RADIO TEST REPORT

According to

47 CFR FCC Part 15 Subpart C § 15.247

Equipment : Cable Modem

Model Name : TC8305C

PKE1331BP-D49 (US-Dory-RoHS)

Frequency Range : 2400 MHz – 2483.5 MHz

Applicant : Askey Computer Corporation

10F, NO. 119, CHIENKANG RD., CHUNG-HO,

TAIPEI, TAIWAN, 23585 R.O.C.

FCC ID : H8N-PKE1331BP

The product sample received on May 30, 2012 and completely tested on Jul. 30, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manage

Iac-MRA

SPORTON INTERNATIONAL INC. Page No. : 1 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	9
1.3	Testing Location Information	9
1.4	Measurement Uncertainty	10
2	TEST CONFIGURATION OF EUT	11
2.1	The Worst Case Modulation Configuration	11
2.2	Test Channel Frequencies Configuration	12
2.3	The Worst Case Power Setting Parameter	12
2.4	The Worst Case Measurement Configuration	14
3	TRANSMITTER TEST RESULT	17
3.1	AC Power-line Conducted Emissions	17
3.2	6dB Bandwidth	20
3.3	RF Output Power	25
3.4	Power Spectral Density	34
3.5	Transmitter Radiated Bandedge Emissions	43
4	TEST EQUIPMENT AND CALIBRATION DATA	115
5	CERTIFICATION OF TAF ACCREDITATION	117
APPI	PENDIX A. TEST PHOTOS	A5
A DDI	ENDIY B. BUOTOCBABUS OF EUT	B20

TEL: 886-3-327-3456 FAX: 886-3-327-0973

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	0.15485MHz: 23.89dBuV (31.85dB) - AV 50.60dBuV (15.14dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 11B-20M: 8.24 11G-20M: 16.72 11N2.4G-20M: 17.84	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Conducted (Average) Output Power)	Power [dBm] 11B-20M: 24.36 11G-20M: 24.51 11N2.4G-20M: 24.60	Power [dBm] 11B-20M: 28.5 11G-20M: 29.1 11N2.4G-20M: 30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz] 11B-20M: -6.54 11G-20M: -10.13 11N2.4G-20M: -10.41	PSD [dBm/3kHz] 8	Complied			
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.50 MHz: 30.22dB Restricted Bands [dBuV/m at 3m]: 2484.56MHz: 69.86 (Margin 4.14dB) - PK 53.43 (Margin 0.57dB) - AV	Non-Restricted Bands: > 30 dB Restricted Bands: FCC 15.209	Complied			
3.5.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 3732.77MHz: 53.45 (Margin 20.55dB) - PK 50.71 (Margin 3.29dB) - AV	Non-Restricted Bands: > 30 dB Restricted Bands: FCC 15.209	Complied			

SPORTON INTERNATIONAL INC. Page No. : 3 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Revision History

Report No.: FR253104

Report No.	Version	Description	Issued Date
FR253104	Rev. 01	Initial issue of report	Aug. 01, 2012

SPORTON INTERNATIONAL INC. Page No. : 4 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11 Protocol	Ch. Frequency (MHz)	Channel Number	RF Output Power (dBm)	
2400-2483.5	b	2412-2462	1-11 [11]	24.36	
2400-2483.5	g	2412-2462	1-11 [11]	24.51	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	24.60	

Report No.: FR253104

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). The EUT supports HT20 only.

Note 3: RF output power specifies that Maximum Conducted (Average) Output Power.

	Transmitter Chains & Receiver Chains Information						
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	99% Emission Bandwidth (MHz)	Co-location		
b	3	3	Correlated	10.40	N/A		
g	3	3	Correlated	17.52	N/A		
n (HT20)	3	3	Uncorrelated	18.32	N/A		

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

SPORTON INTERNATIONAL INC. Page No. : 5 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR253104

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the market without antennas					
\boxtimes	Integral antenna (antenna permanently attached)					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					

Antenna Information for Single Transmit Chain (1 N_{TX})						
3						
1						
	asymmetrical distribution					
Frequency (MHz)	G _{ANT (dBi)}					
2412	2.95					
2437	2.22					
2462	1.36					
	3 1					

Antenna Information for Two Transmit Chains (2 N_{TX}) Worst Antenna Port (Total 3 Port) 2,3 2 RF Output Power Level (PL) **Transmit Chains Power Distribution** Ant. Port DG (dBi) DG (dBi) Ant. **Frequency** [Ant No. X Ant. Cat. Ant. Type $G_{ANT\ (dBi)}$ [correlated] [uncorrelated] No. (MHz) connect to $N_{TX} = 2$ $N_{TX} = 2$ Ant. Port Y] 2.32 2412 1.24 2 2 Integral PIFA 2437 2412MHz: 5.7 2412MHz: 2.6 2462 1.86 2437MHz: 1.8 2437MHz: 4.8 2412 2.95 2462MHz: 4.6 2462MHz: 1.6 2437 3 3 Integral PIFA 2.22 2462 1.36

Note 1: The EUT supports two transmit chains and transmit chains port 2 and port 3 are the worst transmit chains.

SPORTON INTERNATIONAL INC. Page No. : 6 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Antenna Information for Three Transmit Chains (3 N _{TX})						
Worst Antenna Port (Total 3 Port)			1,2,3				
RF O	RF Output Power Level (PL)			3			
Trans	smit Chains	s Power Distr	ibution		ical distribut	ion 🗌 asymmetri	cal distribution
Ant. No.	Ant. Port [Ant No. X connect to Ant. Port Y]	Ant. Cat.	Ant. Type	Frequency (MHz)	G _{ANT (dBi)}	DG (dBi) [correlated] N _{TX} = 3	DG (dBi) [uncorrelated] N _{TX} = 3
				2412	2.98		
1	1	Integral	PIFA	2437	2.90		
				2462	2.59		
				2412	2.32	2412MHz: 7.5	2412MHz: 2.8
2	2	Integral	PIFA	2437	1.24	2437MHz: 6.9	2437MHz: 2.2
				2462	1.86	2462MHz: 6.7 24	2462MHz: 2.0
				2412	2.95		
3	3	Integral	PIFA	2437	2.22		
				2462	1.36		

	System Information
\boxtimes	Different target RF output power levels are used depending on the multiple transmit chains. The test should be performed all power levels.
	The equipment is normally installed and point-to-point or point-to-multipoint systems
	 For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = G_{ANT} + 10 log(N) dBi All transmit signals are completely uncorrelated, Directional Gain (DG)= G_{ANT} For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = 10 log[(10^{G1/20} + 10^{G2/20} + + 10^{GN/20})²/N] dBi All transmit signals are completely uncorrelated, Directional Gain (DG) = 10 log[(10^{G1/10} + 10^{G2/10} + + 10^{GN/10})/N] dBi

SPORTON INTERNATIONAL INC. Page No. : 7 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR253104

1.1.3 Type of EUT

	Identify EUT				
HW	Version	PEM3			
SW	Version	0.0.15			
Pres	sentation of Equipment	☐ Production ; ☐ Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst duty cycle					
\boxtimes	☑ Operated test mode for worst duty cycle					
	Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)	Voltage Duty Factor [dB] – (20 log 1/x)			
\boxtimes	100% - IEEE 802.11b	0	0			
\boxtimes	99.03% - IEEE 802.11g	0.04	0.08			
	98.97% - IEEE 802.11n (HT20)	0.04	0.09			

1.1.5 EUT Operational Condition

Supply Voltage		☐ DC	
Type of DC Source	☐ Internal DC supply		☐ Battery

1.1.6 Manufacturer

1.	ASKEY COMPUTER CORPORATION
	10F, NO. 119, CHIENKANG RD., CHUNG-HO, TAIPEI, TAIWAN, 23585 R.O.C.
2.	ASKEY TECHNOLOGY (JIANG SU)
	No.1388, Jiao Tong Road, Wujiang Economic-Technological Development Area,
	Jiangsu Province, P.R. China

SPORTON INTERNATIONAL INC. Page No. : 8 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR253104

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 D01 Guidance for Performing Compliance Measurements on DTS
- FCC KDB 662911 Emissions Testing of Transmitters with Multiple Outputs
- FCC KDB 412172 Guidelines for Determining the ERP and EIRP

1.3 Testing Location Information

					Testing Location		
	HWA YA	ADD	:	No. 52, Hwa Ya	a 1st Rd., Kwei-Shan I	Hsiang, Tao Yuan Hsie	n, Taiwan, R.O.C.
		TEL	:	886-3-327-345	6 FAX : 886	6-3-318-0055	
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724	, Bo-ai St., Jhubei Cit	y, HsinChu County 30	2, Taiwan, R.O.C.
		TEL	:	886-3-656-906	5 FAX : 886	6-3-656-9085	
To	est Conditio	n	Т	est Site No.	Test Engineer	Test Environment	Test Date
F	RF Conducte	d		TH01-CB	Benson Peng	25°C / 61%	04-Jul-12 ~ 06-Jul-12
Α	C Conduction	n		CO01-CB	Ryo Fan	25°C / 65%	30-May-12
Rad	diated Emiss	sion	()3CH01-CB	Benson Peng	25°C / 63%	29-Jun-12 ~ 10-Jul-12

SPORTON INTERNATIONAL INC. Page No. : 9 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR253104

Me	asurement Uncertainty	1	
Test Item		Uncertainty	Limit
AC power-line conducted emissions		±2.26 dB	N/A
Emission bandwidth, 6dB bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature	•	±0.8 °C	N/A
Humidity		±3 %	N/A
DC and low frequency voltages		±3 %	N/A
Time		±1.42 %	N/A
Duty Cycle		±1.42 %	N/A

SPORTON INTERNATIONAL INC. Page No. : 10 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR253104

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Wo	orst Modulation	Used for Con	formance Test	ing	
Power	Level	1		_	_	
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)
b	1	1-11 Mbps	1 Mbps	11B-20M	23.00	-8.66
g	1	6-54 Mbps	6 Mbps	11G-20M	22.82	-12.72
n (HT20)	1	MCS 0-7	MCS 0	11N2.4G-20M	22.86	-12.94
Power	Level	2				_
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)
b	2	1-11 Mbps	1 Mbps	11B-20M	23.52	-8.41
g	2	6-54 Mbps	6 Mbps	11G-20M	23.56	-11.91
n (HT20)	2	MCS 0-15	MCS 0	11N2.4G-20M	23.81	-12.13
Power	Level	3				
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)
b	3	1-11 Mbps	1 Mbps	11B-20M	24.36	-6.54
g	3	6-54 Mbps	6 Mbps	11G-20M	24.51	-10.13
n (HT20)	3	MCS 0-23	MCS 0	11N2.4G-20M	24.60	-10.41

Note 1: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20. Worst modulation mode of Guard Interval (GI) is 400ns.

20M: Channel Bandwidth 20MHz

SPORTON INTERNATIONAL INC. Page No. : 11 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Note 2: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band)

Note 3: RF output power specifies that Maximum Conducted (Average) Output Power.

2.2 Test Channel Frequencies Configuration

Tes	st Channel Frequencies Configura	ition
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)
b	11B-20M	2412-(F1), 2437-(F2), 2462-(F3)
g	11G-20M	2412-(F1), 2437-(F2), 2462-(F3)
n (HT20)	11N2.4G-20M	2412-(F1), 2437-(F2), 2462-(F3)

2.3 The Worst Case Power Setting Parameter

	The	Worst Case Pow	ver Setting Param	eter	
Power	Level	1			
Test Softwa	are Version	Atheros Radio Te	est 2 (ART2-GUI)		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	Maximum Conducted (Average) Output Power (dBm)
11B-20M	1	2412	23	1 Mbps	22.93
11B-20M	1	2437	23	1 Mbps	23.00
11B-20M	1	2462	22	1 Mbps	22.24
11G-20M	1	2412	16	6 Mbps	16.68
11G-20M	1	2437	23	6 Mbps	22.82
11G-20M	1	2462	16	6 Mbps	16.84
11N2.4G-20M	1	2412	15	MCS 0	16.11
11N2.4G-20M	1	2437	23	MCS 0	22.86
11N2.4G-20M	1	2462	14	MCS 0	15.20

SPORTON INTERNATIONAL INC. Page No. : 12 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	The	Worst Case Pow	er Setting Param	eter	
Power	· Level	2			
Test Softwa	are Version	Atheros Radio Te	st 2 (ART2-GUI)		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	Maximum Conducted (Average) Output Power (dBm)
11B-20M	2	2412	20	1 Mbps	23.52
11B-20M	2	2437	20	1 Mbps	23.49
11B-20M	2	2462	20	1 Mbps	23.33
11G-20M	2	2412	15	6 Mbps	18.82
11G-20M	2	2437	20	6 Mbps	23.56
11G-20M	2	2462	17	6 Mbps	21.13
11N2.4G-20M	2	2412	14	MCS 0	18.10
11N2.4G-20M	2	2437	20	MCS 0	23.81
11N2.4G-20M	2	2462	14	MCS 0	18.40

	The	Worst Case Pov	ver Setting Param	eter	
Power	· Level	3			
Test Softwa	are Version	Atheros Radio Te	est 2 (ART2-GUI)		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	Maximum Conducted (Average) Output Power (dBm)
11B-20M	3	2412	20	1 Mbps	24.36
11B-20M	3	2437	20	1 Mbps	24.26
11B-20M	3	2462	20	1 Mbps	24.17
11G-20M	3	2412	15	6 Mbps	18.92
11G-20M	3	2437	20	6 Mbps	24.51
11G-20M	3	2462	17	6 Mbps	19.10
11N2.4G-20M	3	2412	14	MCS 0	18.23
11N2.4G-20M	3	2437	20	MCS 0	24.60
11N2.4G-20M	3	2462	14	MCS 0	17.12

SPORTON INTERNATIONAL INC. Page No. : 13 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

2.4 The Worst Case Measurement Configuration

	The Worst Case Mode for Following Co	onformance Tests		
Tests Item	AC power-line conducted emissions			
Condition	AC power-line conducted measurement for line and Test Voltage: 120V/60 Hz	neutral		
Operating Mode	Operating Mode Description	Worst Modulation Mode	Test Freq.	Power Level
1	Normal Link	11N2.4G-20M	F2	3

Report No.: FR253104

	The Worst Case N	lode for Following C	onformance Tests	
Tests Item	RF Output Power Power Spectral Dens 6 dB Bandwidth	ity		
Test Condition	Conducted measurer	ment at transmit chains	3	
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level
11B-20M	1	11Mbps	F1, F2, F3	1
11G-20M	1	6Mbps	F1, F2, F3	1
11N2.4G-20M	1	MCS 0	F1, F2, F3	1
11B-20M	2	11Mbps	F1, F2, F3	2
11G-20M	2	6Mbps	F1, F2, F3	2
11N2.4G-20M	2	MCS 0	F1, F2, F3	2
11B-20M	3	11Mbps	F1, F2, F3	3
11G-20M	3	6Mbps	F1, F2, F3	3
11N2.4G-20M	3	MCS 0	F1, F2, F3	3

SPORTON INTERNATIONAL INC. Page No. : 14 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	The Worst Case N	lode for Following C	onformance Tests	
Tests Item	Transmitter Radiated	Bandedge Emissions		
Test Condition	Radiated measureme	ent		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level
11B-20M	1	11Mbps	F1, F3	1
11G-20M	1	6Mbps	F1, F3	1
11N2.4G-20M	1	MCS 0	F1, F3	1
11B-20M	2	11Mbps	F1, F3	2
11G-20M	2	6Mbps	F1, F3	2
11N2.4G-20M	2	MCS 0	F1, F3	2
11B-20M	3	11Mbps	F1, F3	3
11G-20M	3	6Mbps	F1, F3	3
11N2.4G-20M	3	MCS 0	F1, F3	3

SPORTON INTERNATIONAL INC. Page No. : 15 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

F1, F2, F3

F1, F2, F3

F1, F2, F3

11Mbps

6Mbps

MCS 0

Report No.: FR253104

3

3

3

1,2,3

1,2,3

1,2,3

SPORTON INTERNATIONAL INC. Page No. : 16 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

