager:	Dean Eriksen
Contact:	Jerry Chen	Project Manager:	Mark Hill
Emissions Standard(s):	FCC Part 15	Class:	В
Immunity Standard(s):	-	Environment:	-
inindinty Standard(5):		Environment	

EMC Test Data

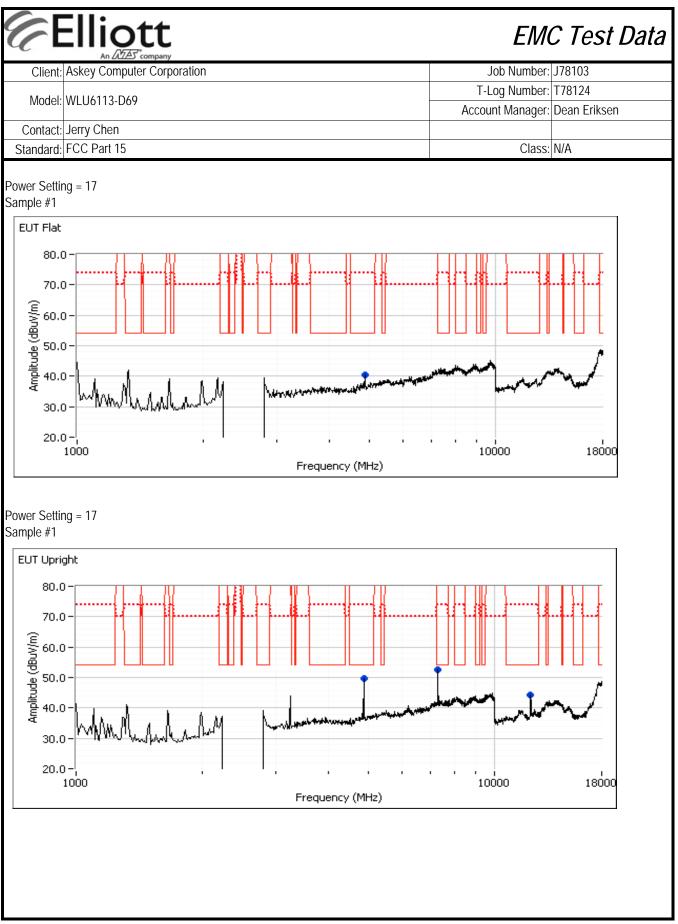
For The

Askey Computer Corporation

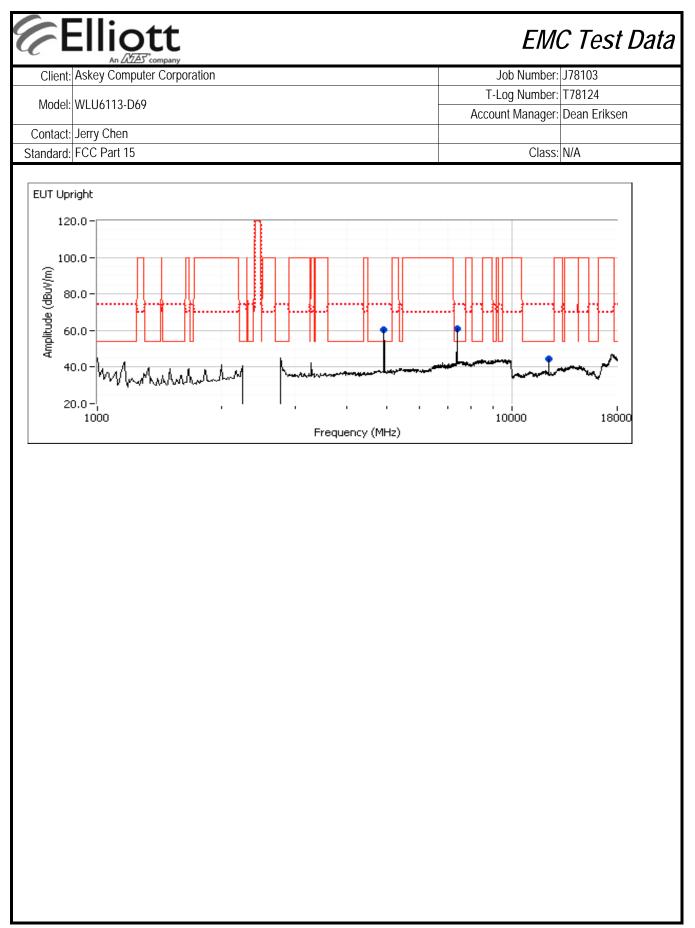

Model

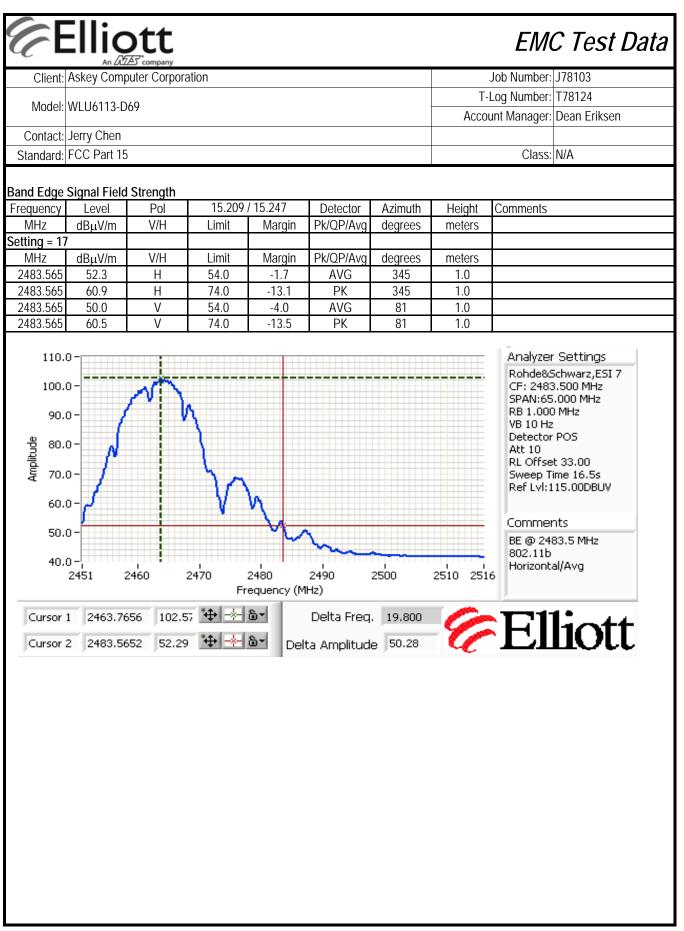

WLU6113-D69

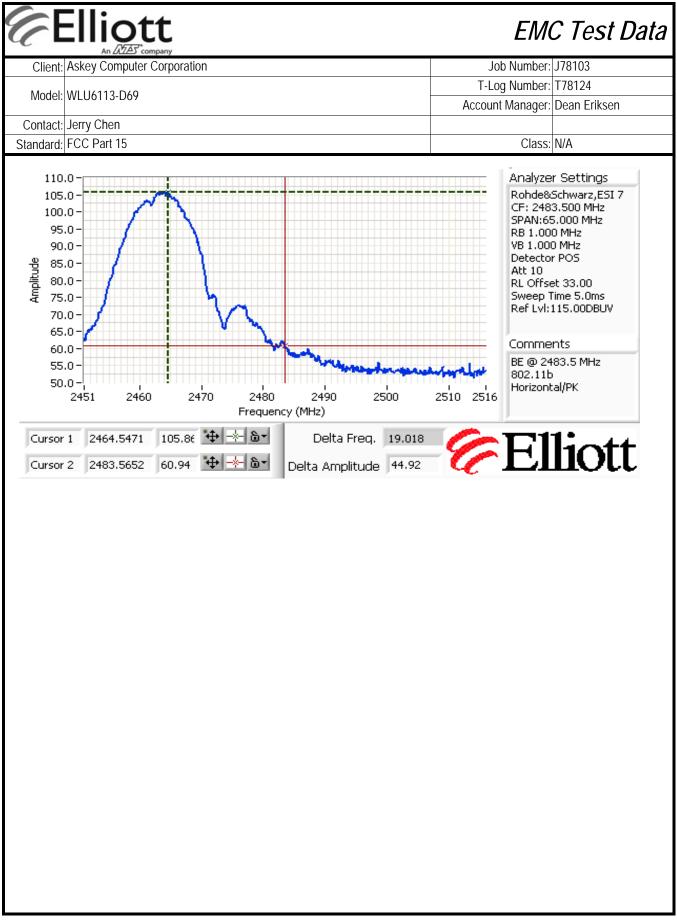
Date of Last Test: 3/25/2010

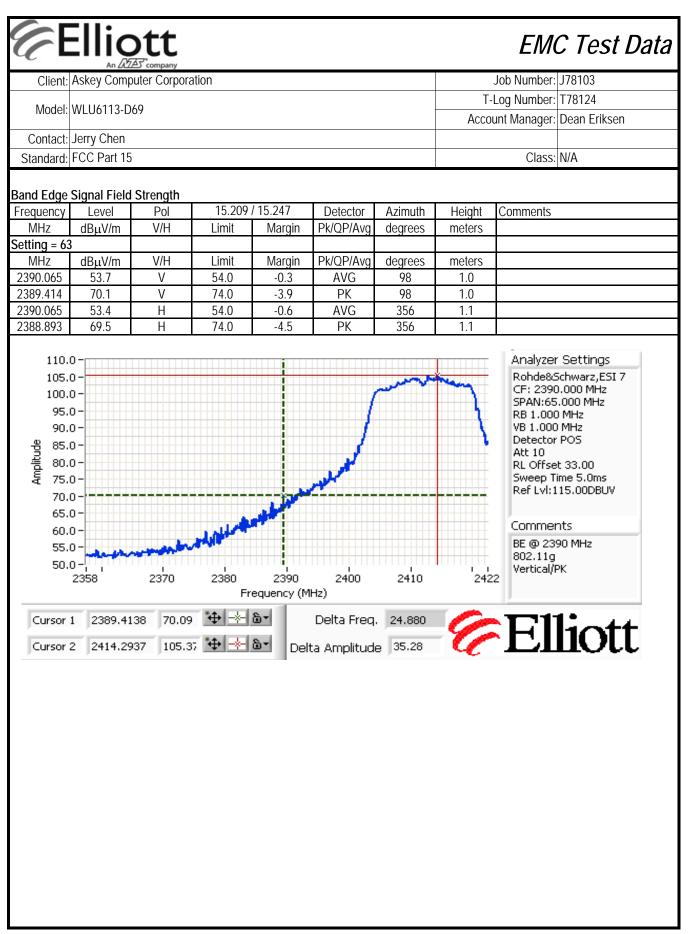

	Askey Com	outer Corpora	ation			Job Number: J78103			
Model	WLU6113-D	69				T-Log Number: T78124			
							nt Manager: Dean Eriksen		
	Jerry Chen								
Standard	FCC Part 15)					Class: N/A		
	RSS 2	hae 01		5.247 (DTS) Ra	hateih	Sourio	is Emissions		
act Cna				0.247 (DTS) Na		spuno	13 21113310113		
est spe	cific Detai		e of this test	session is to perform final	qualification	testing of the	FLIT with respect to the		
	Objective:	specification	listed above		quanneation	lesting of the	EUT with respect to the		
	Test Config			opping on the translated for	rodioted area		ana taating		
				ocated on the turntable for t antenna was located 3 m			ons testing.		
i ui i auid			neasurennen	a antenna was iucateu s III					
mbient	Condition	s: T	emperature:	19.7 °C	Rel	. Humidity:	39 %		
		-	_						
ummary	y of Result	s - Device		g in the 2400-2483.5	MHz Band				
Run #	Mode	Channel	Power Setting	Test Performed	Lim	it	Result / Margin		
			18	Restricted Band Edge	FCC Part		45.4dBµV/m @ 2390.1MHz		
1a	b mode	1	10	(2390 MHz) Radiated Emissions	15.247 FCC Part	7(c) 15.209/	<u>(-8.6dB)</u> 53.4dBµV/m @ 4824.0MHz		
			18		15.247				
		6	17	1 - 26 GHz Radiated Emissions	FCC Part	15.209 /	(-0.6dB) 51.3dBµV/m @ 7312.8MHz		
1h	h mode		17	1 - 26 GHz	15.247	7(c)	(-2.7dB)		
1b	b mode	6			ECC Dart	15 200 /	52 2dBu V/m @ 2482 6MH		
			17	Restricted Band Edge	FCC Part	15.209 /	52.3dBµV/m @ 2483.6MHz		
1b 1c	b mode b mode	11		Restricted Band Edge (2483.5 MHz) Radiated Emissions	FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 /	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz		
			17 18	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz	FCC Part 15.247 FCC Part 15.247	15.209 / 7(c) 15.209 / 7(c)	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz		
1c	b mode	11		Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge	FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 /	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz		
			18 63	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz	FCC Part 15.247 FCC Part 15.247	15.209 / 7(c) 15.209 / 7(c) 15.209 /	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB)		
1c	b mode	11	18	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 15.247	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c)	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB)		
1c	b mode	11	18 63	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 /	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz		
1c 2a 2b	b mode g mode g mode	11 1 2	18 63 63 73	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz)	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 /	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz		
1c 2a	b mode g mode	11	18 63 63	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 /	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz (-0.4dB) 53.6dBµV/m @ 7308.5MHz		