FAX: 886-3-327-0973

11B-20M

11G-20M

11N2.4G-20M

3

3

3

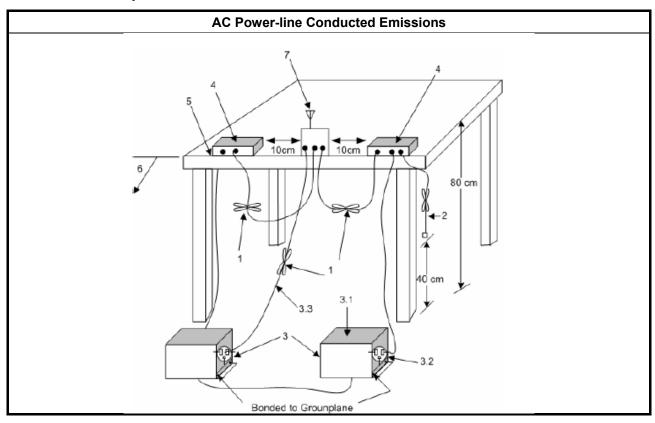
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

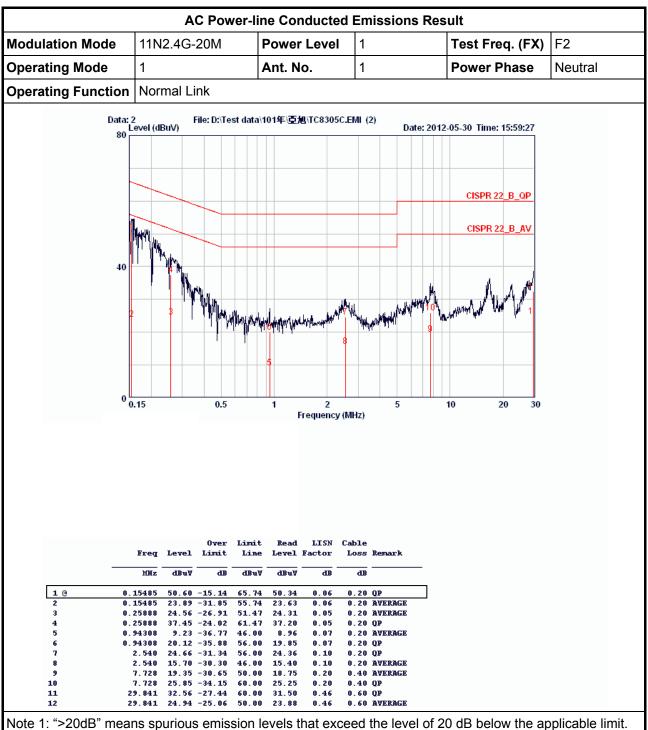
AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz)	Quasi-Peak	Average		
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30	60	50		

Report No.: FR253104


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


	Test Method
⊠ Refe	er as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 17 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.1.5 Test Result of AC Power-line Conducted Emissions

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 18 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

APAN ANITCHINAL	11112	2.4G-20M	Dos.	er Level	1		Test Freq. (FX)	F2
Iodulation Mode		4G-20101						
perating Mode	1		Ant.	No.	1		Power Phase	Line
perating Function	n Norm	nal Link						
	ta: 1 Level (dBu	File: D:∖Te ıV)	est data\101年년	担(TC8305 6	C.EMI (2)	Date: 2	012-05-30 Time: 15:56:04	
8	30 2000 (424							
							CISPR 22_B_QP	
	i e							
							CISPR 22_B_AV	
	TINT WAY							
4	10	M.						
	~ 3 1							
		I II'IM					CAN ALLOW AND	
	1	T WANTA	HUPPLAN CLARACTER COL	ermene d	Mari La	AND THE PROPERTY OF		
		5 1 11 17	and the Antalana	1	THE HAVE	11/40	3 New Marin Marin 1	
				Y		1		
	سللم							
	0.15	0.5	1	2 Frequency	(MILI~)	5	10 20 30	
				rrequency	(141112)			
		Over	Limit Rea	d LISN	Cable			
	Freq I	Over Level Limit		d LISN 1 Factor	Cable Loss R	demark		
_	Freq I			l Factor		emark		
1	МН	Level Limit	Line Level	I Factor dB	Loss R			
2	MHz 0.15403 5 0.15403 2	Limit dBuV dB 50.09 -15.69 23.96 -31.82	dBuV dBu 65.78 49.8 55.78 23.7	1 Factor V dB - 3 0.06 0 0.06	dB 0.20 Q 0.20 R	ip iverage		
	MHz 0.15403 5 0.15403 2 0.18739 3	Level Limit dBuV dB 50.09 -15.69	dBuV dBu 65.78 49.8 55.78 23.7	1 Factor dB - 3 0.06 0 0.06 3 0.05	dB 0.20 Q 0.20 R	ip iverage iverage		
2 3 4 5	MHz 0.15403 5 0.15403 2 0.18739 3 0.18739 4 0.36531 1	Level Limit dBuV dB 50.09 -15.69 23.96 -31.82 34.68 -19.47 47.86 -16.29 19.33 -29.28	dBuV dBu 65.78 49.8 55.78 23.7 54.15 34.4 64.15 47.6 48.61 19.1	1 Factor dB - 3 0.06 0 0.06 3 0.05 1 0.05 1 0.02	0.20 Q 0.20 A 0.20 Q 0.20 A 0.20 Q 0.20 A	ip IVERAGE IVERAGE IP IVERAGE		
2 3 4	MHz 0.15403 5 0.15403 2 0.18739 3 0.18739 4 0.36531 1 0.36531 3	Level Limit dBuV dB 50.09 -15.69 23.96 -31.82 34.68 -19.47 47.86 -16.29	dBuV dBu 65.78 49.8 55.78 23.7 54.15 34.4 64.15 47.6 48.61 19.1 58.61 31.8	1 Factor dB - 3 0.06 0 0.06 3 0.05 1 0.05 1 0.02 5 0.02	Doss R dB 0.20 Q 0.20 A 0.20 A 0.20 Q 0.20 A 0.20 Q 0.20 A	ip IVERAGE IVERAGE IP IVERAGE		
2 3 4 5 6 7 8	MHz 0.15403 5 0.15403 2 0.18739 3 0.18739 4 0.36531 3 0.36531 3 2.435 2 2.435 2	Level Limit dBuV dB 50.09 -15.69 23.96 -31.82 34.68 -19.47 47.86 -16.29 19.33 -29.28 32.07 -26.54 22.14 -23.86 26.28 -29.72	dBuV dBu 65.78 49.8 55.78 23.7 54.15 34.4 64.15 47.6 48.61 19.1 58.61 31.8 46.00 25.9	1 Factor dB - 3 0.06 0 0.06 3 0.05 1 0.05 1 0.02 5 0.02 5 0.09 9 0.09	dB 0.20 Q 0.20 A 0.20 Q 0.20 A 0.20 Q 0.20 A 0.20 Q 0.20 A 0.20 Q	P LVERAGE LVERAGE LP LVERAGE LVERAGE LVERAGE		
2 3 4 5 6 7 8 9	MHz 0.15403 5 0.15403 2 0.18739 4 0.36531 1 0.36531 3 2.435 2 2.435 2 7.810 1	Devel Limit dBuV dB	dBuV dBu 65.78 49.8 55.78 23.7 54.15 34.4 64.15 47.6 48.61 19.1 58.61 31.8 46.00 21.8 56.00 25.9 60.00 19.0	Tartor dB - 3 0.06 0 0.06 3 0.05 1 0.05 1 0.02 5 0.02 5 0.09 9 0.09 1 0.16	0.20 Q 0.20 A 0.20 Q 0.20 A 0.20 Q	IP IVERAGE IVERAGE IVERAGE IVERAGE IVERAGE IP IVERAGE IP		
2 3 4 5 6 7 8	MHz 0.15403 5 0.15403 2 0.18739 3 0.18739 4 0.36531 3 2.435 2 2.435 2 7.810 1 30.000 3	Level Limit dBuV dB 50.09 -15.69 23.96 -31.82 34.68 -19.47 47.86 -16.29 19.33 -29.28 32.07 -26.54 22.14 -23.86 26.28 -29.72	Line Leve dBuV dBu 65.78 49.8 55.78 23.7 54.15 34.4 64.15 47.6 48.61 19.1 56.03 21.8 56.00 25.9 60.00 12.9 60.00 29.8	Tactor dB 0.06 0.06 0.05 1.0.05 1.0.05 0.02 5.0.02 5.0.09 9.0.09 1.0.16 4.0.36	Loss R dB 0.20 Q 0.20 R 0.20 R 0.20 R 0.20 Q 0.20 R 0.20 Q 0.20 R 0.20 Q 0.40 Q 0.40 R 0.60 Q	IP IVERAGE IVERAGE IVERAGE IP IVERAGE IP IVERAGE IP IVERAGE IP IVERAGE		

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

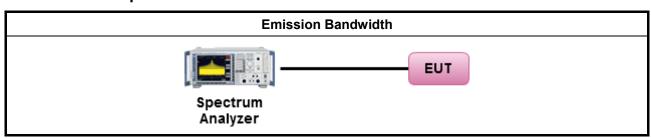
SPORTON INTERNATIONAL INC. Page No. : 19 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit
Systems using digital modulation techniques:
☐ 6 dB bandwidth ≥ 500 kHz.

Report No.: FR253104


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

			Test Method
\boxtimes	For	the er	mission bandwidth shall be measured using one of the options below:
		Refe	er as FCC KDB 558074, clause 5.1.1 Option 1 for 6 dB bandwidth measurement.
		Refe	er as FCC KDB 558074, clause 5.1.2 Option 2 for 6 dB bandwidth measurement.
		Refe	er as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\boxtimes	For	condı	ucted measurement.
		For (conducted measurements on devices with multiple transmit chains using options given below:
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 3.
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.
			Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.
			ted measurement. The equipment to be measured and the test antenna shall be oriented to e maximum emitted power level.

3.2.4 Test Setup

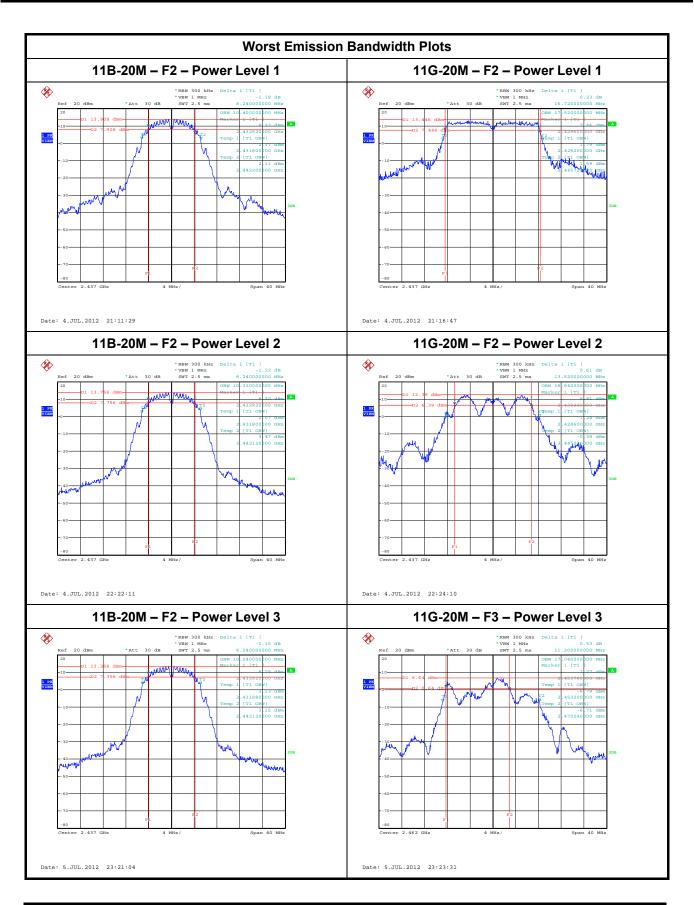
SPORTON INTERNATIONAL INC. Page No. : 20 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2.5 Test Result of Emission Bandwidth

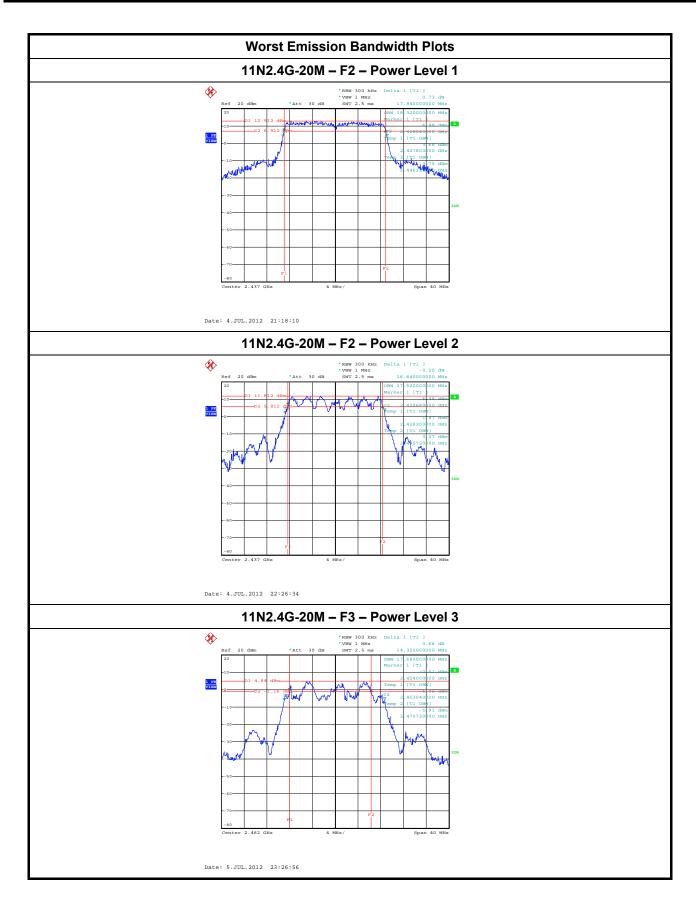
			Emission Bandwidth Result	
Power Level		1	Emission Bar	ndwidth (MHz)
Modulation Mode	N _{TX}	Freq. (MHz)	99% Bandwidth	6dB Bandwidth
11B-20M	1	2412	10.40	8.24
11B-20M	1	2437	10.40	8.24
11B-20M	1	2462	10.40	8.16
11G-20M	1	2412	17.20	16.64
11G-20M	1	2437	17.52	16.72
11G-20M	1	2462	17.20	16.56
11N2.4G-20M	1	2412	18.08	17.76
11N2.4G-20M	1	2437	18.32	17.84
11N2.4G-20M	1	2462	18.08	17.76
Lim	it		N/A	≥500 kHz
Resu	ılt		Com	plied

			Emission Bandwidth Result			
Power Level		2	Emission Bar	ndwidth (MHz)		
Modulation Mode	N _{TX}	Freq. (MHz)	99% Bandwidth	6dB Bandwidth		
11B-20M	2	2412	10.32	8.16		
11B-20M	2	2437	10.32	8.24		
11B-20M	2	2462	10.32	8.16		
11G-20M	2	2412	16.40	13.04		
11G-20M	2	2437	16.64	13.52		
11G-20M	2	2462	16.48	13.28		
11N2.4G-20M	2	2412	17.52	16.56		
11N2.4G-20M	2	2437	17.52	16.64		
11N2.4G-20M	2	2462	17.44	16.56		
Lim	it		N/A	≥500 kHz		
Resi	ılt		Com	plied		

SPORTON INTERNATIONAL INC. Page No. : 21 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01


Complied

Report No.: FR253104


Note 1: N_{TX} = Number of Transmit Chains

Result

SPORTON INTERNATIONAL INC. Page No. : 22 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 23 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 24 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.3 RF Output Power

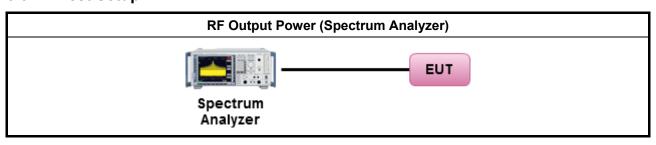
3.3.1 RF Output Power Limit

		RF Output Power Limit
Max	imu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
\boxtimes	240	0-2483.5 MHz Band:
	\boxtimes	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
	\boxtimes	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Smart antenna system (SAS):
		☐ Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm
e.i.r	.p. P	ower Limit:
\boxtimes	240	0-2483.5 MHz Band
	\boxtimes	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
		Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		☐ Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		☐ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		☐ Aggregate power on all beams: $P_{eirp} \le MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
G_{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.

Report No.: FR253104

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


SPORTON INTERNATIONAL INC. Page No. : 25 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR253104

3.3.3 Test Procedures

		Test Method
	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 5.2.1.1 Option 1 (RBW > EBW method).
		Refer as FCC KDB 558074, clause 5.2.1.2 Option 2 (integrated band power method).
		Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.
		Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW).
		Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor.
\boxtimes	Max	imum Conducted Output Power
		Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed).
	\boxtimes	Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
\boxtimes	Refe	er as FCC KDB 558074, clause 2 for conducted measurement.
		For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods:
		Method 1: EIRP₁ = P₁ + GANT₁; EIRP₂ = P₂ + GANT₂; EIRP₂ = Pn + GANT₂ EIRPtotal = EIRP₁ + EIRP₂ + + EIRP₂ (calculated in linear unit [mW] and transfer to log unit [dBm])
		Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG
	Refe	er as FCC KDB 558074, clause 2 for radiated measurement.

3.3.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 26 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.5 Test Result of Maximum Conducted Output Power

	Maximum Conducted Output Power Result										
Power Leve	l	1									
G _{ANT (dBi)-2412N}	lHz	2.95	PE Output Power (dPm)								
G _{ANT (dBi)-2437N}	lHz	2.22		RF Output Power (dBm)							
G _{ANT (dBi)-2462N}	lHz	1.36									
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 3							EIRP Limit	
11B-20M	1	2412	22.93				22.93	30	25.88	36	
11B-20M	1	2437	23.00				23.00	30	25.22	36	
11B-20M	1	2462	22.24 30 23.60 36								
Res	ult			Complied							

	Maximum Conducted Output Power Result									
Power Leve	I	1	RF Output Power (dBm)							
G _{ANT (dBi)-2412M}	Hz	2.95								
G _{ANT (dBi)-2437M}	Hz	2.22			KF	Output F	ower (ai	3111 <i>)</i>		
G _{ANT (dBi)-2462M}	Hz	1.36								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 3						EIRP Limit	
11G-20M	1	2412	16.68				16.68	30	19.63	36
11G-20M	1	2437	22.82				22.82	30	25.04	36
11G-20M	1	2462	16.84				16.84	30	18.20	36
Res	ult				•	Com	plied	•	•	

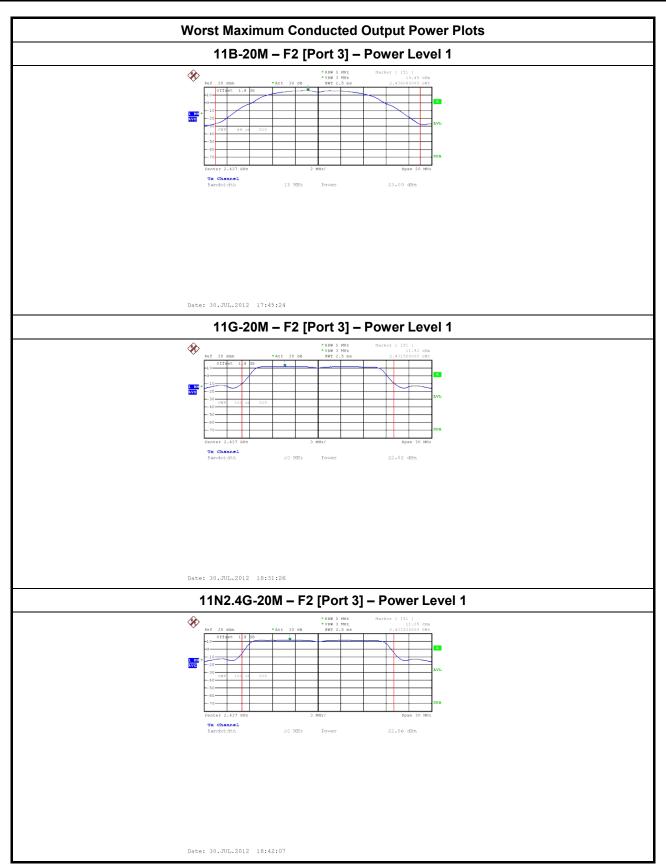
	Maximum Conducted Output Power Result									
Power Leve	l	1								
G _{ANT (dBi)-2412M}	Hz	2.95	RF Output Power (dBm)							
G _{ANT (dBi)-2437M}	Hz	2.22								
G _{ANT (dBi)-2462M}	Hz	1.36	1							
Modulation Mode	N _{TX}	Freq. (MHz)							EIRP Limit	
11N2.4G-20M	1	2412	16.11				16.11	30	19.06	36
11N2.4G-20M	1	2437	22.86				22.86	30	25.08	36
11N2.4G-20M	1	2462	15.20				15.20	30	16.56	36
Resu	ılt					Com	plied			

SPORTON INTERNATIONAL INC. Page No. : 27 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

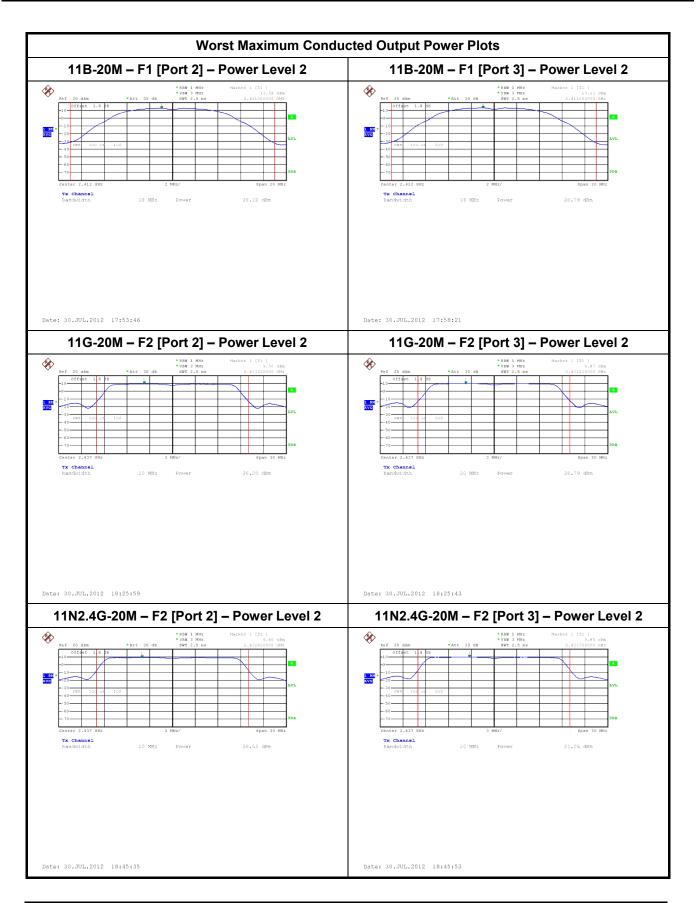
	Maximum Conducted Output Power Result									
Power Leve	I	2								
DG _(dBi) [correlated]-24	112MHz	5.7	RF Output Power (dBm)							
DG _(dBi) [correlated]-24	137MHz	4.8			KF	Output F	ower (ar	3111 <i>)</i>		
DG _(dBi) [correlated]-24	162MHz	4.6								
Modulation Mode	N _{TX}	Freq. (MHz)						EIRP Limit		
11B-20M	2	2412	20.22	20.79	-	-	23.52	30	29.18	36
11B-20M	2	2437	20.07	20.85	-	-	23.49	30	28.24	36
11B-20M	2	2462	20.09	20.54	-	-	23.33	30	27.96	36
Res	ult					Com	plied			

	Maximum Conducted Output Power Result									
Power Leve	Power Level 2									
DG _(dBi) [correlated]-2412MHz 5.7			DE Output Danier (dDan)							
DG _(dBi) [correlated]-24	37MHz	4.8	RF Output Power (dBm)							
DG _(dBi) [correlated]-24	62MHz	4.6								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 2	Chain- Port 3	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11G-20M	2	2412	15.59	16.02	-	-	18.82	30	24.51	36
11G-20M 2		2437	20.30	20.79	-	-	23.56	30	28.36	36
11G-20M 2 2462		18.08	18.16	-	-	21.13	30	25.80	36	
Resi	ult					Com	plied			

	Maximum Conducted Output Power Result									
Power Level		2								
DG _(dBi) [uncorrelated]-2412MHz		2.6		RF Output Power (dBm)						
DG _(dBi) [uncorrelated]-2437MHz					KF	Output F	ower (ar))		
DG _(dBi) [uncorrelated]-2	462MHz	1.6								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 2	Chain- Port 3	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11N2.4G-20M	2	2412	14.87	15.28	-	-	18.10	30	23.79	36
11N2.4G-20M	2	2437	20.53	21.05	-	-	23.81	30	28.61	36
11N2.4G-20M 2 246		2462	15.12	15.63	-	-	18.40	30	23.06	36
Resu	ılt	·		•		Com	plied	•		

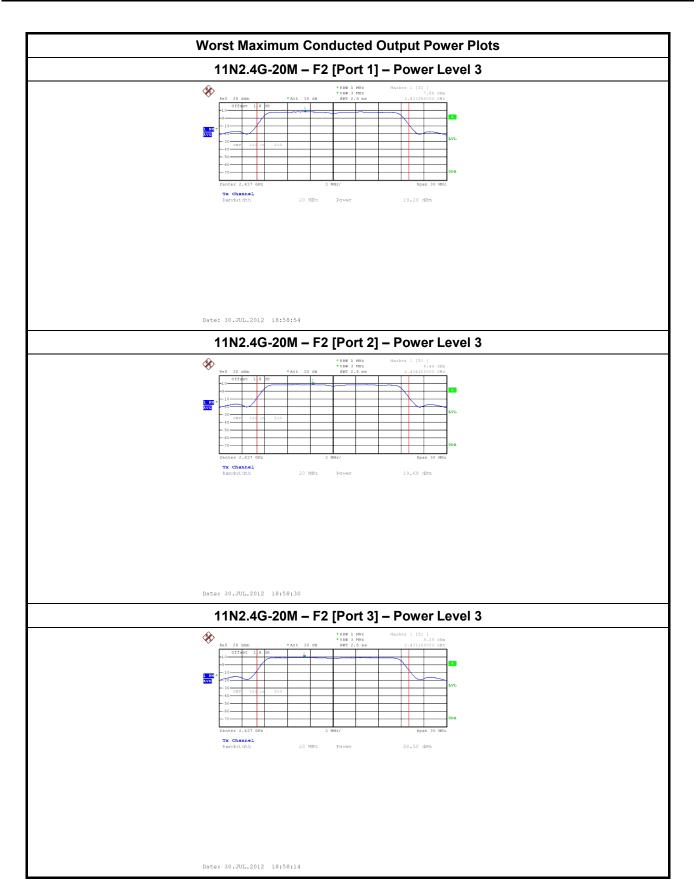

SPORTON INTERNATIONAL INC. Page No. : 28 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Maximum Conducted Output Power Result									
Power Leve	Power Level 3									
DG _(dBi) [correlated]-2412MHz 7.5			DE Output Davier (dDav)							
DG _(dBi) [correlated]-24	437MHz	6.9	RF Output Power (dBm)							
DG _(dBi) [correlated]-24	462MHz	6.7								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11B-20M	3	2412	19.23	19.51	19.99	-	24.36	30	31.89	36
11B-20M 3		2437	18.64	19.57	20.13	-	24.26	30	31.18	36
11B-20M 3 2462		18.40	19.59	20.04	-	24.17	30	30.89	36	
Res	ult		Complied							


	Maximum Conducted Output Power Result									
Power Leve	Power Level 3									
DG _{(dBi) [correlated]-2412MHz} 7.5										
DG _(dBi) [correlated]-24	37MHz	6.9	RF Output Power (dBm)							
DG _(dBi) [correlated]-24	62MHz	6.7								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11G-20M	3	2412	13.28	14.25	14.77	-	18.92	30	26.48	36
11G-20M 3		2437	18.95	19.80	20.34	-	24.51	30	31.47	36
11G-20M 3 2462		13.00	14.44	15.25	-	19.10	30	25.86	36	
Resu	ılt					Com	plied			

	Maximum Conducted Output Power Result									
Power Level	Power Level 3									
DG _(dBi) [uncorrelated]-2412MHz 2.8			RF Output Power (dBm)							
DG _(dBi) [uncorrelated]-2437MHz 2.2					Kr	Output F	ower (ai))		
DG _(dBi) [uncorrelated]-2	462MHz	2.0								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11N2.4G-20M	3	2412	12.73	13.70	13.85	_	18.23	30	25.80	36
11N2.4G-20M	3	2437	19.20	19.68	20.50	-	24.60	30	31.56	36
11N2.4G-20M	11N2.4G-20M 3 2462		10.64	12.88	13.11	-	17.12	30	23.88	36
Resu	ılt		Complied							

SPORTON INTERNATIONAL INC. Page No. : 29 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01


SPORTON INTERNATIONAL INC. Page No. : 30 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 31 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 32 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 33 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

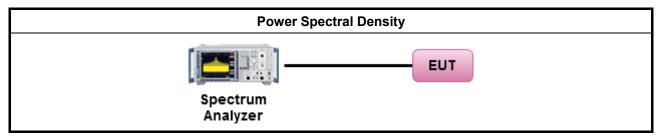
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

	Power Spectral Density Limit
\boxtimes	Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No.: FR253104

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method
	power proc whe dem	er spectral density procedures that the same method as used to determine the conducted output er shall be used to determine the power spectral density. In addition, the use of a peak PSD redure will always result in a "worst-case" measured level for comparison to the limit. Therefore, never the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to onstrate compliance to the PSD limit, regardless of how the fundamental output power was sured. For the power spectral density shall be measured using below options:
		Refer as FCC KDB 558074, clause 5.3.1 Option 1 (peak PSD; BWCF=-15.2dB).
	\boxtimes	Refer as FCC KDB 558074, clause 5.3.2 Option 2 (average PSD; BWCF=-15.2dB).
		Refer as ANSI C63.10, clause 6.11.2.3 for PSD for DTS - (RBW=3kHz; sweep=100s).
		Refer as ANSI C63.10, clause 6.11.2.4 for Alternative PSD for DTS - (RBW=3kHz; average=100)
\boxtimes	Refe	er as FCC KDB 558074, clause 2 for conducted measurement.
	\boxtimes	For conducted measurements on devices with multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. The new data trace samples added 100 kHz segment and found the highest value of each 100 kHz segments. Add the bandwidth correction factor (BWCF) [-15.2 dB] adjusting in power spectral density per 3kHz.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
	Refe	er as FCC KDB 558074, clause 2 for radiated measurement.