1c 2a 2b 2c	b mode g mode g mode g mode	11 1 2 6	18 63 63 73 75	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c)	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz (-0.4dB) 53.6dBµV/m @ 7308.5MHz (-0.4dB) 53.1dBµV/m @ 2483.6MHz		
1c 2a 2b	b mode g mode g mode	11 1 2	18 63 63 73	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2483.5 MHz)	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c)	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz (-0.4dB) 53.6dBµV/m @ 7308.5MHz (-0.4dB) 53.1dBµV/m @ 2483.6MHz (-0.9dB)		
1c 2a 2b 2c 2d	b mode g mode g mode g mode g mode	11 1 2 6 10	18 63 63 73 75	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2483.5 MHz) Restricted Band Edge	FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 15.209 / 15.209 / 15.209 / 15.209 / 15.209 / 15.200 / 15.200 / 15.200 / 15.200 / 15.200 / 15.200 / 15.200	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz (-0.4dB) 53.6dBµV/m @ 7308.5MHz (-0.4dB) 53.1dBµV/m @ 2483.6MHz (-0.9dB) 53.9dBµV/m @ 2483.6MHz		
1c 2a 2b 2c	b mode g mode g mode g mode	11 1 2 6	18 63 63 73 75 73	Restricted Band Edge (2483.5 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2390 MHz) Radiated Emissions 1 - 26 GHz Restricted Band Edge (2483.5 MHz)	FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part 15.247 FCC Part	15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c) 15.209 / 7(c)	52.3dBµV/m @ 2483.6MHz (-1.7dB) 52.8dBµV/m @ 4924.0MHz (-1.2dB) 53.7dBµV/m @ 2390.1MHz (-0.3dB) 41.7dBµV/m @ 4824.0MHz (-12.3dB) 53.6dBµV/m @ 2390.1MHz (-0.4dB) 53.6dBµV/m @ 7308.5MHz (-0.4dB) 53.1dBµV/m @ 2483.6MHz (-0.9dB)		

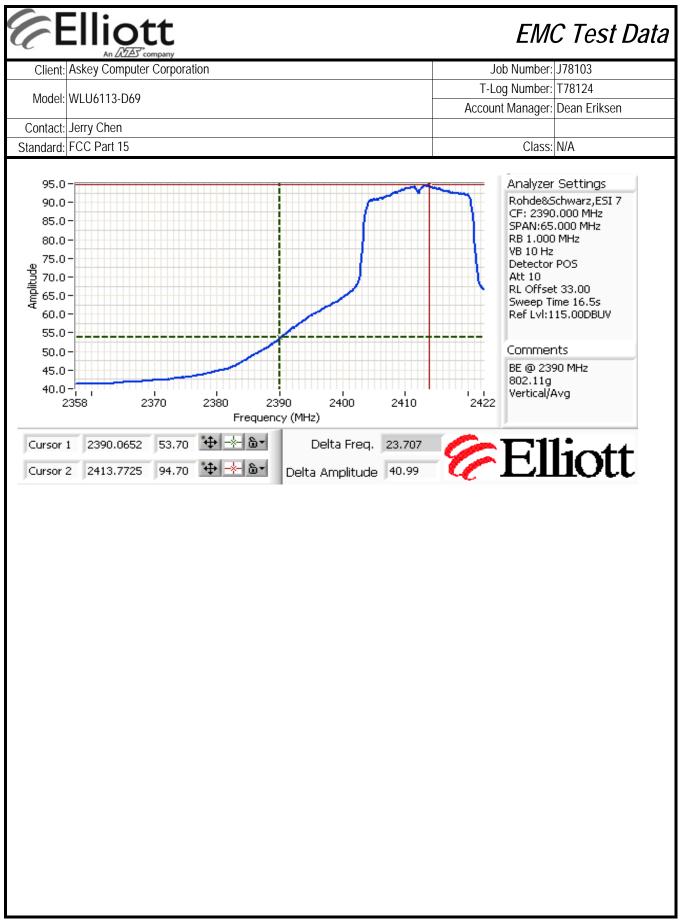
Client	Askey Comp	uter Corpora	ation					Job Number:	b Number: J78103		
Olicint.								Log Number:			
Model:	WLU6113-D	69				Dean Eriksen					
Contact:	Jerry Chen				5						
Standard:	FCC Part 15							N/A			
Deviation	s From Th	e Standar	ď								
	ons were ma			s of the stan	dard.						
loto Droliu	minany taatir	a chowod i	no radio ral	atad amicci	one holow 1	CUz and ab	N/0 10 CH-				
	innary testii	ig snowed i			ons below 1	GHZ anu anu		•			
				25000 MHz.	Operating M	ode: 802.11	b				
	ow Channel			Da							
•	Target Power Upright Orie	•	ious l'arget	Power = 18							
ort.	opright one	mation									
[Date of Test:	3/22/2009			С	onfig. Used:	1				
Те	st Engineer:	Rafael Varel	as			nfig Change:					
Te	est Location:	FT Chamber	r #3		Host	Unit Voltage	120V/ 60Hz	2			
	al Field Stre		15 000	115 047	Datastas	A	11.2.1.1	0			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz Setting = 18	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
2414.000	103.1	V	-	-	AVG	97	1.0	RB 1 MHz; V	/R· 10 Hz		
2414.000	105.8	V	-	-	PK	97	1.0	RB 1 MHz;			
2414.230	103.6	V	-	_	PK	97	1.0		; VB: 100 kHz		
2414.230	102.0	H	-	-	AVG	353	1.0	RB 1 MHz;			
2413.930	100.0	H		-	PK	353	1.0	RB 1 MHz;			
	109.3	H	-								
2413.930	105.0	П	-	-	РК	353	1.0	RB 100 KHZ	; VB: 100 kHz		
	ous Emissio		45.000	145.017				1			
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
etting = 18		17	F40	0.7		2/0	1.0		/D. 10 U-		
4824.020	53.4	V	54.0	-0.6	AVG	269	1.0	RB 1 MHz;			
4824.050	55.5	V	74.0	-18.5	PK	269	1.0	RB 1 MHz;			
7238.630	57.5	V	75.0	-17.5	PK	263	1.6	KR 100 KHZ	; VB: 100 kHz		
2053.330	45.7	V	54.0	-8.3	Peak	0	1.0				
	Frank 1 1			1		F U. U		16 . 9 . 9			
Note 1:						For all othe	r emissions	, the limit was	set 30dB below		
	level of the fu	undamental a	and measure	ed in 100kHz	<u>.</u>						

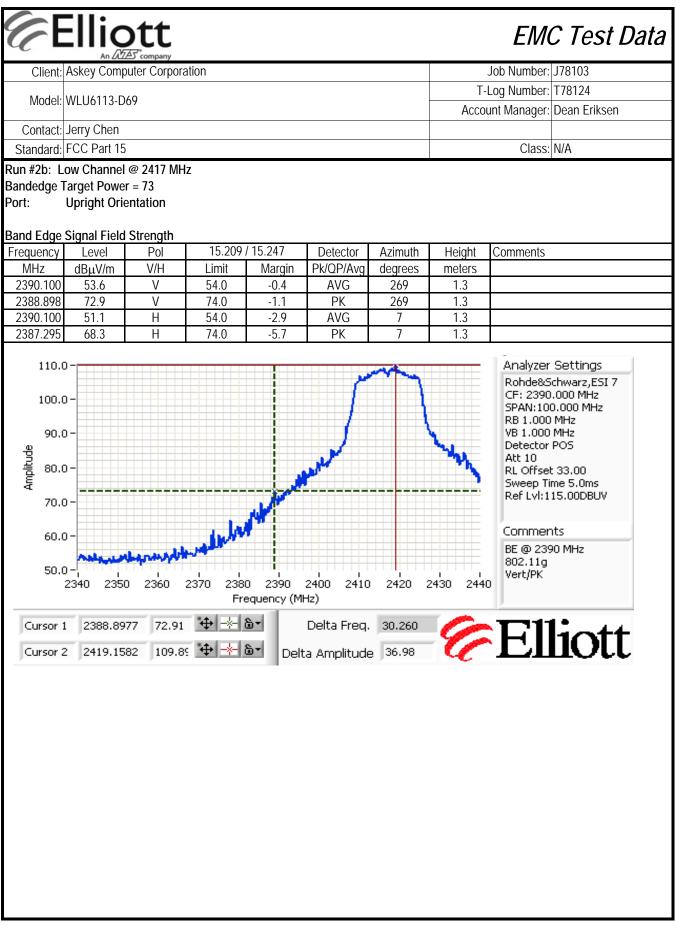


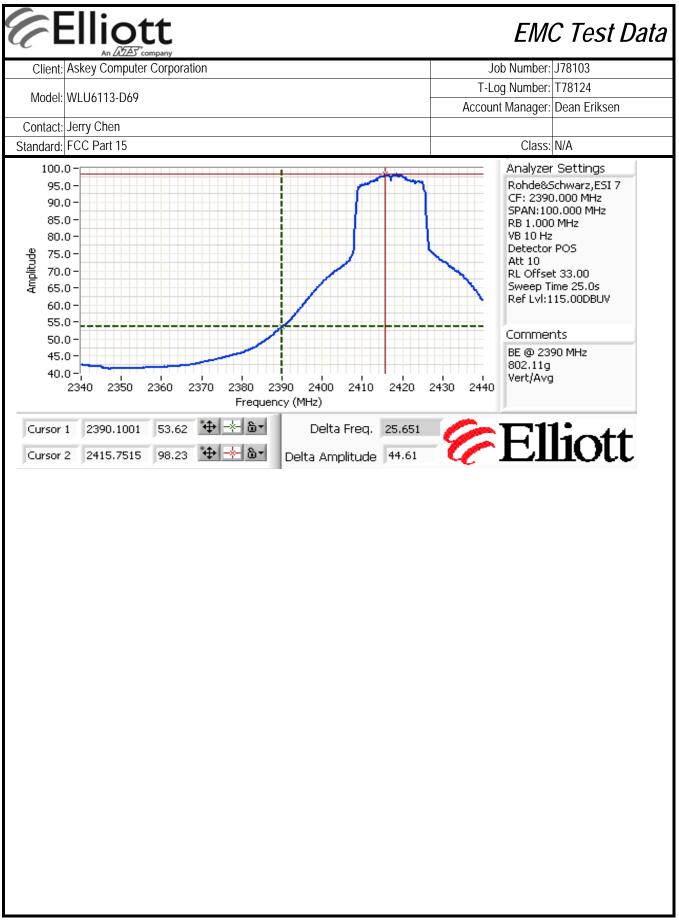



Chern.		uter Corpora	ation				Job Number: J78103			
Madal	WLU6113-D6	(0					T-Log Number: T78124			
wouer	WLUGII3-DC)9				-	Ассо	unt Manager:	Dean Eriksen	
	Jerry Chen									
Standard:	FCC Part 15							Class:	N/A	
	ious Emissio		15 200	115 017	D.L. J.	A _!	11-2-1-1			
Frequency MHz	Level dBµV/m	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height meters	Comments		
UT Side	υσμν/Π	V/11	LIIIII	iviaryin	FNQF/AVy	degrees	IIIEIEI S			
Power setti	na = 17									
7312.770	51.3	V	54.0	-2.7	AVG	264	1.5	RB 1 MHz;	VB: 10 Hz, Note 2	
7312.270	56.7	V	74.0	-17.3	PK	264	1.5		VB: 1 MHz, Note 2	
4874.080	47.3	V	54.0	-6.7	AVG	84	1.6	RB 1 MHz; '		
4873.910	51.3	V	74.0	-22.7	PK	84	1.6	RB 1 MHz;	VB: 1 MHz	
12173.330	45.7	Н	54.0	-8.3	Peak	16	1.0			
UT Flat	40.2	V	E4 O	107	Dool	10E	1 /			
4868.330 UT Uprigh	40.3	V	54.0	-13.7	Peak	105	1.6			
4874.060	49.5	V	54.0	-4.5	AVG	107	1.3	RB 1 MHz;	VB· 10 Hz	
4874.100	53.0	V	74.0	-21.0	PK	107	1.3	RB 1 MHz;		
7312.870	48.9	V	54.0	-5.1	AVG	260	1.6	RB 1 MHz;		
7312.020	54.9	V	74.0	-19.1	PK	260	1.6	RB 1 MHz;	VB: 1 MHz	
12173.330	44.4	V	54.0	-9.6	Peak	17	1.0			
	For emission	s in restricte	d hands the	limit of 15 2	09 was used	For all othe	r emissions	the limit was	set 30dB below the	
Note 1:	level of the fu									
Vote 2:					ngent restricte	d band limit	was used.			
Power Setti	ng = 17									
Sample #1										
	;									
EUT Side	0									
		-1 N-				11				
EUT Side		a subbase and bl					1 1 1 1 1 1 1			
		1				11	-1 14 1-48			
80.1 70.1	D-					1				
80.1 70.1										
80.1 70.1	0-						-1 -1 -1 -1 -1			
80.1 70.1	0-						-1 14 1-49			
0.1 20.1 1.09 (dBu/m) 1.05 (dBu/m) 1.05 (dBu/m)	0-									
80.1 70.1 (W/Mgp)	0-					had shared for specific to the		1	\sim	
80,1 70,1 (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	0- 0- 0- 1/1/1/1/					Laliteraria	L.	1	\sim	
80,1 70,1 (w/\ngp 90,1 40,1 40,1 30,1	0- 0- 0- 0- MMM					Juli/randolary/http:/	L.			
80,1 70,1 (m/\mp 40,1 9,02 9,04 40,1 40,1	0- 0- 0- 0- MMM				requency (MH	Juli Innere Professor				