SPORTON INTERNATIONAL INC. Page No. : 34 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 35 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR253104

3.4.5 Test Result of Power Spectral Density

Power Spectral Density Result							
Power Leve	el	1	Power Spectral Density (dBm/3kHz)				
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 3	PSD Limit			
11B-20M	1	2412	-8.84	8			
11B-20M	1	2437	-8.66	8			
11B-20M	1	2462	-9.51	8			
Res	ult	'	Comp	olied			
lote 1: PSD [dBr	n/3kHz]	= each trans	mit chains PSD [dBm/100kHz] + B	3WFC [-15.2 dB] + 10logN _{TX}			

Note 1. PSD [C	abili/sknzj – eaci	i transmit chains P	SD [abiii/ iaaku	2] + BVVFC [-15.2	ubj + Tulogin _{TX}

Power Spectral Density Result							
Power Leve	el	1	Power Spectral Density (dBm/3kHz)				
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 3	PSD Limit			
11G-20M	1	2412	-18.75	8			
11G-20M	1	2437	-12.72	8			
11G-20M	1	2462	-18.63	8			
Res	ult		Comp	olied			

Note 1: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10\log N_{TX}$

Power Spectral Density Result								
Power Leve	I	1	Power Spectral Density (dBm/3kHz)					
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 3	PSD Limit				
11N2.4G-20M	1	2412	-19.98	8				
11N2.4G-20M	1	2437	-12.94	8				
11N2.4G-20M	1	2462	-20.57	8				
Res	ult		Com	olied				
Note 1: PSD [dBm	n/3kHz]	= each tra	nsmit chains PSD [dBm/100kHz] + E	3WFC [-15.2 dB] + 10logN _{TX}				

SPORTON INTERNATIONAL INC. : 36 of 117 Page No. Report Version : Rev. 01 TEL: 886-3-327-3456

	Power Spectral Density Result										
Power Leve	el el	2	Power	Power Spectral Density (dBm/3kHz)							
Modulation Mode	N _{TV}		Chain- Port 2	Chain- Port 3	PSD Limit						
11B-20M	2	2412	-9.04	-8.76	8						
11B-20M	2	2437	-9.01	-8.62	8						
11B-20M	2	2462	-8.87	-8.41	8						
Result			Complied								

Note 1: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10logN_{TX}$

Power Spectral Density Result										
Power Leve	el	2	Power Spectral Density (dBm/3kHz)							
Modulation Mode N _{TX}		Freq. (MHz)	Chain- Port 2	Chain- Port 3	PSD Limit					
11G-20M	2	2412	-17.25	-16.49	8					
11G-20M	2	2437	-12.20	-11.91	8					
11G-20M	2	2462	-15.12	-14.66	8					
Result			Complied							

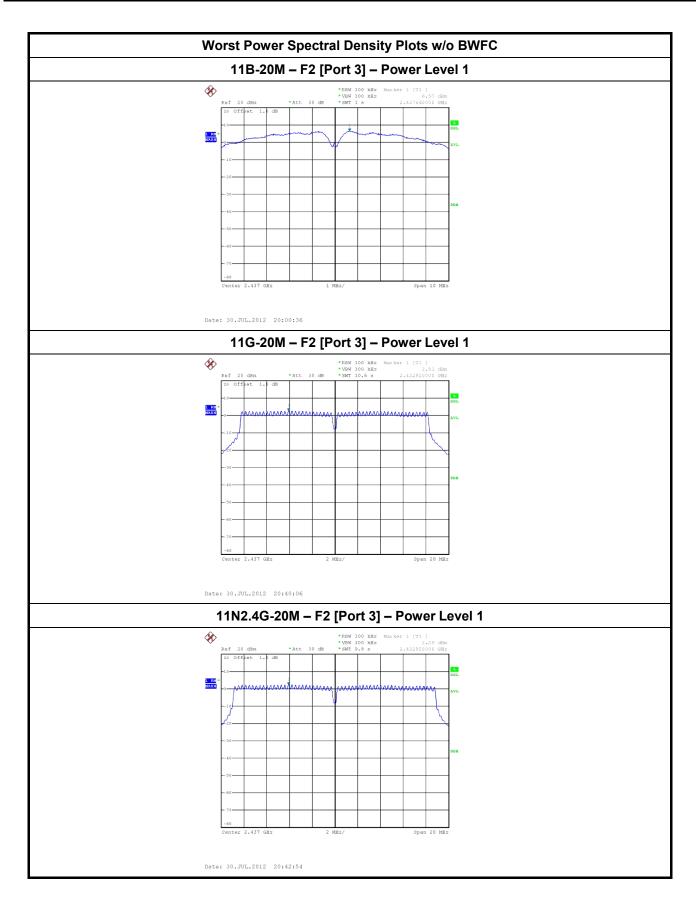
Note 1: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10\log N_{TX}$

Power Spectral Density Result											
Power Leve	I	2	Power Spectral Density (dBm/3kHz)								
Modulation Mode N _{TX}		Freq. (MHz)	Chain- Port 2	Chain- Port 3	PSD Limit						
11N2.4G-20M	2	2412	-18.11 -17.94		8						
11N2.4G-20M	2	2437	-12.71	-12.13	8						
11N2.4G-20M	2	2462	-18.34	-17.71	8						
Res	ult		Complied								
Note 1: PSD [dBm	1/3kHz1	= each tr	ansmit chains PSD [dBm	/100kHz] + BWFC [-15.2	dR] + 10logN _{=v}						

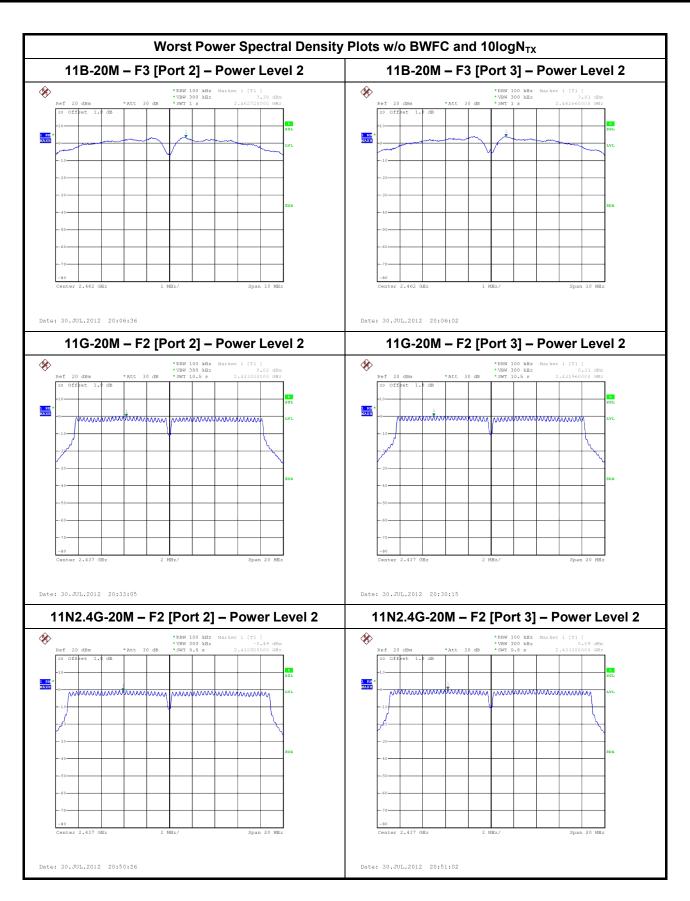
Note 1: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10\log N_{TX}$

SPORTON INTERNATIONAL INC. Page No. : 37 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

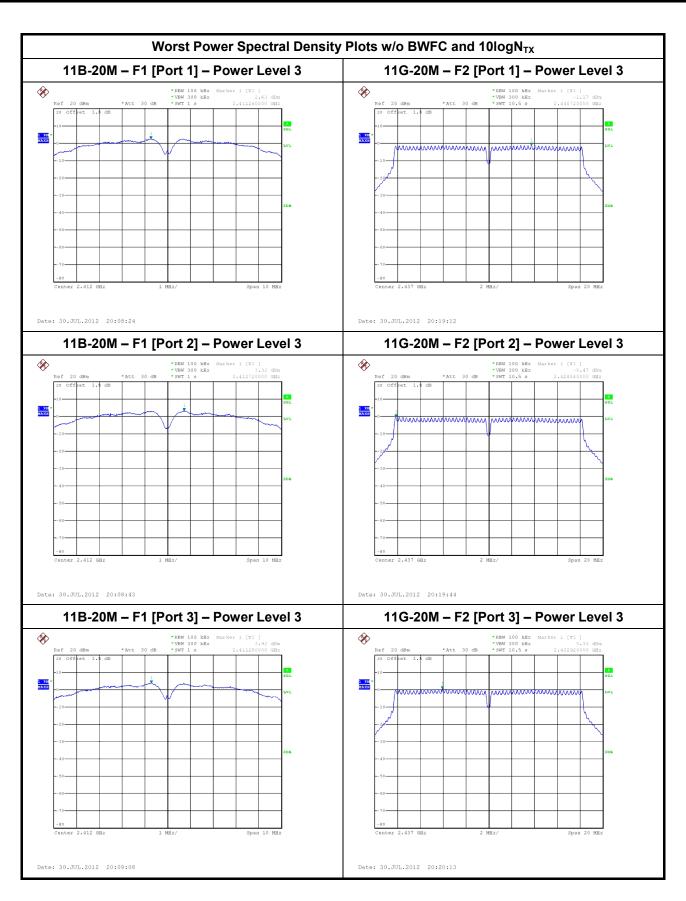
Power Spectral Density Result											
Power Leve	el	3	Power Spectral Density (dBm/3kHz)								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	PSD Limit					
11B-20M	3	2412	-7.83	-7.14	-6.54	8					
11B-20M	3	2437	-7.62	-6.87	-6.67	8					
11B-20M	3	2462	-8.19	-7.13	-6.61	8					
Res	ult		Complied								
Note 1: PSD [dBr	n/3kHz]	= each tr	ansmit chains PSI) [dBm/100kHz] + I	BWFC [-15.2 dB] +	10logN _{⊤x}					

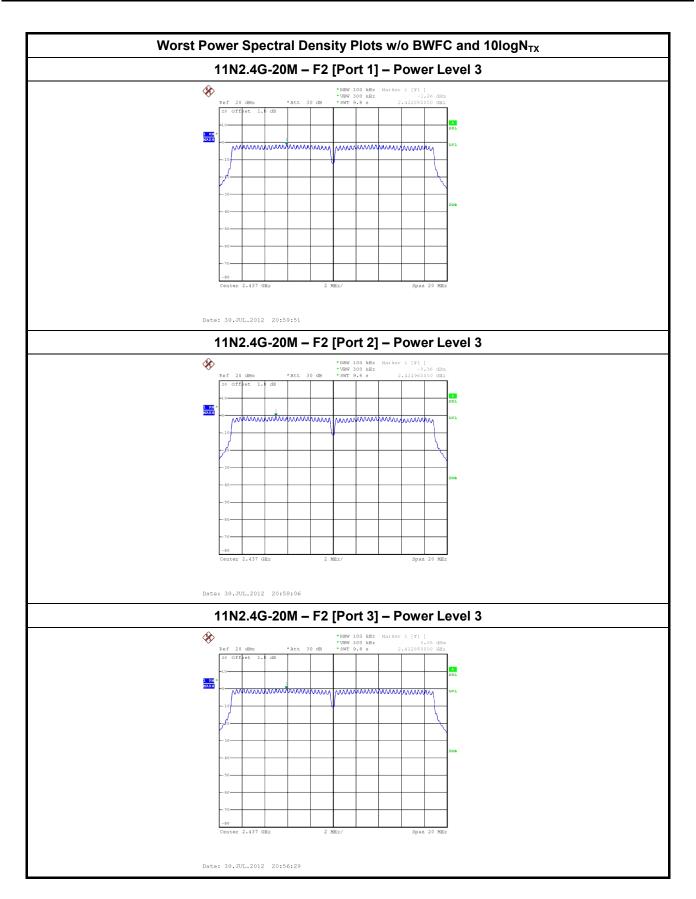

Power Spectral Density Result											
Power Leve	el	3	ı	Power Spectral Density (dBm/3kHz)							
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	PSD Limit					
11G-20M	3	2412	-17.23	-16.09	-15.64	8					
11G-20M	3	2437	-11.63	-10.93	-10.13	8					
11G-20M	3	2462	-17.50	-16.02	-15.52	8					
Res	ult		Complied								

Note 1: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10\log N_{TX}$

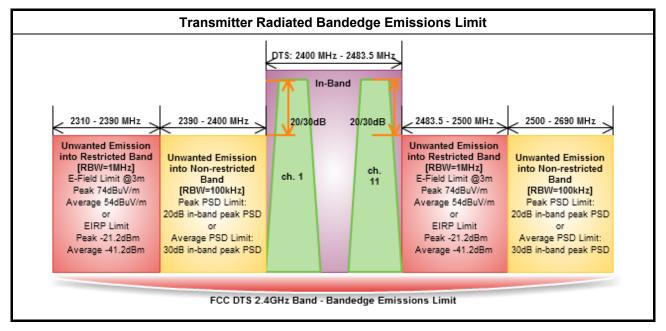

Power Spectral Density Result											
Power Leve	I	3	Power Spectral Density (dBm/3kHz)								
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	PSD Limit					
11N2.4G-20M	3	2412	-18.36	-17.15	-16.51	8					
11N2.4G-20M	3	2437	-11.72	-10.82	-10.41	8					
11N2.4G-20M	3	2462	-18.79	-17.92	-17.40	8					
Res	ult		Complied								
Note 1: PSD [dBm	/3kHz1	= each tr	ansmit chains PSF) [dBm/100kHz] + [BWFC [-15 2 dB] +	10logN=v					

Note 1: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10\log N_{TX}$


: 38 of 117 SPORTON INTERNATIONAL INC. Page No. TEL: 886-3-327-3456 : Rev. 01 Report Version


SPORTON INTERNATIONAL INC. Page No. : 39 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 40 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01


SPORTON INTERNATIONAL INC. Page No. : 41 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 42 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

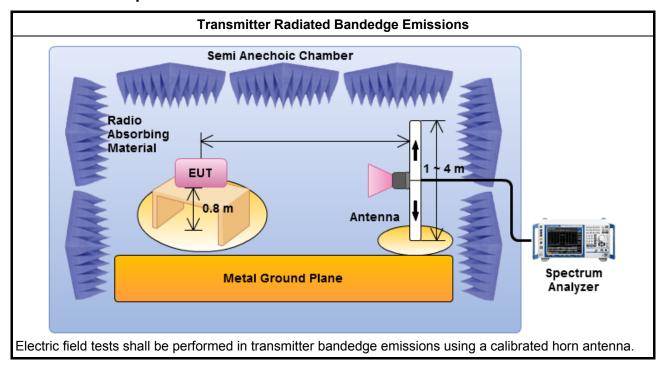
3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures


		To A Mathead Comment Information
		Test Method – General Information
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency and highest frequency channel within the allowed operating band.
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).
		Refer as FCC KDB 558074, clause 5.4.2.2.2 Option 2 (Trace Averaging).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). – Duty cycle ≥ 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 5.4.2.2.3 measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.

SPORTON INTERNATIONAL INC. Page No. : 43 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

			Test Method							
	Refe	er as	FCC KDB 558074, clause 2 for conducted measurement.							
		For	unwanted emissions into non-restricted bands (relative emission limits).							
			For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.							
			unwanted emissions into restricted bands. Test conducted spurious emissions and radiated by cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).							
			Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands on frequencies \leq 1000 MHz							
			Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands on frequencies > 1000 MHz							
			For conducted measurements on devices with multiple transmit chains using options given below:							
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.							
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.							
\boxtimes	Refe	er as	FCC KDB 558074, clause 2 for radiated measurement.							
	M	Ref	er as ANSLC63.10, clause 6.5 for radiated emissions from above 1 GHz							

SPORTON INTERNATIONAL INC. Page No. : 44 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 45 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

		Transn	nitter Radiat	ed Bar	ndedg	e Emission	s Result						
Power Level	1	Ant. No.	3			Non rootri	cted Band l	Emississ	_				
Modulation		11B-2	0M			Non-restri	cieu banu i	Emission	5				
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	i] NBE Freq. PSD [o] [i] - (MHz) PSD [o] (d			[i] – [o] (dB)	Limit (dB)	Level Type	Pol.			
2390-2400	1	2412	81.55	2399	9.00	36.82	44.73	30	PK	Н			
2500-2690 1		2462	82.12	251	1.20	28.82	53.30	30	PK	Н			
	Low Band						Up Band						
Ref 97 dBµV *Att -90 D1 81.55 dBµV -60 D2 51.55 dBµV -60 D2 51.55 dBµV -60 Center 2.395 GHz Date: 6.JUL.2012 01:20:08		*VBW 300 kHz SWT 10 ms Man 1 MAN MAN MAN MAN MAN MAN MAN	44.73 dB 12.60000000 MHz ker 1 [71] 36.02 dBuV 2.399000 00 GHz JBar 100 MHz		-90 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7	рі 82.12 авру	10 MHz/	-73.800(Marker 1 12 2.5112	8.82 dBuV				

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

		Transm	nitter Radiat	ed Bandedg	e Emissior	ıs Result			
Power Level	1	Ant. No.	3		Postriot	ad Band Em	ioolono		
Modulation		11B-2	0M	Restricted Band Emissions					
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m)		Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	1	2412	117.04	2390.00	3	63.89	74	PK	Н
2310-2390	1	2412	113.26	2390.00	3	52.04	54	AV	Н
2483.5-2500	1	2462	115.71	2483.82	3	62.59	74	PK	Н
2483.5-2500	1	2462	111.92	2483.50	3	52.83	54	AV	Н
Note 1: Measurem	ent v	vorst emissi	ions of receiv	e antenna po	olarization: I	H (Horizontal) or V (Ve	rtical).	