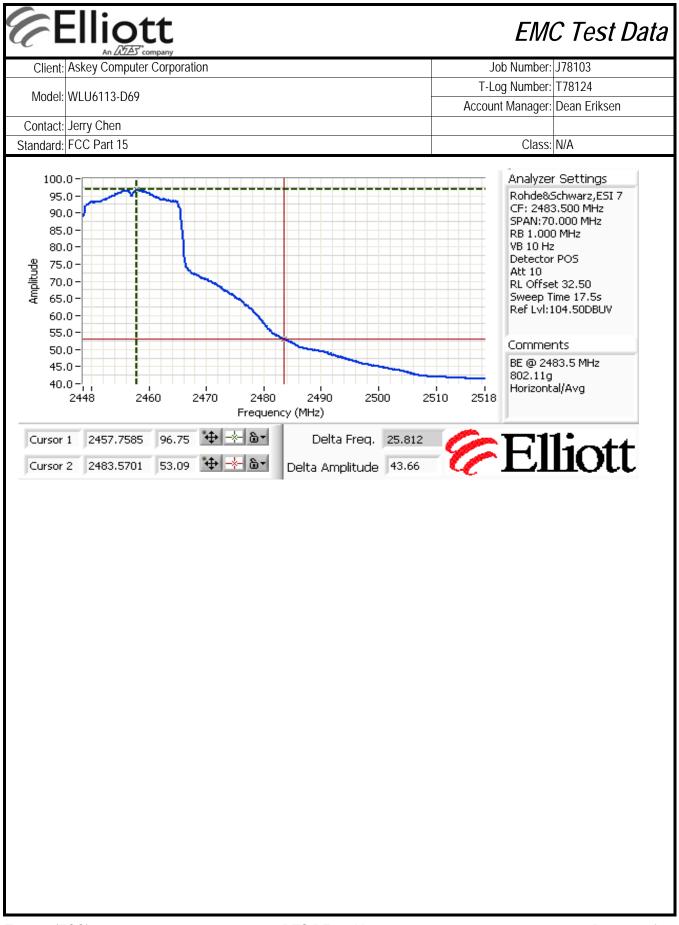

4		A company		EMC Test							
Client:	Askey Comp	uter Corpora	ation				Job Number: J78103				
Madal		(0	0				T-	Log Number:	T78124		
Model:	WLU6113-D	69					Acco	unt Manager:	Dean Eriksen		
	Jerry Chen										
Standard:	FCC Part 15							Class:	N/A		
Sandedge T Port: E Te	igh Channel Target Power Upright Orie Date of Test: st Engineer: est Location:	r = 17 , Spur entation 3/22/2010 Rafael Vare	ious Target las	Power = 18	Con	onfig. Used: fig Change: Jnit Voltage	None	7			
					11051	onit vonago	12007 00112	-			
	al Field Stre										
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	ļ			
Setting = 18											
Eut Upright											
2463.870	104.3	V	-	-	AVG	277	1.1	RB 1 MHz;			
2464.770	107.2	V	-	-	PK	277	1.1	RB 1 MHz;			
2463.170	103.4	V	-	-	PK	277	1.1		; VB: 100 kHz		
2463.900	104.2	<u>H</u>	-	-	AVG	359	1.0	RB 1 MHz;			
2464.800 2464.730	107.1 102.6	<u>Н</u> Н	-	-	PK PK	359	1.0 1.0	RB 1 MHz;	; VB: 100 kHz		
UT Side	102.0	П	-	-	PK	359	1.0	RB 100 KHZ	; VB: 100 KHZ		
2464.000	98.0	V	-	-	AVG	221	1.6	RB 1 MHz; V	/B· 10 Hz		
2464.830	100.8	V	-	-	PK	221	1.6	RB 1 MHz;			
2463.870	99.6	H	-	_	AVG	150	1.0	RB 1 MHz;			
2463.200	102.3	H	-	-	PK	150	1.2	RB 1 MHz;			
UT Flat	10210							110			
2463.970	102.8	Н	-	-	AVG	77	1.3	RB 1 MHz;	/B: 10 Hz		
2464.800	105.7	Н	-	-	PK	77	1.3	RB 1 MHz;			
2463.970	97.1	V	-	-	AVG	148	1.0	RB 1 MHz;			
2464.830	100.0	V	-	-	PK	148	1.0	RB 1 MHz;			
the Creation	οιιο Γ <u></u> '-										
requency	ous Emissio Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Commento			
Setting = 18		• / • 1									
4924.010	52.8	Н	54.0	-1.2	AVG	160	1.0	RB 1 MHz; V	/B: 10 Hz		
4924.050	55.2	Н	74.0	-18.8	PK	160	1.0	RB 1 MHz;			
7387.750	51.4	V	54.0	-2.6	AVG	274	1.7		/B: 10 Hz, note 2		
7387.040	56.5	V	74.0	-17.5	РК	274	1.7		/B: 1 MHz,note 2		
12306.670	44.3	V	54.0	-9.7	Peak	334	1.0				
Note 1:	For emission level of the fu					For all othe	r emissions	, the limit was	set 30dB below t		

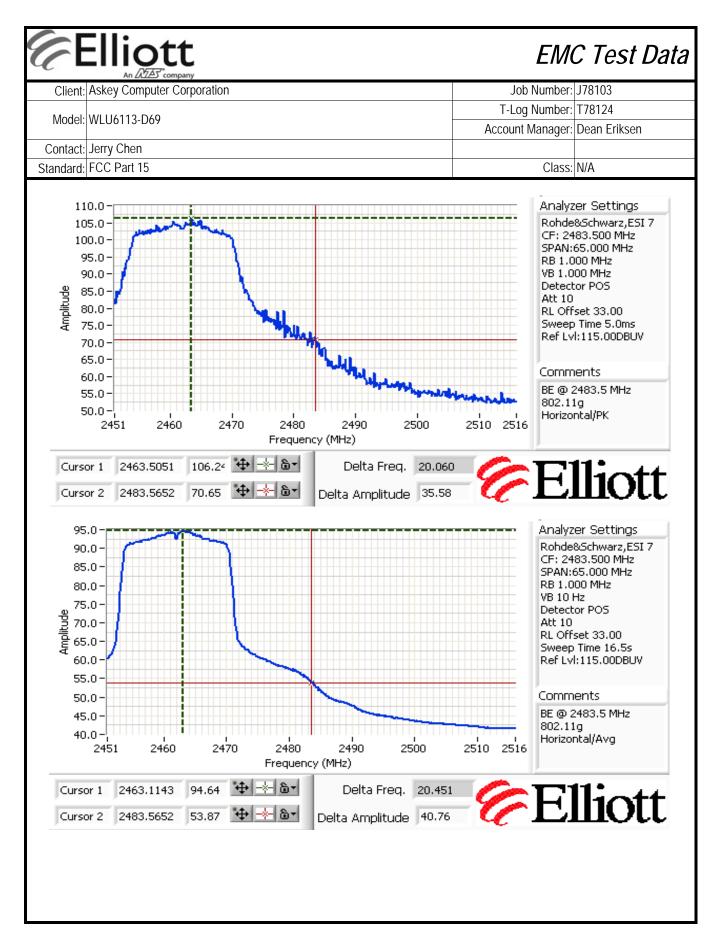






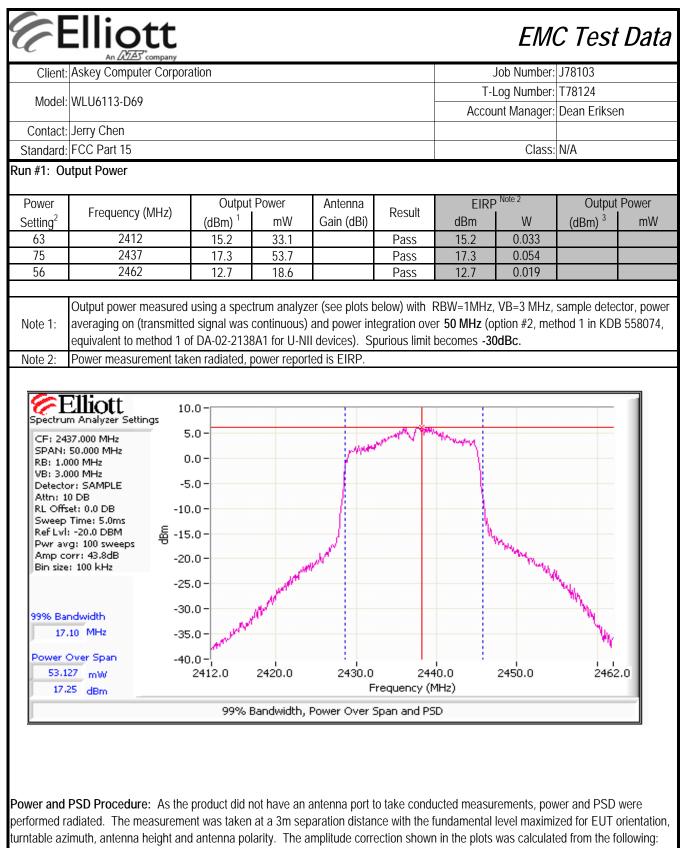
Æ								EM	C Test Da
Client:	Askey Comp		ation					Job Number:	J78103
Madal		(0					T-Log Number: T78124		
Model:	WLU6113-D	69					Acco	unt Manager:	Dean Eriksen
Contact:	Jerry Chen								
Standard:	FCC Part 15							Class:	N/A
un #2a: L andedge ⁻ ort: [idiated Spuri ow Channel Target Power Upright Orie Date of Test: st Engineer:	@ 2412 MH r = 63, Spur entation 3/23/2010	z ious Target		C	ode: 802.11 onfig. Used: ifig Change:	1		
Te	al Field Strei	Chamber # 3				Unit Voltage		2	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	00.11110110	
413.570	100.2	V	-	-	AVG	267	1.0	RB 1 MHz;	/B: 10 Hz
415.070	108.1	V	-	-	PK	267	1.0	RB 1 MHz;	
415.930	99.0	V	-	-	PK	267	1.0		; VB: 100 kHz
413.200	99.8	H	-	-	AVG	174	1.4	RB 1 MHz;	
413.630	108.0	Н	-	-	PK	174	1.4	RB 1 MHz;	
409.700	100.6	Н	-	-	PK	174	1.4		; VB: 100 kHz
	ious Emissio		15.000	115 017		A 1 11			
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		/D. 10 U-
824.030	41.7	H H	54.0	-12.3	AVG	162	1.0	RB 1 MHz;	
826.290 238.730	52.0 52.1	п V	74.0 70.6	-22.0 -17.9	PK PK	162 262	1.0 1.0	RB 1 MHz;	: VB: 100 kHz
236.730 209.170	42.3	V	70.0	-17.9	Peak	145	1.0		, VD. 100 KHZ
209.170	42.3	V	70.0	-21.1	PEdK	145	1.0		
80. 70. (m/\nge 50. 50. 40.	o - o -								
30.	°- .///	Mul	Murah	N	hunder	1 1 1			معموميس 10000
				F	requency (M	Hz)			

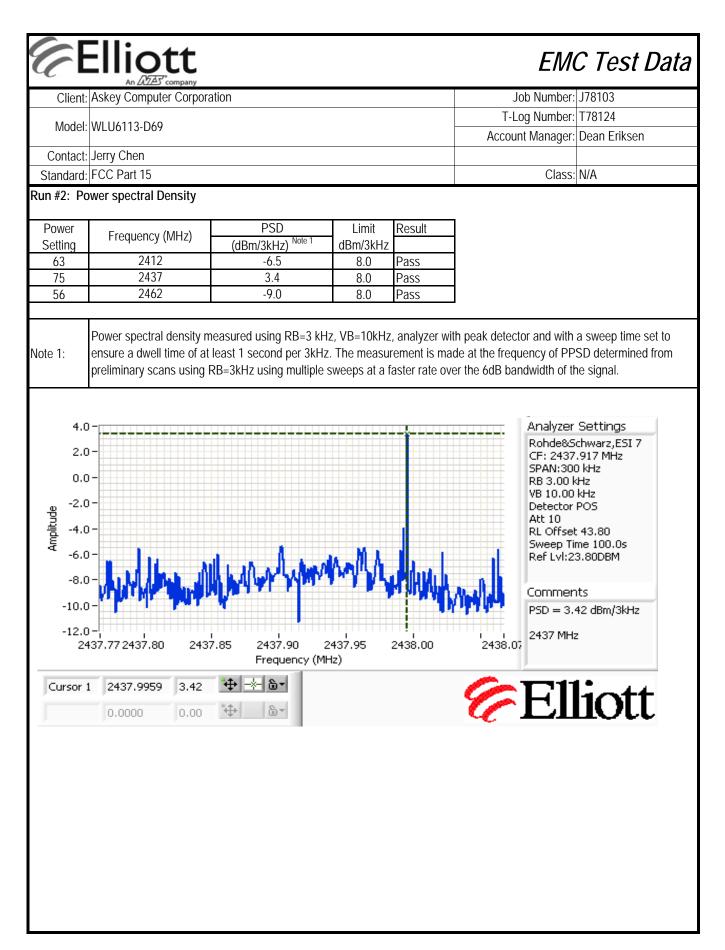


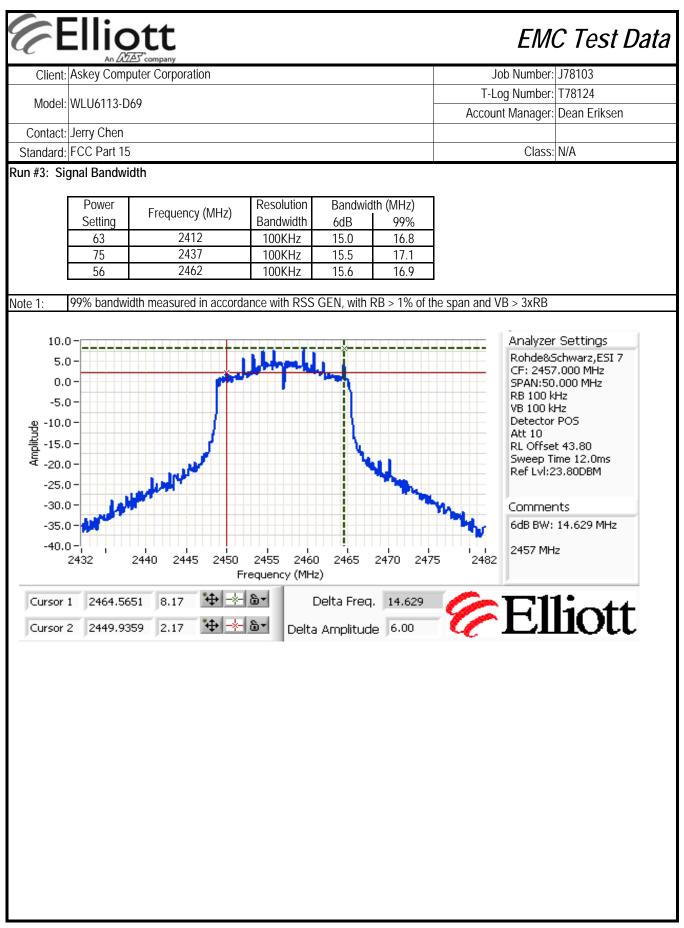


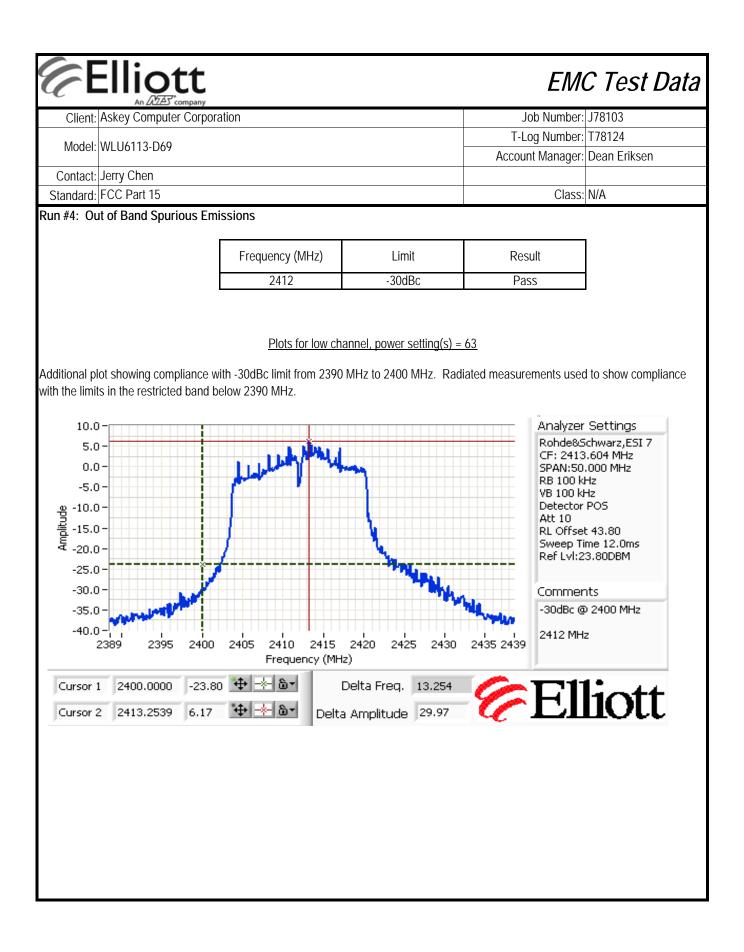
Client:	Askey Comp	outer Corpora	ntion					Job Number: J78103	
Model:	WLU6113-D	69					T-Log Number: T78124 Account Manager: Dean Eriksen		
Contact	Jerry Chen						Account Manager. Dean Enksen		
	FCC Part 15							Class: N/A	
	enter Chann		117						
Spurious Ta Port:	arget Power Upright Orie al Field Stre	= 75 entation							
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2438.270	102.5	V	-	-	AVG	266	1.2	RB 1 MHz; VB: 10 Hz	
2437.670	111.0	V	-	-	PK	266	1.2	RB 1 MHz; VB: 1 MHz	
2439.770	104.3	V H	-	-	PK	266	1.2	RB 100 kHz; VB: 100 kHz	
2438.930 2439.130	102.8 111.2	H H	-	-	AVG PK	186 186	1.3 1.3	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz	
2439.130 2435.930	103.8	H H	-	-	PK PK	186	1.3	RB 100 kHz; VB: 100 kHz	
	ous Emissio								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
7308.470	53.6	V	54.0	-0.4	AVG	262	1.6	RB 1 MHz; VB: 10 Hz, note 2	
7308.300	66.0	V	74.0	-8.0	PK	262	1.6	RB 1 MHz; VB: 1 MHz, note 2	
4874.080	45.2	V	54.0	-8.8	AVG	40	1.1	RB 1 MHz; VB: 10 Hz	
4874.980	56.5	V	74.0	-17.5	PK	40	1.1	RB 1 MHz; VB: 1 MHz	
3245.830	44.1	V	70.0	-25.9	Peak	88	1.3		
12173.330	41.9	V	54.0	-12.1	Peak	9	1.3		
80.(70.((m) 60.(appiliance 950.(40.(40.(30.(hala							
) -¦ 1000			' '	; requency (Mi	H2)		0000 18000	