SPORTON INTERNATIONAL INC. : 46 of 117

Page No.

Report Version

: Rev. 01

TEL: 886-3-327-3456 FAX: 886-3-327-0973

		Transm	nitter Radiat	ed Baı	ndedg	e Emission	s Result					
Power Level	1	Ant. No.	3			Non rootri	oted Band I	Emission	•			
Modulation		11G-2	0M		Non-restricted Band Emissions							
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE (MI		Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.		
2390-2400	1	2412	77.84	239	9.50	45.82	32.03	30	PK	Н		
2500-2690	1	2462	78.31	2510	6.70	29.34	48.97	30	PK	Н		
	Low Band					Up Band						
Ref 97 dBµV ALL 90		SWT 15 ms Mar	30.0000000 MHz Ker 1 [7] 45.82 dBuV 2.39950000 GHz 308		-90 -90 -90 -90 -90 -90 -90 -90 -90 -90	1 79 dBµV At D2 00 dBµV D2 00 dBµ	V	Marker 1 (T 2 2 5167	9-84 (BWV)			

		Transm	nitter Radiat	ed Bandedg	e Emission	s Result			
Power Level	1	Ant. No.	3		Dootriet	ad Band Em	loolono		
Modulation	11G-20M			Restricted Band Emissions					
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. Distance Level		Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	1	2412	112.76	2388.08	3	66.47	74	PK	Н
2310-2390	1	2412	100.96	2390.00	3	52.74	54	AV	Η
2483.5-2500	1	2462	111.64	2483.82	3	67.24	74	PK	Н
2483.5-2500	1	2462	100.48	2483.50	3	53.19	54	AV	Н
Note 1: Measurem	ent v	vorst emiss	ions of receiv	e antenna po	olarization: I	H (Horizontal) or V (Ve	rtical).	

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 47 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Modulation		Ant. No.	3						
		11N2.4G	G-20M		Non-restri	cted Band I	Emission	S	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol
2390-2400	1	2412	76.17	2399.40	45.52	30.64	30	PK	Н
2500-2690	1	2462	77.84	2505.60	29.16	48.68	30	PK	Н
	Lo	w Band				Up Bar	nd		
-0		Will Mile /	2.399400 00 GHa	-50 -49 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	D2 or dB v-		2,5056	308	

Transmitter Radiated Bandedge Emissions Result Ant. No. **Power Level Restricted Band Emissions** Modulation 11N2.4G-20M Test Ch. In-band Measure **Out-Band** RBE Freq. Pol. **Restricted Band** Limit Level N_{TX} Freq. PSD [i] **Distance** Level (MHz) (MHz) **Type** (dBuV/m) note 1 (MHz) (m) (dBuV/m) (dBuV/1MHz) 2310-2390 1 2412 110.92 2390.00 3 69.19 74 PΚ Н Н 2310-2390 1 2412 99.80 2390.00 3 52.55 54 ΑV 2483.5-2500 1 2462 110.11 2484.14 3 67.67 74 PΚ Н Н 2483.5-2500 1 2462 99.03 2483.50 3 52.94 54 Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 48 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Power Level	2	Ant. No.	2,3			Non roctul	cted Band l	Emissis	_	
Modulation		11B-2	0M			Non-restri	cted Band I	Emission	S	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE (MI	Freq. Hz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-2400	2	2412	75.64	239	7.40	28.96	46.68	30	PK	Н
2500-2690	2	2462	77.28	254	2.80	30.73	46.55	30	PK	Н
	Lo	ow Band					Up Bar	nd		
-90		Max J J Mayodamatasani/M	Rer 1 (71) 28 96 dBuV 2 397400 000 GHz 1 1 3DB		-20·	D1 77.28 dBµV-	T1 F2		0.73 dBWY	

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

		Transn	nitter Radiat	ed Bandedg	e Emissior	s Result			
Power Level	2	Ant. No.	2,3		Postriot	ed Band Em	icciono		
Modulation		11B-2	0M		Restrict	eu Danu En	115510115		
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	2	2412	115.67	2390.00	3	61.67	74	PK	Н
2310-2390	2	2412	111.79	2390.00	3	51.36	54	AV	Н
2483.5-2500	2	2462	116.06	2483.50	3	58.95	74	PK	Н
2483.5-2500	2	2462	112.30	2500.00	3	49.10	54	AV	Н
Note 1: Measurem	ent v	vorst emiss	ions of receiv	e antenna po	olarization: I	H (Horizontal) or V (Ve	rtical).	

SPORTON INTERNATIONAL INC. Page No. : 49 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

		Transn	nitter Radiat	ed Baı	ndedg	e Emission	s Result			
Power Level	2	Ant. No.	2,3			Non voctui	cted Band I			
Modulation		11G-2	OM			Non-resur	cted Band i	=mission:	5	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE (MI		Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-2400	2	2412	76.09	2399	9.50	45.29	30.81	30	PK	Н
2500-2690	2	2462	76.10	251 ⁻	1.00	28.25	47.85	30	PK	Н
	Lo	ow Band					Up Ban	ıd		
Ref 97 dBpV *Att -90		M	43.800000000 MHz Ker 1 [T]		-90 -90 -90 -90 -90 -90 -90 -90 -90 -90	D1 7 d dBpV D2 dc dBpV D2 dc dBpV D2 dc dBpV D3 dc dBpV	F1 F2	Marker 1 [T] 2 2.5110	8.25 dBuV	

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

		Transn	nitter Radiat	ed Bandedg	e Emissior	s Result			
Power Level	2	Ant. No.	2,3		Doctrict	ed Band Em	issians		
Modulation		11G-2	0M		Restrict	eu banu En	IISSIOIIS		
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	2	2412	114.07	2389.84	3	66.49	74	PK	Н
2310-2390	2	2412	103.40	2390.00	3	52.65	54	AV	Н
2483.5-2500	2	2462	114.05	2484.30	3	69.86	74	PK	Н
2483.5-2500	2	2462	103.54	2484.50	3	53.43	54	AV	Н
Note 1: Measurem	ent v	vorst emiss	ions of receiv	e antenna po	olarization: I	H (Horizontal) or V (Ve	rtical).	

SPORTON INTERNATIONAL INC. Page No. : 50 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	I				ge Emission				
Power Level	2	Ant. No.	2,3		Non-restri	cted Band I	Emission	e	
Modulation		11N2.4G	5-20M		NOII-IESUI	cted Dana i	Lillissioli	3	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-2400	2	2412	76.16	2399.50	43.19	32.97	30	PK	Н
2500-2690	2	2462	77.64	2502.90	28.81	48.83	30	PK	Н
	Lo	w Band				Up Bar	nd		
90		, j	43.9 dBuV 2.39950000 GHz		D2 4 M ds V-	F1		18. £1 dbw 00000 GEz 3	

		Transn	nitter Radiat	ed Bandedg	e Emission	s Result			
Power Level	2	Ant. No.	2,3		Dootsiot	ad Dand Em	.i.a.i.a.a.a		
Modulation		11N2.40	G-20M	=	Restrict	ed Band Em	iissions		
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	2	2412	112.47	2390.00	3	66.08	74	PK	Н
2310-2390	2	2412	101.58	2390.00	3	52.50	54	AV	Н
2483.5-2500	2	2462	112.38	2485.58	3	68.72	74	PK	Н
2483.5-2500	2	2462	101.51	2483.50	3	53.19	54	AV	Н
Note 1: Measurem	ent v	vorst emiss	ions of receiv	e antenna po	olarization: I	H (Horizontal) or V (Ve	rtical).	

SPORTON INTERNATIONAL INC. Page No. : 51 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

		Transn	nitter Radiat	ed Bar	ndedg	e Emission	s Result			
Power Level	3	Ant. No.	1,2,3			Non rootri	cted Band I	Emississ	_	
Modulation		11B-2	0M			MOII-resur	cteu banu i	=1111551011	•	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE (MI	•	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-2400	3	2412	81.60	2389	9.60	29.87	51.98	30	PK	Н
2500-2690	3	2462	80.72	250	7.40	29.93	50.79	30	PK	Н
	Lo	ow Band					Up Bar	ıd		
Ref 97 dBµV *Att -90 D1 81.6 dBµV -70 D2 51.6 dBµV -40 D2 51.6 dBµV -20 D2		M P 3	51.98 dB 48.60000000 MHz ker 1 [T] 29.87 dBuV 2.38960000 GHz 300000 GHz 300000 GHz 300000 GHz		-90	97 dBpV At	F1	-71.4000 Marker 1 17 2 2.5074	9. p3. cmuv	

		Transn	nitter Radiat	ed Bandedg	e Emission	s Result			
Power Level	3	Ant. No.	1,2,3		Doctrict	ed Band Em	vicalana		
Modulation		11B-2	0M		Restrict	eu banu En	iissions		
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i]	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	3	2412	118.23	2390.00	3	62.31	74	PK	Η
2310-2390	3	2412	114.50	2390.00	3	53.14	54	AV	Н
2483.5-2500	3	2462	120.05	2483.82	3	63.69	74	PK	Н
2483.5-2500	3	2462	116.27	2483.50	3	53.37	54	AV	Н
Note 1: Measurem	ent v	vorst emiss	ions of receiv	e antenna po	olarization: l	H (Horizontal) or V (Ve	rtical).	

SPORTON INTERNATIONAL INC. Page No. : 52 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Power Level	3	Ant. No.	1,2,3			Non roct	cted Band	Emissis:	_	
Modulation		11G-2	0M			Non-restri	cted Band	Emission	S	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE (MI		Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol
2390-2400	1	2412	80.70	2399	9.50	49.14	31.56	30	PK	Н
2500-2690	1	2462	82.84	2512	2.50	28.87	53.97	30	PK	Н
	Lo	w Band					Up Baı	nd		
90	15		Rer 1 (T1) 49.4 dBuV 2.39950000 dHz 100 100 100 100 100 100 100 100 100 1		-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	D1 82.34 dBµV	F1 F2	1	8. 87. dBuV	

		Transn	nitter Radiat	ed Bandedg	e Emissior	s Result			
Power Level	3	Ant. No.	1,2,3		Dootsio	ad Dand Em	.laalama		
Modulation		11G-2	0M	1	Restrict	ed Band Em	iissions		
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i]	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	3	2412	114.42	2388.24	3	68.79	74	PK	Н
2310-2390	3	2412	104.20	2390.00	3	52.56	54	AV	Н
2483.5-2500	3	2462	116.02	2488.47	3	64.90	74	PK	Н
2483.5-2500	3	2462	105.33	2483.50	3	52.75	54	AV	Н
Note 1: Measurem	ent v	vorst emiss	ions of receiv	e antenna po	olarization: I	H (Horizontal) or V (Ve	rtical).	

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 53 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Power Level	3	Ant. No.	1,2,3		Nam master!	ata d Daw d		_	
Modulation		11N2.4G	G-20M		Non-restri	cted Band	Emission	S	
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol
2390-2400	3	2412	77.80	2399.50	47.58	30.22	30	PK	Н
2500-2690	3	2462	81.61	2517.30	29.63	52.07	30	PK	Н
	Lo	ow Band				Up Bar	nd		
-50 — D2 47.8 dB _H V — -60 — -50 — D2 47.8 dB _H V — -40 — -4			Span 150 MHz	-50 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	D2 51.6 dByV-	F1 F2	Sp.	an 150 MHz	

Transmitter Radiated Bandedge Emissions Result											
Power Level	3	Ant. No.	1,2,3	Destricted Band Fusionisms							
Modulation		11N2.4G	G-20M	Restricted Band Emissions							
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.		
2310-2390	3	2412	113.25	2389.04	3	66.95	74	PK	Н		
2310-2390	3	2412	102.87	2388.56	3	52.71	54	AV	Н		
2483.5-2500	3	2462	112.47	2483.66	3	67.54	74	PK	Н		
2483.5-2500	3	2462	101.48	2483.50 3 53.16 54 AV H							

SPORTON INTERNATIONAL INC. Page No. : 54 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.6 Transmitter Radiated Unwanted Emissions

3.5.7 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Report No.: FR253104

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Band Emissions Limit								
RF output power procedure	Limit (dB)							
Peak output power procedure	20							
Average output power procedure	30							

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

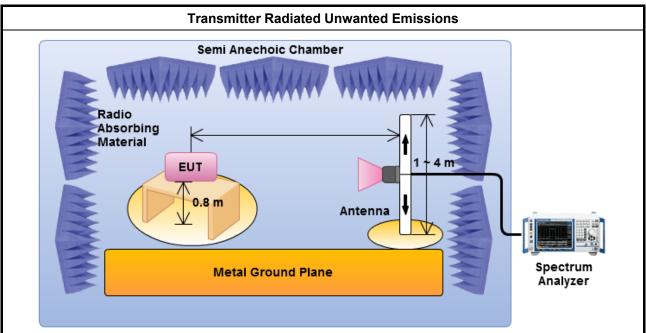
3.5.8 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 55 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.9 Test Procedures

		Test Method – General Information									
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).										
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.									
	\boxtimes	Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.									
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].									
\boxtimes	For t	the transmitter unwanted emissions shall be measured using following options below:									
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.									
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.									
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).									
		Refer as FCC KDB 558074, clause 5.4.2.2.2 Option 2 (Trace Averaging).									
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle ≥ 98%.									
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.									
		Refer as FCC KDB 558074, clause 5.4.2.2.3 measurement procedure peak limit.									
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.									

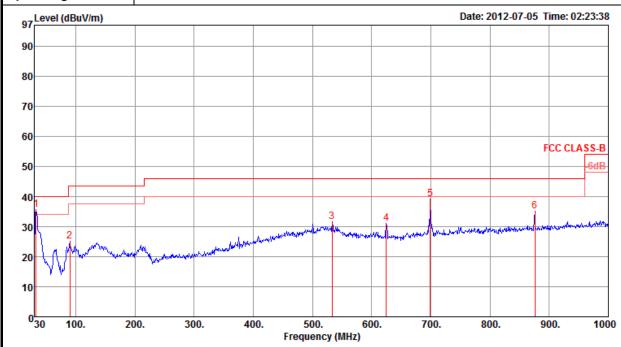

Report No.: FR253104

SPORTON INTERNATIONAL INC. Page No. : 56 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

			Test Method
	Refe	er as	FCC KDB 558074, clause 2 for conducted measurement.
		For	unwanted emissions into non-restricted bands (relative emission limits).
			For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
			unwanted emissions into restricted bands. Test conducted spurious emissions and radiated by cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).
			Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands on frequencies \leq 1000 MHz
			Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands on frequencies > 1000 MHz
			For conducted measurements on devices with multiple transmit chains using options given below:
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
\boxtimes	For	radia	ted measurement.
	\boxtimes	Refe	er as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\boxtimes	Refe	er as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\boxtimes	Refe	er as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

SPORTON INTERNATIONAL INC. Page No. : 57 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.10 Test Setup



Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna.