	Askey Compu		ation					Job Number:	
Model:	WLU6113-D69	9						Log Number:	T78124 Dean Eriksen
Contact:	Jerry Chen						710000	int Manager.	
Standard:	FCC Part 15							Class:	N/A
Bandedge T Port:	hannel 10 @ 2 Target Power Upright Orien Signal Field S	= 73 Itation							
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 2483.570	dBμV/m 53.1	<u>V/H</u> H	Limit 54.0	Margin -0.9	Pk/QP/Avg AVG	degrees 180	meters 1.5		
2483.570	70.1	H	74.0	-0.9	PK	180	1.5		
2483.570	51.1	V	54.0	-2.9	AVG	278	1.0		
2483.991	68.3	V	74.0	-5.7	PK	278	1.0		
	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	2460		2480 requency (M	Hz)			SPAN:70 RB 1.000 VB 1.000 Detector Att 10 RL Offse Sweep T Ref Lvl:1 Comme BE @ 24 802.11g Horizont	0 MHz r POS ime 5.0ms 104.50DBUV nts 83.5 MHz al/PK
Cursor 1	1 2458.039		* 💠 🔸		Delta Freq.	26.513	9	T 1	liott
Cursor 2	2 2484.552	0 70.07	+ +-	& ▼ Deh	ta Amplitude	37.16		Ľ	IUUU

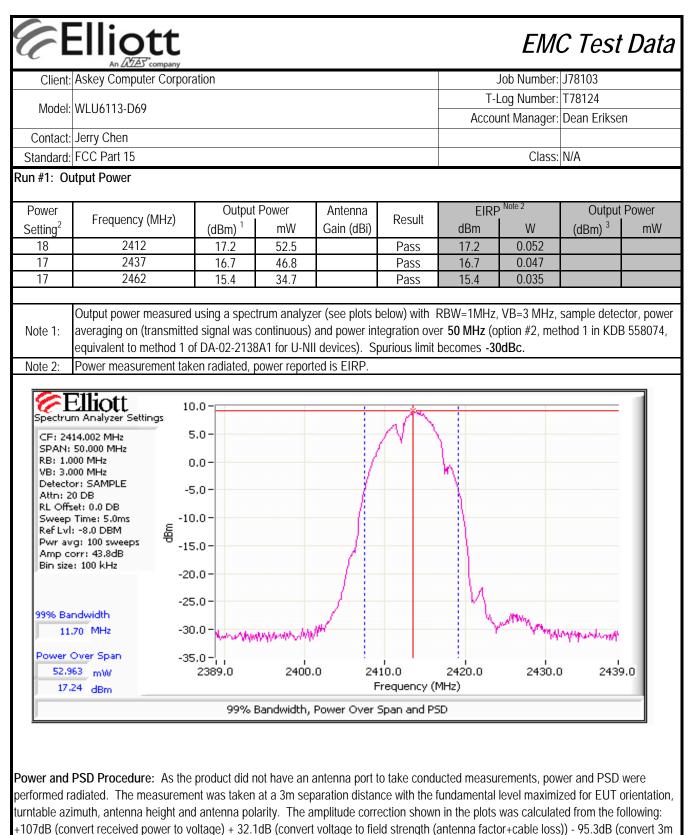

Client:	Askey Comp	outer Corpora	ation					Job Number:	
Model	WLU6113-D	69						Log Number:	
		07					Account Manager: Dean Eriksen		
	Jerry Chen								
	FCC Part 15							Class:	N/A
	igh Channel Farget Powe Upright Orie	r = 56, Spur							
Other Spur	ious Emissio	ons							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
7385.330	51.3	V	54.0	-2.7	AVG	248	1.8		VB: 10 Hz, note 2
7385.900	63.2	V	74.0	-10.8	PK	248	1.8		VB: 1 MHz, note 2
4923.930 4930.330	47.2 59.1	V V	54.0 74.0	-6.8 -14.9	AVG PK	249 249	1.0 1.0	RB 1 MHz; RB 1 MHz; '	
4930.330 <i>12306.670</i>	42.3	V	74.0 54.0	-14.9	PK Peak	14	1.0		VD. I WINZ
(JU)/ngp) =pn1jlduuv 30. 20.	- በግቢባሊያ	landad	hallum	L H	requency (Mł		· · · · 11		13000
Band Edge Frequency MHz	Signal Field Level dBµV/m	Strength Pol V/H	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
		V/II		maryin		ucyiecs	11101013		
Setting = 50	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
	53.9	Н	54.0	-0.1	AVG	0	1.0		
Setting = 50 MHz 2483.565		Н	74.0	-3.3	PK	0	1.0		
Setting = 50 MHz 2483.565 2483.565	70.7					102	1.0	Î.	
Setting = 50 MHz 2483.565	70.7 49.7	V V	54.0 74.0	-4.3 -7.7	AVG PK	102	1.0		


Client	An UZAS company	ration		Job Number:	178103			
			T-Log Number: T78124					
Model	: WLU6113-D69			count Manager:				
Contact	: Jerry Chen			<u>-</u>				
	: FCC Part 15			Class:	N/A			
Ti		elas Conf	qualification testing o nfig. Used: 1 ig Change: None IT Voltage: 120V/60ł		espect to the			
General ⁻ All measure		a radiated method, as the EUT did not p	rovide an antenna po	rt for a direct cc	nnection.			
General ⁻ All measure	ements were made using	a radiated method, as the EUT did not p ted to allow for the external attenuators u	rovide an antenna po	rt for a direct cc	nnection.			
General ⁻ All measure All measure	ements were made using		rovide an antenna po sed.	rt for a direct co	onnection.			
General ⁻ All measure	ements were made using	ted to allow for the external attenuators u	rovide an antenna po sed. C	rt for a direct cc	onnection.			
General Control Contro	ements were made using ements have been correct Conditions: y of Results	ted to allow for the external attenuators u Temperature: 19.3 ° Rel. Humidity: 35 9	rovide an antenna po sed. C					
General Control Il measure Il mea	ements were made using ements have been correct Conditions: y of Results Pwr setting Avg Pwr	ted to allow for the external attenuators u Temperature: 19.3 ° Rel. Humidity: 35 9 Test Performed	rovide an antenna po ised. C 6	Pass / Fail	Result / Margin			
General I measure I measure mbient ummar Run # 1	ements were made using ements have been correct Conditions: y of Results Pwr setting Avg Pwr 73	ted to allow for the external attenuators u Temperature: 19.3 ° Rel. Humidity: 35 9 Test Performed Output Power	rovide an antenna po sed. C 6 <u>Limit</u> 15.247(b)	Pass / Fail Pass	Result / Margin 17.3 dBm (0.053)			
General II measure II measure Ambient Gummary Run # 1 2	ements were made using ements have been correct Conditions: y of Results Pwr setting Avg Pwr 73 75	ted to allow for the external attenuators u Temperature: 19.3 ° Rel. Humidity: 35 9 Test Performed Output Power Power spectral Density (PSD)	rovide an antenna po sed. C 6 <u>Limit 15.247(b)</u> 15.247(d)	Pass / Fail Pass Pass	Result / Margin 17.3 dBm (0.053) 3.4 dBm/3kHz			
General Control of Con	ements were made using ements have been correct Conditions: y of Results Pwr setting Avg Pwr 73	ted to allow for the external attenuators u Temperature: 19.3 ° Rel. Humidity: 35 9 Test Performed Output Power	rovide an antenna po sed. C 6 <u>Limit</u> 15.247(b)	Pass / Fail Pass	Result / Margin 17.3 dBm (0.053)			