SPORTON INTERNATIONAL INC. Page No. : 58 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.11 Test Result of Transmitter Radiated Unwanted Emissions (Below 1GHz)

Transmitter Radiated Unwanted Emissions (Below 1GHz)										
Modulation Mode	11N2.4G-20M	Power Level	3	Test Freq. (FX)	F2					
Operating Mode	1	Ant. No.	1,2,3	Polarization	V					
Operating Function	Normal Link									

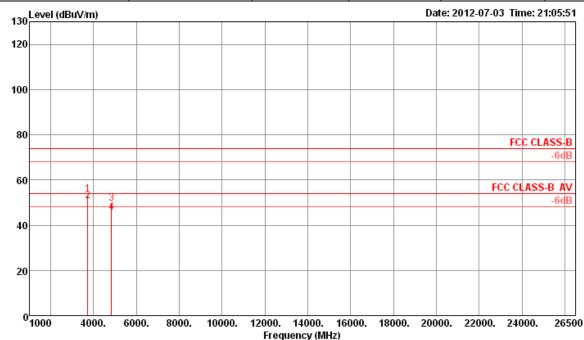
	Freq	Level	Limit Line	Over Limit	Read Level			Antenna Factor	Remark	Pol/Phase	A/Pos	T/Pos
_	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	——dB	dBu∀	dB	——dB	dB/m			Cm	deg
1 p 2 3 4 5 6	32.91 90.14 533.43 624.61 699.30 875.84	35.75 25.07 31.53 30.95 39.14 35.16	43.50 46.00 46.00 46.00	-4.25 -18.43 -14.47 -15.05 -6.86 -10.84	44.76 42.23 37.47 35.27 42.08 36.15	0.88 1.41 3.49 3.81 4.16 4.51	27.87 27.90 27.58	18.47 19.45 19.99	Peak Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	100 100 100 100 100 100	0 0 0 0

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 59 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01


dul	ation Mode	2.4G-2	OM	Pov	ver Leve	el 3	3	Т	est F	req. (FX) F2	F2	
perat	ting Mode	1		Ant	Ant. No.		1,2,3	Р	olari	zation	Н		
perat	ting Function	Norma	l Link			•				•			
97Le	evel (dBuV/m)							D	ate: 20	12-07-05 T	ime: 02	2:17:13	
90													
80													
70													
60										F	CC CLA	ASS-B	
50												6dB	
40							5	6		7			
			2	3	4								
30			ماني	de distribuis de la constitución	Wangara and America	his breaking and	connection and the second	Maring Confession	ep ^{hi} liographical	AND THE PROPERTY OF THE PARTY O	Appropriation of the Park	2,500	
20	M W	the burn Hill of the	harden and a company of the same of the sa										
10	W/W												
<u>_</u> _													
030	0 100. 2	200.	300.	400.	500.		00.	700.	800	. 90	00.	1000	
030) 100. 2	200.	300.		500. Frequency (00.	700.	800	. 90	00.	1000	
030	Freq Level	Limit		F Cable		(MHz)		700.		. 90		1000	
030		Limit Line I	Over Read	. Cable Loss	PreampAn Factor F	(MHz)						1000	

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. : 60 of 117 Page No. Report Version TEL: 886-3-327-3456 : Rev. 01

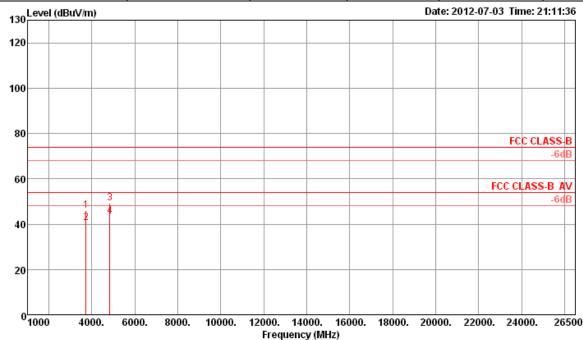
3.5.12 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11B-20M

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F1				
Operating Function	Transmit	Ant. No.	3	Polarization	V				

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1	3732.67	53.45	74.00	-20.55	54.63	2.82	31.21	35.21	Peak	117	71 VERTICAL
2	3732.77	50.71	54.00	-3.29	51.89	2.82	31.21	35.21	Average	117	71 VERTICAL
3	4823.86	49.55	74.00	-24.45	48.21	3.31	33.06	35.03	Peak	134	260 VERTICAL
4	4823.96	45.57	54.00	-8.43	44.23	3.31	33.06	35.03	Average	134	260 VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 61 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F1					
Operating Function	Transmit	Ant. No.	3	Polarization	Н					

	Freq	Level		0ver Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1	3732.67	45.95	74.00	-28.05	47.13	2.82	31.21	35.21	Peak	148	34 HORIZONTAL
2	3732.74	40.44	54.00	-13.56	41.62	2.82	31.21	35.21	Average	148	34 HORIZONTAL
3	4823.81	49.42	74.00	-24.58	48.08	3.31	33.06	35.03	Peak	100	72 HORIZONTAL
4	4823.96	43.36	54.00	-10.64	42.02	3.31	33.06	35.03	Average	100	72 HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 62 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

4000

8000.

10000.

Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)
Operating Function	Transmit	Ant. No.	3	Polarization V
130 Level (dBuV/m)			Dat	te: 2012-07-04 Time: 00:23:5
120				
100				
80				FCC CLASS-B
60				FCC CLASS-B AV
40	5			-6dB
20				

12000. 14000. 16000.

Frequency (MHz)

18000.

20000.

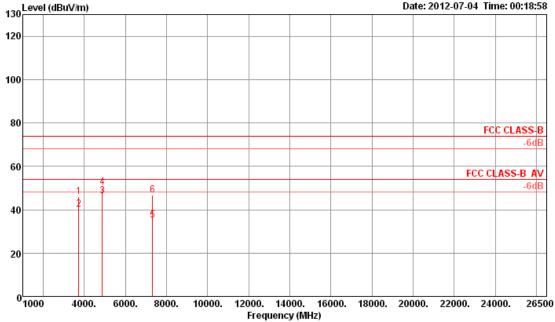
22000.

Transmitter Radiated Unwanted Emissions (Above 1GHz)

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg	
1	3732.75	50.30	54.00	-3.70	51.48	2.82	31.21	35.21	Average	113	65	VERTICAL
2	3732.86	53.53	74.00	-20.47	54.71	2.82	31.21	35.21	Peak	113	65	VERTICAL
3	4873.97	47.22	54.00	-6.78	45.76	3.33	33.16	35.03	Average	100	251	VERTICAL
4	4874.03	51.19	74.00	-22.81	49.73	3.33	33.16	35.03	Peak	100	251	VERTICAL
5	7310.15	34.15	54.00	-19.85	29.53	4.06	35.96	35.40	Average	100	256	VERTICAL
6	7311.75	46.66	74.00	-27.34	42.04	4.06	35.96	35.40	Peak	100	256	VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

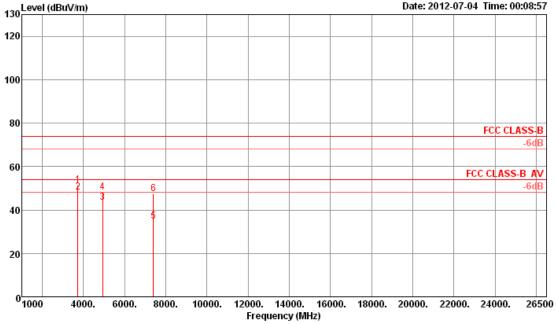
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 63 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F2								
Operating Function	Transmit	Ant. No.	3	Polarization	Н								
Date: 2012-07-04 Time: 00:18:58													

	Freq	Level	Limit Line	0ver Limit	Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3732.60	46.08	74.00	-27.92	47.26	2.82	31.21	35.21	Peak	148	40	HORIZONTAL
2	3732.73	40.22	54.00	-13.78	41.40	2.82	31.21	35.21	Average	148	40	HORIZONTAL
3	4873.96	46.28	54.00	-7.72	44.82	3.33	33.16	35.03	Average	108	259	HORIZONTAL
4	4874.01	50.19	74.00	-23.81	48.73	3.33	33.16	35.03	Peak	108	259	HORIZONTAL
5	7311.60	35.05	54.00	-18.95	30.43	4.06	35.96	35.40	Average	100	241	HORIZONTAL
6	7312.39	46.54	74.00	-27.46	41.92	4.06	35.96	35.40	Peak	100	241	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

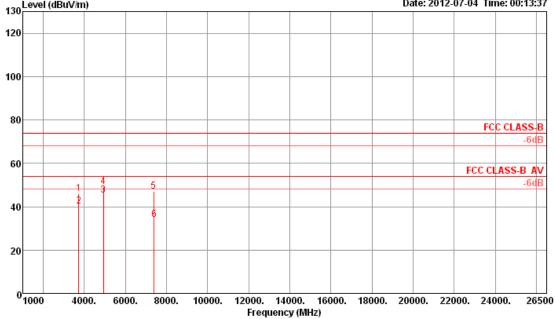
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 64 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radia	ted Unwanted E	missions (Abo	ve 1GHz)						
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F3					
Operating Function	Transmit	Ant. No.	3	Polarization	V					
Level (dBuV/m) Date: 2012-07-04 Time: 00:08:57										

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase
•	MHz	dBu\∕/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3732.64	51.27	74.00	-22.73	52.45	2.82	31.21	35.21	Peak	100	61	VERTICAL
2	3732.73	48.07	54.00	-5.93	49.25	2.82	31.21	35.21	Average	100	61	VERTICAL
3	4923.96	43.48	54.00	-10.52	41.88	3.35	33.26	35.01	Average	100	251	VERTICAL
4	4923.98	48.15	74.00	-25.85	46.55	3.35	33.26	35.01	Peak	100	251	VERTICAL
5	7385.19	34.79	54.00	-19.21	30.04	4.06	36.09	35.40	Average	142	256	VERTICAL
6	7387.11	47.47	74.00	-26.53	42.72	4.06	36.09	35.40	Peak	142	256	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

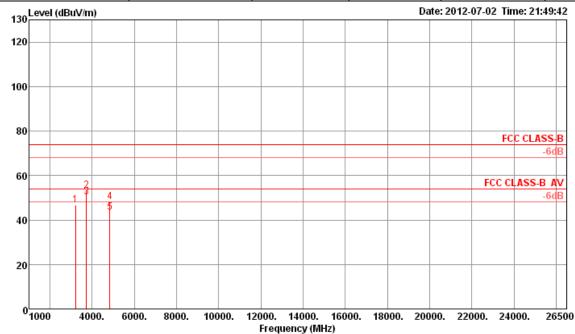
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 65 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F3								
Operating Function	Transmit	Ant. No.	Polarization	Н									
130 Level (dBuV/m)	130_Level (dBuV/m) Date: 2012-07-04 Time: 00:13:37												

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3732.74	45.92	74.00	-28.08	47.10	2.82	31.21	35.21	Peak	147	40	HORIZONTAL
2	3732.75	40.17	54.00	-13.83	41.35	2.82	31.21	35.21	Average	147	40	HORIZONTAL
3	4923.96	45.43	54.00	-8.57	43.83	3.35	33.26	35.01	Average	101	258	HORIZONTAL
4	4924.01	49.36	74.00	-24.64	47.76	3.35	33.26	35.01	Peak	101	258	HORIZONTAL
5	7384.46	47.02	74.00	-26.98	42.27	4.06	36.09	35.40	Peak	100	247	HORIZONTAL
6	7385.14	34.11	54.00	-19.89	29.36	4.06	36.09	35.40	Average	100	247	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 66 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11B-20M	Power Level	2	Test Freq. (FX)	F1							
Operating Function Transmit Ant. No. 2,3 Polarization V												

	Frea	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
									realist it			
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
	2215 61	45.70	74.00				20.00	25.25			2.50	LEBETS
1	3216.04	46.79	74.00	-2/.21	49.49	2.65	30.00	35.35	Реак	102	360	VERTICAL
2	3732.68	53.14	74.00	-20.86	54.32	2.82	31.21	35.21	Peak	117	66	VERTICAL
3	3732.72	50.29	54.00	-3.71	51.47	2.82	31.21	35.21	Average	117	66	VERTICAL
4	4823.82	48.03	74.00	-25.97	46.69	3.31	33.06	35.03	Peak	132	272	VERTICAL
5	4823.95	43.37	54.00	-10.63	42.03	3.31	33.06	35.03	Average	132	272	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 67 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Modulation Mode

11B-20M

6000.

8000.

10000.

Test Fred (FX) F1

WOU	uıaı	1011	IVIC	ue	IID-Z	UIVI	Power	Levei	_		162	it rieq.	$(\Gamma \Lambda)$	ГГ
Oper	atir	ng F	un	ction	Trans	mit	Ant. No).	2,3 Polarization					
130	Leve	l (dBu	ıV/m)						Date	e: 2012	-07-02 Tin	ne: 21:4	0:49
120														
100														
80												FC	C CLAS	S-B 6dB
60			1									FCC CL	.ASS-B	AV 6dB
40			2	5									-(Л
20														

12000. 14000.

Frequency (MHz)

16000.

18000.

20000.

22000.

Transmitter Radiated Unwanted Emissions (Above 1GHz)

Power I evel

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu\//m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3216.05	49.43	74.00	-24.57	52.13	2.65	30.00	35.35	Peak	100	143	HORIZONTAL
2	3732.74	39.56	54.00	-14.44	40.74	2.82	31.21	35.21	Average	170	126	HORIZONTAL
3	3732.75	45.67	74.00	-28.33	46.85	2.82	31.21	35.21	Peak	170	126	HORIZONTAL
4	4823.84	46.45	74.00	-27.55	45.11	3.31	33.06	35.03	Peak	100	290	HORIZONTAL
5	4823.95	40.12	54.00	-13.88	38.78	3.31	33.06	35.03	Average	100	290	HORIZONTAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

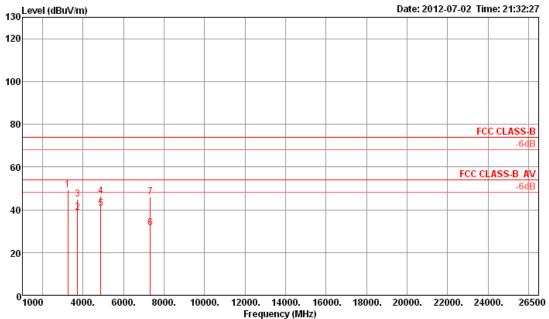
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 68 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode11B-20MPower Level2Test Freq. (FX)F2										
Operating Function Transmit Ant. No. 2,3 Polarization V											

	Freq	Level	Limit Line	0ver Limit		CableA Loss				A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3249.30	47.29	74.00	-26.71	49.98	2.66	30.00	35.35	Peak	100	345	VERTICAL
2	3732.65	52.99	74.00	-21.01	54.17	2.82	31.21	35.21	Peak	116	69	VERTICAL
3	3732.73	50.35	54.00	-3.65	51.53	2.82	31.21	35.21	Average	116	69	VERTICAL
4	4873.91	48.89	74.00	-25.11	47.43	3.33	33.16	35.03	Peak	120	274	VERTICAL
5	4873.94	44.60	54.00	-9.40	43.14	3.33	33.16	35.03	Average	120	274	VERTICAL
6	7308.52	46.09	74.00	-27.91	41.47	4.06	35.96	35.40	Peak	100	257	VERTICAL
7	7310.05	32.92	54.00	-21.08	28.30	4.06	35.96	35.40	Average	100	257	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

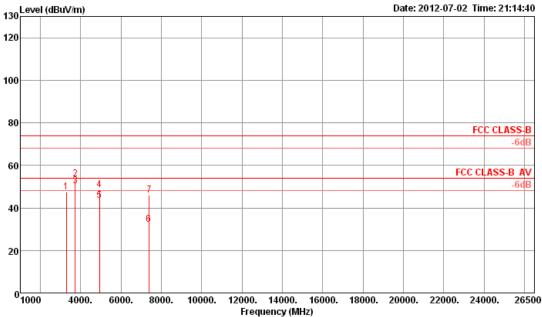
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 69 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11B-20M Power Level 2 Test Freq. (FX) F2										
Operating Function	Transmit	Ant. No.	2,3	Polarization	Н						