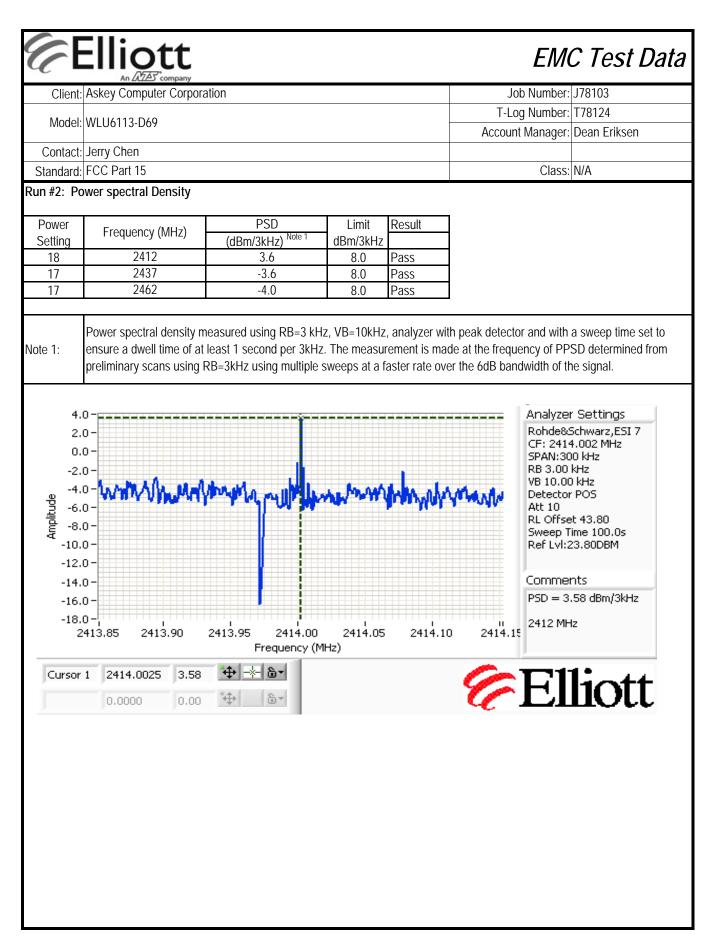

Deviations From The Standard

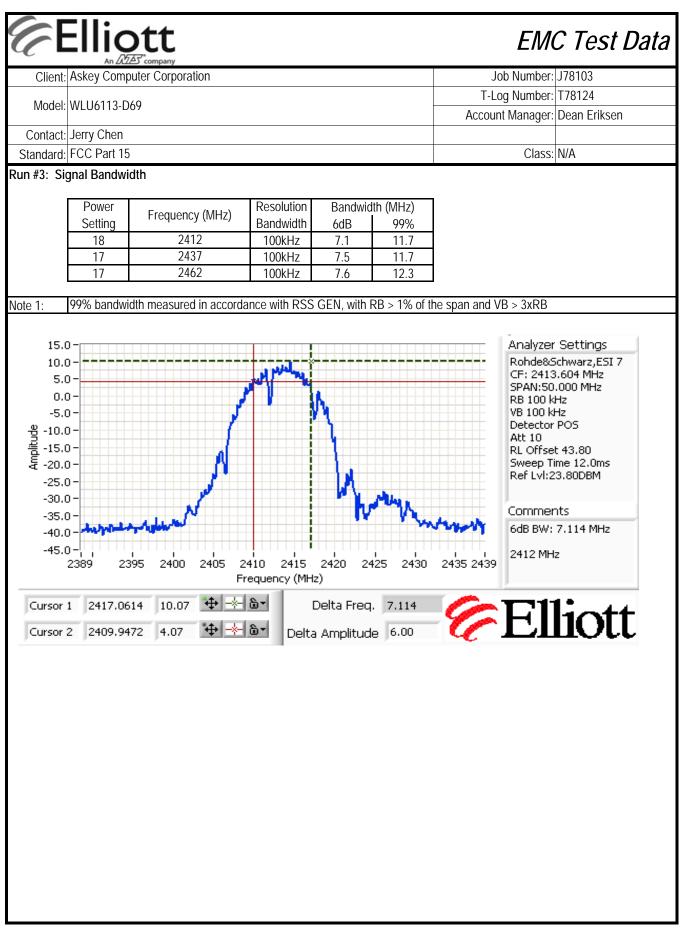

No deviations were made from the requirements of the standard.

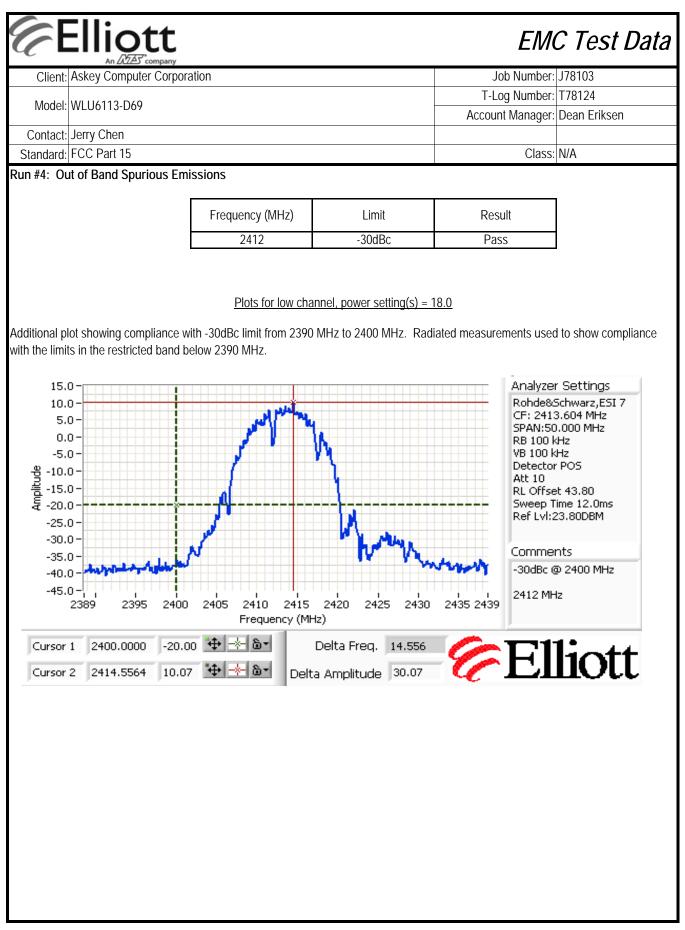
turntable azimuth, antenna height and antenna polarity. The amplitude correction shown in the plots was calculated from the following: +107dB (convert received power to voltage) + 32.1dB (convert voltage to field strength (antenna factor+cable loss)) - 95.3dB (convert 3m field strength to EIRP) = 43.8dB