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3249.37	49.24	74.00	-24.76	51.93	2.66	30.00	35.35	Peak	100	145	HORIZONTAL
2	3732.74	38.59	54.00	-15.41	39.77	2.82	31.21	35.21	Average	168	130	HORIZONTAL
3	3732.82	44.80	74.00	-29.20	45.98	2.82	31.21	35.21	Peak	168	130	HORIZONTAL
4	4873.84	46.52	74.00	-27.48	45.06	3.33	33.16	35.03	Peak	100	66	HORIZONTAL
5	4873.96	40.46	54.00	-13.54	39.00	3.33	33.16	35.03	Average	100	66	HORIZONTAL
6	7309.07	31.44	54.00	-22.56	26.82	4.06	35.96	35.40	Average	100	152	HORIZONTAL
7	7315.91	45.96	74.00	-28.04	41.34	4.06	35.96	35.40	Peak	100	152	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

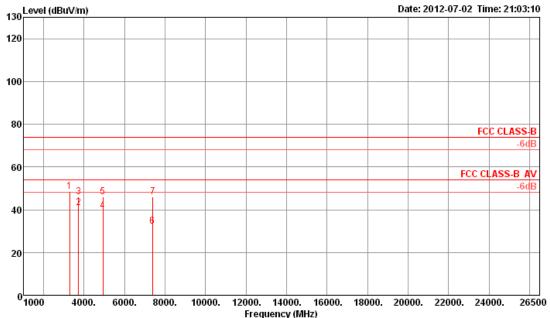
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 70 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11B-20MPower Level2Test Freq. (FX)F3											
Operating Function Transmit Ant. No. 2,3 Polarization V											

	Freq	Level	Limit Line	Over Limit		CableA Loss				A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu\//m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3282.68	47.26	74.00	-26.74	49.91	2.69	30.00	35.34	Peak	172	333	VERTICAL
2	3732.58	53.45	74.00	-20.55	54.63	2.82	31.21	35.21	Peak	116	73	VERTICAL
3	3732.75	50.44	54.00	-3.56	51.62	2.82	31.21	35.21	Average	116	73	VERTICAL
4	4923.80	48.43	74.00	-25.57	46.83	3.35	33.26	35.01	Peak	109	281	VERTICAL
5	4923.96	43.41	54.00	-10.59	41.81	3.35	33.26	35.01	Average	109	281	VERTICAL
6	7383.02	32.05	54.00	-21.95	27.30	4.06	36.09	35.40	Average	100	145	VERTICAL
7	7389.31	45.99	74.00	-28.01	41.24	4.06	36.09	35.40	Peak	100	145	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

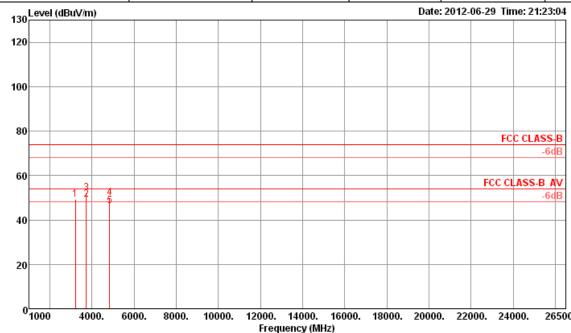
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 71 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode11B-20MPower Level2Test Freq. (FX)F3										
Operating Function Transmit Ant. No. 2,3 Polarization H											

	Freq	Level	Limit Line	0ver Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3282.57	48.43	74.00	-25.57	51.08	2.69	30.00	35.34	Peak	100	150	HORIZONTAL
2	3732.75	40.85	54.00	-13.15	42.03	2.82	31.21	35.21	Average	171	143	HORIZONTAL
3	3732.94	46.16	74.00	-27.84	47.34	2.82	31.21	35.21	Peak	171	143	HORIZONTAL
4	4923.94	39.39	54.00	-14.61	37.79	3.35	33.26	35.01	Average	113	354	HORIZONTAL
5	4924.03	46.02	74.00	-27.98	44.42	3.35	33.26	35.01	Peak	113	354	HORIZONTAL
6	7381.19	32.18	54.00	-21.82	27.43	4.06	36.09	35.40	Average	100	204	HORIZONTAL
7	7387.06	46.09	74.00	-27.91	41.34	4.06	36.09	35.40	Peak	100	204	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

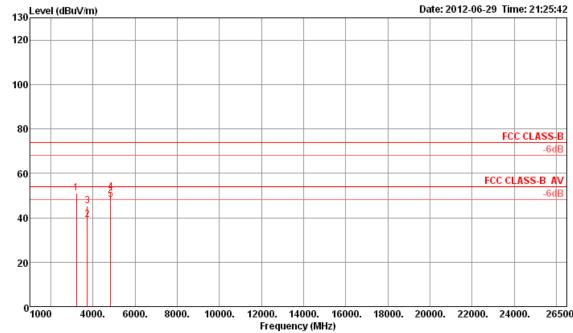
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 72 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11B-20M Power Level 3 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V				

	Freq	Level		0ver Limit						A/Pos	-	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3215.89	49.18	74.00	-24.82	51.88	2.65	30.00	35.35	Peak	103	34 ∖	/ERTICAL
2	3732.76	49.22	54.00	-4.78	50.40	2.82	31.21	35.21	Average	117	60 ∖	/ERTICAL
3	3732.77	52.18	74.00	-21.82	53.36	2.82	31.21	35.21	Peak	117	60 ∖	/ERTICAL
4	4823.92	49.91	74.00	-24.09	48.57	3.31	33.06	35.03	Peak	100	271 \	/ERTICAL
5	4823.96	46.51	54.00	-7.49	45.17	3.31	33.06	35.03	Average	100	271 \	/ERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

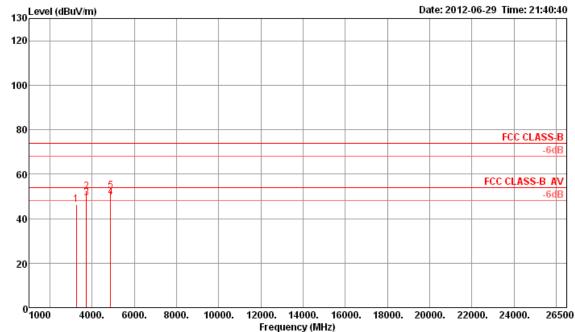
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 73 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11B-20M Power Level 3 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н					

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
-	MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3215.96	51.22	74.00	-22.78	53.92	2.65	30.00	35.35	Peak	100	48	HORIZONTAL
2	3732.73	39.20	54.00	-14.80	40.38	2.82	31.21	35.21	Average	102	34	HORIZONTAL
3	3732.80	45.30	74.00	-28.70	46.48	2.82	31.21	35.21	Peak	102	34	HORIZONTAL
4	4823.84	51.37	74.00	-22.63	50.03	3.31	33.06	35.03	Peak	163	286	HORIZONTAL
5	4823.94	48.13	54.00	-5.87	46.79	3.31	33.06	35.03	Average	163	286	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

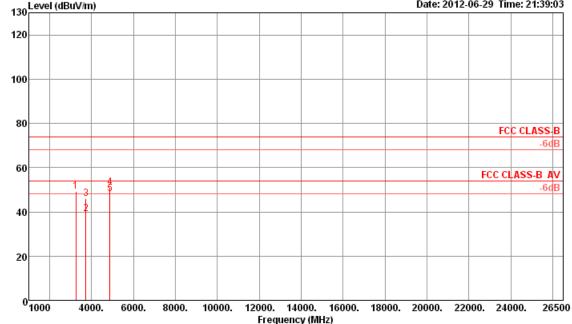
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 74 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11B-20MPower Level3Test Freq. (FX)F2										
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V					

			Limit	0ver	Read	CableA	ntenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
-	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg
1	3249.37	46.31	74.00	-27.69	49.00	2.66	30.00	35.35	Peak	103	43 VERTICAL
2	3732.60	52.14	74.00	-21.86	53.32	2.82	31.21	35.21	Peak	117	60 VERTICAL
3	3732.72	49.25	54.00	-4.75	50.43	2.82	31.21	35.21	Average	117	60 VERTICAL
4	4873.96	49.67	54.00	-4.33	48.21	3.33	33.16	35.03	Average	109	269 VERTICAL
5	4874.01	52.54	74.00	-21.46	51.08	3.33	33.16	35.03	Peak	109	269 VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

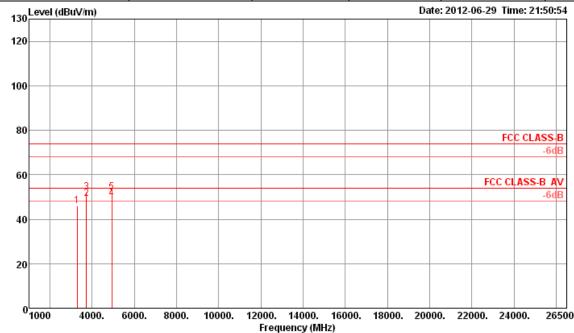
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 75 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11B-20M	Power Level	3	Test Freq. (FX)	F2						
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н						
130 Level (dBuV/m) Date: 2012-06-29 Time: 21:39:03											
150											

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3249.18	49.37	74.00	-24.63	52.06	2.66	30.00	35.35	Peak	100	48	HORIZONTAL
2	3732.74	39.26	54.00	-14.74	40.44	2.82	31.21	35.21	Average	102	34	HORIZONTAL
3	3732.80	46.04	74.00	-27.96	47.22	2.82	31.21	35.21	Peak	102	34	HORIZONTAL
4	4873.93	51.11	74.00	-22.89	49.65	3.33	33.16	35.03	Peak	112	276	HORIZONTAL
5	4873.97	48.14	54.00	-5.86	46.68	3.33	33.16	35.03	Average	112	276	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

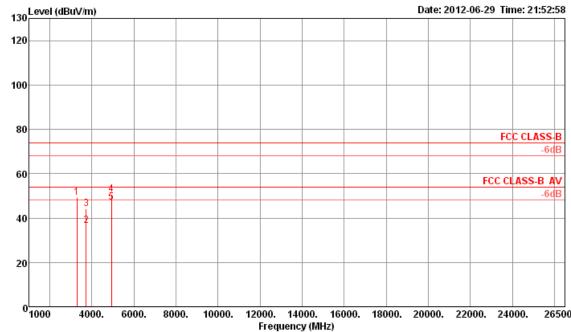
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 76 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11B-20M Power Level 3 Test Freq. (FX) F3										
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V					

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3282.59	46.02	74.00	-27.98	48.67	2.69	30.00	35.34	Peak	101	72	VERTICAL
2	3732.74	49.28	54.00	-4.72	50.46	2.82	31.21	35.21	Average	116	45	VERTICAL
3	3732.81	52.23	74.00	-21.77	53.41	2.82	31.21	35.21	Peak	116	45	VERTICAL
4	4923.96	49.09	54.00	-4.91	47.49	3.35	33.26	35.01	Average	119	258	VERTICAL
5	4923.98	51.99	74.00	-22.01	50.39	3.35	33.26	35.01	Peak	119	258	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 77 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

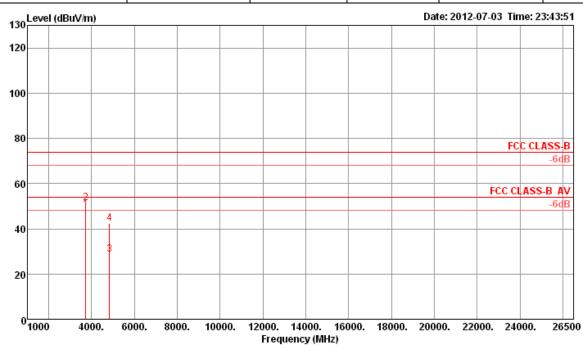
	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11B-20M	Power Level	3	Test Freq. (FX)	F3						
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н						
Local (dBul/lm)			Date	2012-06-29 Time: 21-6	2:58						

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
-	MHz	dBu\//m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3282.64	49.28	74.00	-24.72	51.93	2.69	30.00	35.34	Peak	113	43	HORIZONTAL
2	3732.76	36.69	54.00	-17.31	37.87	2.82	31.21	35.21	Average	100	18	HORIZONTAL
3	3732.87	44.15	74.00	-29.85	45.33	2.82	31.21	35.21	Peak	100	18	HORIZONTAL
4	4923.89	50.65	74.00	-23.35	49.05	3.35	33.26	35.01	Peak	100	271	HORIZONTAL
5	4923.94	47.12	54.00	-6.88	45.52	3.35	33.26	35.01	Average	100	271	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.


Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 78 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.13 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11G-20M

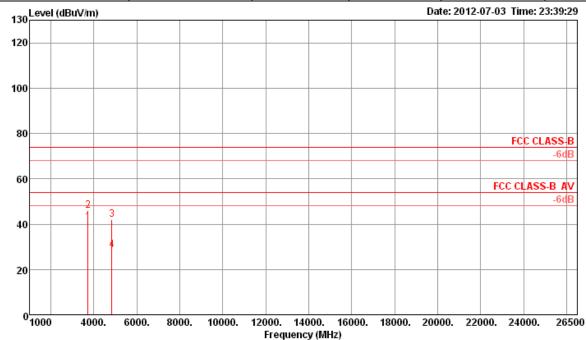
Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11G-20M	Power Level	1	Test Freq. (FX)	F1						
Operating Function	Operating Function Transmit Ant. No. 3 Polarization V										

Report No.: FR253104

	Freq	Level		0ver Limit					Remark	A/Pos		Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3732.73	48.39	54.00	-5.61	49.57	2.82	31.21	35.21	Average	100	62	VERTICAL
2	3732.79	51.39	74.00	-22.61	52.57	2.82	31.21	35.21	Peak	100	62	VERTICAL
3	4823.76	28.48	54.00	-25.52	27.14	3.31	33.06	35.03	Average	100	123	VERTICAL
4	4824.35	42.53	74.00	-31.47	41.19	3.31	33.06	35.03	Peak	100	123	VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 79 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11G-20M	Power Level	1	Test Freq. (FX)	F1						
Operating Function	Operating Function Transmit Ant. No. 3 Polarization H										

	Freq	Level	Limit Line	0ver Limit					A/Pos	T/Pos	Pol/Phase
-	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg	
1 2 3 4	3732.76 4823.68	46.13 42.01	74.00 74.00	-27.87 -31.99	47.31 40.67	2.82 3.31	31.21 33.06	35.21 35.03	146 146 100 100	38 252	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 80 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Modulation Mode

0¹1000

11G-20M

Test Fred (FX) F2

viou	ilation would	7	110-20	IVI		OWEI	Levei			rest Fleq. (FX)					
Oper	ating Functi	on	Transm	nit	1	Ant. No.		3		Polari	zation	٧			
130	Level (dBuV/m)					I		•	Date	Date: 2012-07-03 Time: 23:45					
120															
100															
80											FCC CLASS	_			
60	1									F	CC CLASS-B				
40		4	5								-6	idB			

Frequency (MHz)

Transmitter Radiated Unwanted Emissions (Above 1GHz)

1

12000. 14000. 16000. 18000. 20000. 22000. 24000.

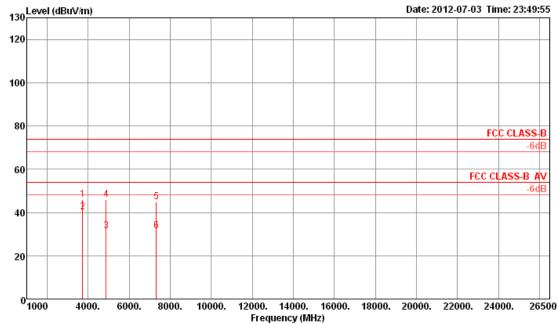
Power I evel

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3732.55	53.33	74.00	-20.67	54.51	2.82	31.21	35.21	Peak	113	65	VERTICAL
2	3732.74	50.46	54.00	-3.54	51.64	2.82	31.21	35.21	Average	113	65	VERTICAL
3	4874.34	29.10	54.00	-24.90	27.64	3.33	33.16	35.03	Average	100	201	VERTICAL
4	4874.35	42.35	74.00	-31.65	40.89	3.33	33.16	35.03	Peak	100	201	VERTICAL
5	7311.05	45.37	74.00	-28.63	40.75	4.06	35.96	35.40	Peak	100	276	VERTICAL
6	7311.43	31.54	54.00	-22.46	26.92	4.06	35.96	35.40	Average	100	276	VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)


10000.