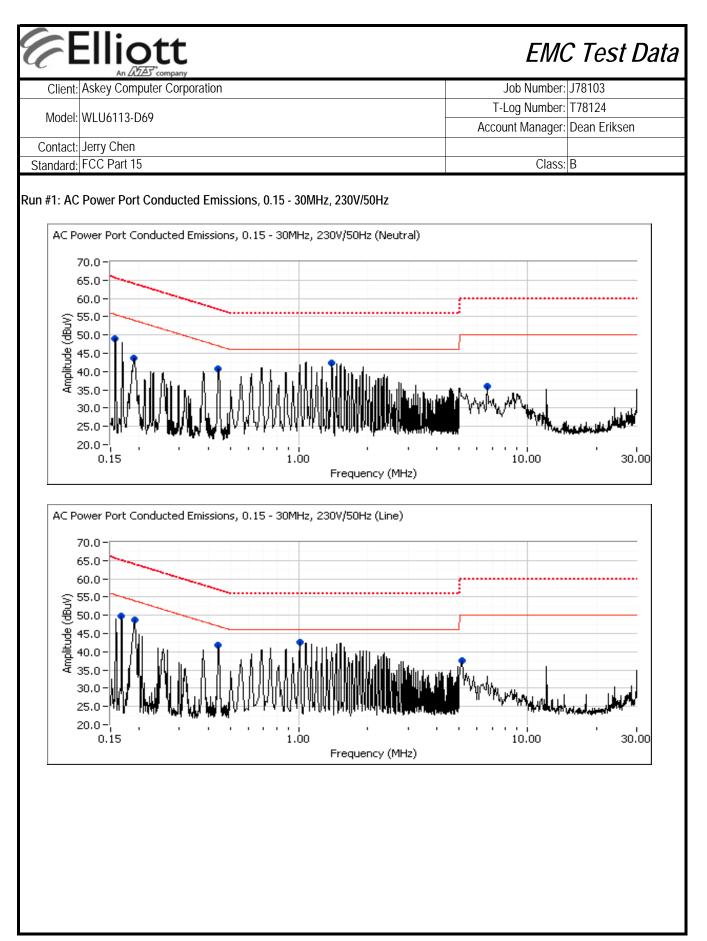


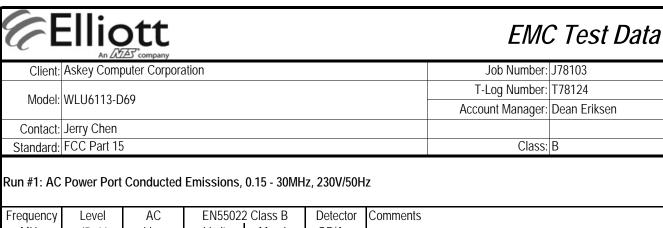
6	Elliott			EMO	C Test Dat		
Client	An AZAS company t: Askey Computer Corpo	ration		Job Number:	J78103		
Modo	I: WLU6113-D69			T-Log Number:	T78124		
Mode	I. WLUOTTS-D09		Account Manager: Dean Eriksen				
	t: Jerry Chen						
Standard	I: FCC Part 15			Class:	N/A		
Test Spe	Pov ecific Details	I FCC 15.247 (DTS) A ver, PSD, Bandwidth an ve of this test session is to perform fi	d Spurious Em	issions			
		n listed above.			espect to the		
	Date of Test: 3/24/2010 est Engineer: Rafael Var fest Location: Fremont C		Config. Used: 1 Config Change: None EUT Voltage: 120V/60)Hz			
	Test Configuration		-turn ide on outerne u	ant face a d'un at an			
All measure	ements were made using	a radiated method, as the EUT did n	ot provide an antenna p	ort for a direct co	nnection.		
All measure	ements have been correc	ted to allow for the external attenuate	ors used.				
Ambient	Conditions:		9.3 °C 35 %				
Summar	y of Results						
Run #	Pwr setting Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin		
1	18	Output Power	15.247(b)	Pass	17.2 dBm (0.052V		
2	18	Power spectral Density (PSD)	15.247(d)	Pass	3.6 dBm/3kHz		
3	18	Minimum 6dB Bandwidth	15.247(a)	Pass	7.1 MHz		
3	17 18	99% Bandwidth Spurious emissions	RSS GEN 15.247(b)	- Pass	12.3 MHz < -30dBc		
4							


No modifications were made to the EUT during testing

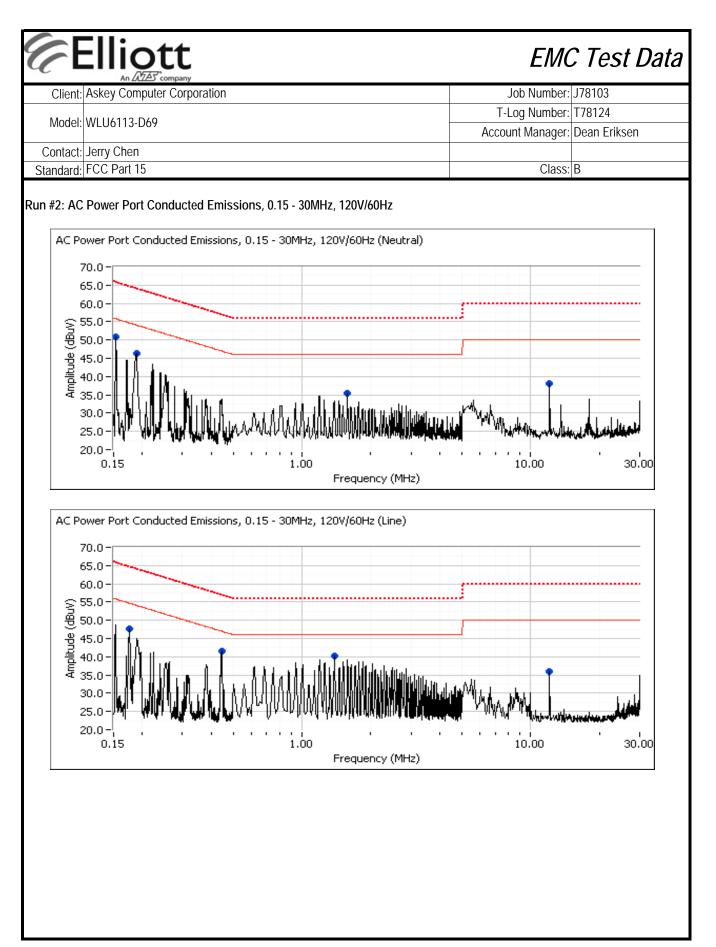

Deviations From The Standard


No deviations were made from the requirements of the standard.


field strength to EIRP) = 43.8dB



Ellio	と company			EMC Test
Client: Askey Compu	uter Corporation			Job Number: J78103
Model: WLU6113-D6	9			Log Number: T78124
Contact: Jerry Chen Standard: FCC Part 15				Class: B
Standard. I COT dri 13	Conducted Em	vissions - Pow		
Test Specific Details				
Objective: 1	Che objective of this test session is to specification listed above.	o perform final qualification	n testing of t	the EUT with respect to the
Date of Test: 2 Test Engineer: M Test Location: S	Mehran Birgani	Config. Used: Config Change: EUT Voltage:	None	dividual run
General Test Config The EUT was located or	uration n a wooden table, 40 cm from a verti	ical coupling plane and 80)cm from the	e LISN.
Ambient Conditions	: Temperature: Rel. Humidity:			
Summary of Results	ò			
	Test Performed	Limit	Result	Margin
Run #		EN 55022 Class B	Pass	39.0dBµV @ 1.015MHz (-7.0dB)
Run # 1	CE, AC Power, 230V/50Hz			
	CE, AC Power, 230V/50Hz CE, AC Power,120V/60Hz	EN 55022 Class B	Pass	36.7dBµV @ 1.393MHz (-9.3dB)
1 2 Modifications Made	CE, AC Power,120V/60Hz During Testing	EN 55022 Class B	Pass	
1 2 Modifications Made	CE, AC Power,120V/60Hz	EN 55022 Class B	Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	
1 2 Modifications Made No modifications were n Deviations From The	CE, AC Power,120V/60Hz During Testing nade to the EUT during testing e Standard		Pass	



MHz Line Limit Margin QP/Ave dBμV AVG 0.158 15.0 Neutral 55.6 -40.6 0.164 14.9 Line 55.3 -40.4 AVG 0.190 39.3 Neutral 54.0 -14.7 AVG 0.192 39.5 Line 54.0 -14.5 AVG 0.443 38.0 Line 47.0 -9.0 AVG 0.445 37.4 Neutral 47.0 -9.6 AVG 1.015 39.0 Line 46.0 -7.0 AVG AVG 1.398 38.2 Neutral 46.0 -7.8 5.330 29.2 Line 50.0 -20.8 AVG -25.9 AVG 6.410 24.1 Neutral 50.0 0.158 43.3 Neutral 65.6 -22.3 QP 0.164 QP 42.7 Line 65.3 -22.6 0.190 42.2 Neutral 64.0 -21.8 QP 0.192 43.7 Line 64.0 -20.3 QP 0.443 40.1 Line 57.0 -16.9 QP 0.445 39.7 Neutral 57.0 -17.3 QP 1.015 40.3 Line 56.0 -15.7 QP 1.398 40.0 Neutral 56.0 -16.0 QP 5.330 32.0 Line 60.0 -28.0 QP 6.410 28.0 -32.0 Neutral 60.0 QP

The EUT was transmitting and tuned to center channel at 2437 MHz with highest power setting. Note 1:

Class: B

EMC Test Data

	An (AZA) company		
Client:	Askey Computer Corporation	Job Number:	J78103
Model	WLU6113-D69	T-Log Number:	T78124
MOUEI.	WE00113-D09	Account Manager:	Dean Eriksen
Contact:	Jerry Chen		
Standard:	FCC Part 15	Class:	В

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Frequency	Level	AC	EN55022	2 Class B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.152	16.4	Neutral	55.9	-39.5	AVG	
0.174	16.6	Line	54.8	-38.2	AVG	
0.190	35.9	Neutral	54.0	-18.1	AVG	
0.443	35.1	Line	47.0	-11.9	AVG	
1.393	36.7	Line	46.0	-9.3	AVG	
1.580	28.6	Neutral	46.0	-17.4	AVG	
12.002	37.7	Neutral	50.0	-12.3	AVG	
12.002	35.1	Line	50.0	-14.9	AVG	
0.152	44.2	Neutral	65.9	-21.7	QP	
0.174	40.0	Line	64.8	-24.8	QP	
0.190	44.0	Neutral	64.0	-20.0	QP	
0.443	38.9	Line	57.0	-18.1	QP	
1.393	37.9	Line	56.0	-18.1	QP	
1.580	31.3	Neutral	56.0	-24.7	QP	
12.002	37.2	Neutral	60.0	-22.8	QP	
12.002	34.3	Line	60.0	-25.7	QP	

Note 1: The EUT was transmitting and tuned to center channel at 2437 MHz with highest power setting.