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 81 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F2											
Operating Function	Operating Function Transmit Ant. No. 3 Polarization H											

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3732.74	45.92	74.00	-28.08	47.10	2.82	31.21	35.21	Peak	148	40	HORIZONTAL
2	3732.76	40.17	54.00	-13.83	41.35	2.82	31.21	35.21	Average	148	40	HORIZONTAL
3	4874.43	31.62	54.00	-22.38	30.16	3.33	33.16	35.03	Average	100	70	HORIZONTAL
4	4874.49	45.93	74.00	-28.07	44.47	3.33	33.16	35.03	Peak	100	70	HORIZONTAL
5	7310.70	45.04	74.00	-28.96	40.42	4.06	35.96	35.40	Peak	100	134	HORIZONTAL
6	7311.47	31.48	54.00	-22.52	26.86	4.06	35.96	35.40	Average	100	134	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 82 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

odι	ılation	Mode	11G-20	M	Power	Level	1		Test Freq. (FX)			F
per	ating F	unction	Transm	it	Ant. No).	3		Pol	larizatio	on	٧
130	Level (dB	BuV/m)					•	Date: 2012-07-03 Time: 23:56:				
120												
100												
80										FC	C CLASS	_
											-6	dB
60		2	6							FCC CL	. ASS-B -6	AV dB
40		4	5									

Frequency (MHz)

12000. 14000. 16000. 18000. 20000.

22000.

26500

Transmitter Radiated Unwanted Emissions (Above 1GHz)

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∖∕	dB	dB/m	dB		Cm	deg	
1	3732.75	50.46	54.00	-3.54	51.64	2.82	31.21	35.21	Average	112	64	VERTICAL
2	3732.82	53.23	74.00	-20.77	54.41	2.82	31.21	35.21	Peak	112	64	VERTICAL
3	4923.66	28.52	54.00	-25.48	26.92	3.35	33.26	35.01	Average	100	177	VERTICAL
4	4923.79	41.96	74.00	-32.04	40.36	3.35	33.26	35.01	Peak	100	177	VERTICAL
5	7385.61	32.03	54.00	-21.97	27.28	4.06	36.09	35.40	Average	100	253	VERTICAL
6	7385.84	46.39	74.00	-27.61	41.64	4.06	36.09	35.40	Peak	100	253	VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

10000.

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 83 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

FAX: 886-3-327-0973

01000

4000

6000.

8000.

Modu	ılation Mode	11G-20M	Power Level	1	Test Freq. (FX) F3
Oper	ating Function	Transmit	Ant. No.	3	Polarization H
130	Level (dBuV/m)				Date: 2012-07-03 Time: 23:52:19
120					
100					
80					FCC CLASS-B
60					FCC CLASS-B AV
40	2 4	5			-6dB

Transmitter Radiated Unwanted Emissions (Above 1GHz)

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
-	MHz	dBu\//m	dBu∀/m	dB	dBu∖∕	dB	dB/m	dB		Cm	deg	
1	3732.58	45.77	74.00	-28.23	46.95	2.82	31.21	35.21	Peak	148	40	HORIZONTAL
2	3732.75	40.50	54.00	-13.50	41.68	2.82	31.21	35.21	Average	148	40	HORIZONTAL
3	4923.57	28.51	54.00	-25.49	26.91	3.35	33.26	35.01	Average	100	328	HORIZONTAL
4	4924.19	41.61	74.00	-32.39	40.01	3.35	33.26	35.01	Peak	100	328	HORIZONTAL
5	7386.12	45.88	74.00	-28.12	41.13	4.06	36.09	35.40	Peak	100	262	HORIZONTAL
6	7386.17	31.95	54.00	-22.05	27.20	4.06	36.09	35.40	Average	100	262	HORIZONTAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

12000. 14000. 16000. 18000. 20000.

Frequency (MHz)

22000.

26500

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

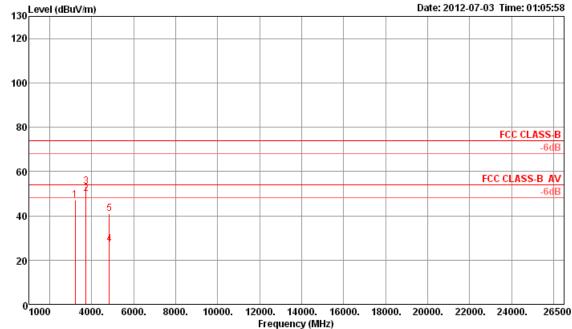
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

10000.

8000.

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.


SPORTON INTERNATIONAL INC. Page No. : 84 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

FAX: 886-3-327-0973

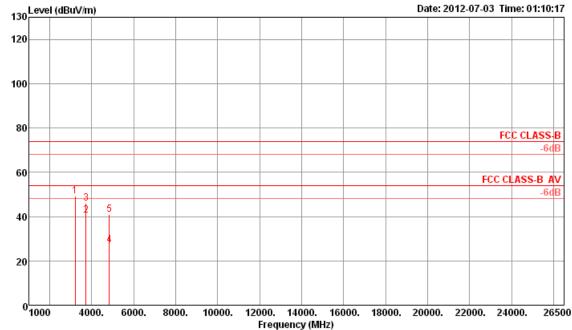
0 1000

4000

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode11G-20MPower Level2Test Freq. (FX)F1											
Operating Function	Transmit	Ant. No.	2,3	Polarization	V						
130 Level (dBuV/m) Date: 2012-07-03 Time: 01:05:58											

	Freq	Level	Limit Line	0ver Limit						A/Pos	-	Pol/Phase
-	MHz	dBu∀/m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3215.84	47.17	74.00	-26.83	49.87	2.65	30.00	35.35	Peak	100	321	VERTICAL
2	3732.72	50.12	54.00	-3.88	51.30	2.82	31.21	35.21	Average	118	27 \	VERTICAL
3	3732.80	53.10	74.00	-20.90	54.28	2.82	31.21	35.21	Peak	118	27 \	VERTICAL
4	4823.61	27.02	54.00	-26.98	25.68	3.31	33.06	35.03	Average	100	150	VERTICAL
5	4824.43	40.93	74.00	-33.07	39.59	3.31	33.06	35.03	Peak	100	150	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

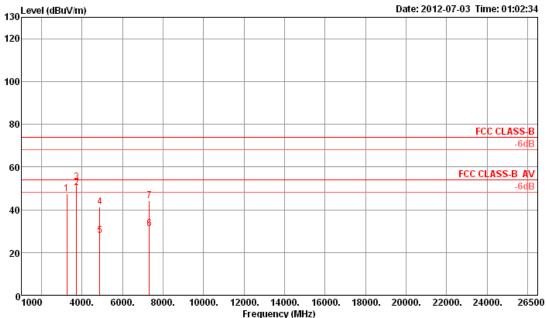
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 85 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode11G-20MPower Level2Test Freq. (FX)F1												
Operating Function	Transmit	Ant. No.	2,3	Polarization	Н							
Level (dBuV/m) Date: 2012-07-03 Time: 01:10:17												

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu\√/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	3215.89	49.08	74.00	-24.92	51.78	2.65	30.00	35.35	Peak	100	107	HORIZONTAL
2	3732.75	40.50	54.00	-13.50	41.68	2.82	31.21	35.21	Average	171	95	HORIZONTAL
3	3732.79	46.13	74.00	-27.87	47.31	2.82	31.21	35.21	Peak	171	95	HORIZONTAL
4	4823.79	27.08	54.00	-26.92	25.74	3.31	33.06	35.03	Average	100	47	HORIZONTAL
5	4824.45	41.01	74.00	-32.99	39.67	3.31	33.06	35.03	Peak	100	47	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

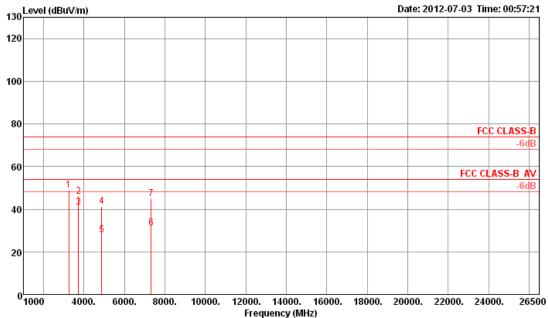
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 86 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11G-20M Power Level 2 Test Freq. (FX) F2										
Operating Function	Transmit	Ant. No.	2,3	Polarization	V					

	Freq	Level		0ver Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3249.33	47.43	74.00	-26.57	50.12	2.66	30.00	35.35	Peak	100	302	VERTICAL
2	3732.75	50.19	54.00	-3.81	51.37	2.82	31.21	35.21	Average	117	27	VERTICAL
3	3732.87	52.97	74.00	-21.03	54.15	2.82	31.21	35.21	Peak	117	27	VERTICAL
4	4873.98	41.34	74.00	-32.66	39.88	3.33	33.16	35.03	Peak	100	107	VERTICAL
5	4874.34	27.96	54.00	-26.04	26.50	3.33	33.16	35.03	Average	100	107	VERTICAL
6	7311.02	31.25	54.00	-22.75	26.63	4.06	35.96	35.40	Average	100	183	VERTICAL
7	7311.05	44.12	74.00	-29.88	39.50	4.06	35.96	35.40	Peak	100	183	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

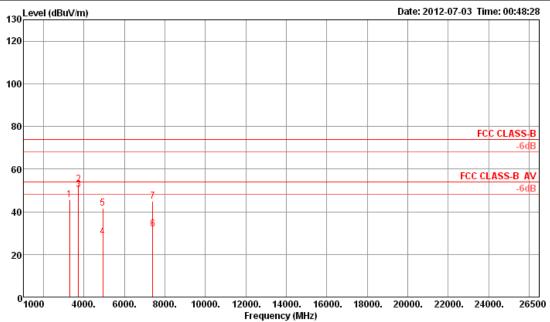
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 87 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11G-20MPower Level2Test Freq. (FX)F2										
Operating Function	Transmit	Ant. No.	2,3	Polarization	Н					

	Freq	Level	Limit Line	0ver Limit		CableA Loss				A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	3249.32	49.05	74.00	-24.95	51.74	2.66	30.00	35.35	Peak	100	105	HORIZONTAL
2	3732.69	45.97	74.00	-28.03	47.15	2.82	31.21	35.21	Peak	153	112	HORIZONTAL
3	3732.75	40.74	54.00	-13.26	41.92	2.82	31.21	35.21	Average	153	112	HORIZONTAL
4	4873.53	41.43	74.00	-32.57	39.97	3.33	33.16	35.03	Peak	100	216	HORIZONTAL
5	4873.54	27.93	54.00	-26.07	26.47	3.33	33.16	35.03	Average	100	216	HORIZONTAL
6	7311.14	31.28	54.00	-22.72	26.66	4.06	35.96	35.40	Average	100	159	HORIZONTAL
7	7311.22	44.98	74.00	-29.02	40.36	4.06	35.96	35.40	Peak	100	159	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

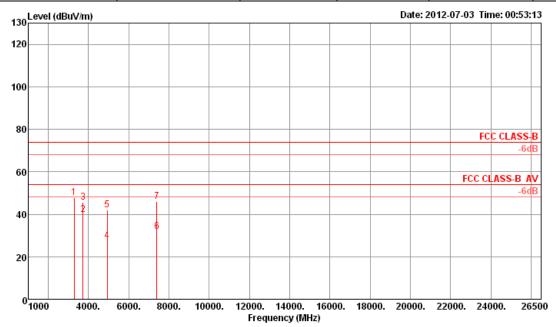
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 88 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11G-20M Power Level 2 Test Freq. (FX) F3										
Operating Function	Transmit	Ant. No.	2,3	Polarization	V					

	Freq	Level	Limit Line	0ver Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3282.46	45.75	74.00	-28.25	48.40	2.69	30.00	35.34	Peak	100	298	VERTICAL
2	3732.63	52.85	74.00	-21.15	54.03	2.82	31.21	35.21	Peak	115	33	VERTICAL
3	3732.74	50.22	54.00	-3.78	51.40	2.82	31.21	35.21	Average	115	33	VERTICAL
4	4923.50	28.16	54.00	-25.84	26.56	3.35	33.26	35.01	Average	100	221	VERTICAL
5	4923.69	41.76	74.00	-32.24	40.16	3.35	33.26	35.01	Peak	100	221	VERTICAL
6	7385.50	31.83	54.00	-22.17	27.08	4.06	36.09	35.40	Average	100	129	VERTICAL
7	7386.26	44.99	74.00	-29.01	40.24	4.06	36.09	35.40	Peak	100	129	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

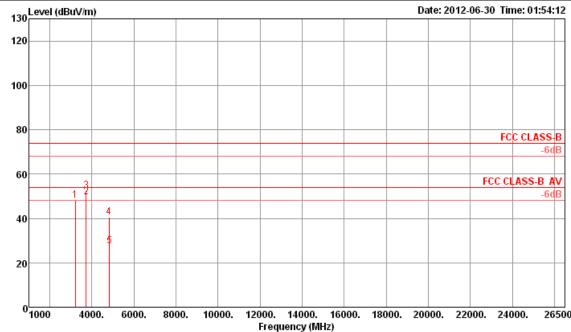
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 89 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11G-20M Power Level 2 Test Freq. (FX) F3										
Operating Function Transmit Ant. No. 2,3 Polarization H										

	Freq	Level	Limit Line	0ver Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3282.58	47.87	74.00	-26.13	50.52	2.69	30.00	35.34	Peak	100	108	HORIZONTAL
2	3732.71	39.99	54.00	-14.01	41.17	2.82	31.21	35.21	Average	167	109	HORIZONTAL
3	3732.73	45.55	74.00	-28.45	46.73	2.82	31.21	35.21	Peak	167	109	HORIZONTAL
4	4923.74	27.69	54.00	-26.31	26.09	3.35	33.26	35.01	Average	100	134	HORIZONTAL
5	4923.96	42.16	74.00	-31.84	40.56	3.35	33.26	35.01	Peak	100	134	HORIZONTAL
6	7385.60	31.99	54.00	-22.01	27.24	4.06	36.09	35.40	Average	100	201	HORIZONTAL
7	7385.91	46.09	74.00	-27.91	41.34	4.06	36.09	35.40	Peak	100	201	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

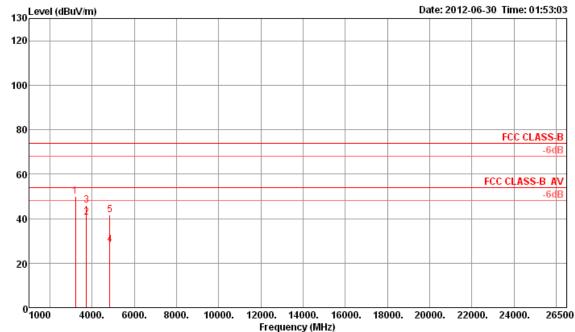
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 90 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11G-20M	Power Level	3	Test Freq. (FX)	F1						
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V						
			5.4								

			Limit	0ver	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu\//m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3215.99	48.06	74.00	-25.94	50.76	2.65	30.00	35.35	Peak	102	32	VERTICAL
2	3732.73	49.66	54.00	-4.34	50.84	2.82	31.21	35.21	Average	117	59	VERTICAL
3	3732.94	52.43	74.00	-21.57	53.61	2.82	31.21	35.21	Peak	117	59	VERTICAL
4	4820.36	40.45	74.00	-33.55	39.11	3.31	33.06	35.03	Peak	100	289	VERTICAL
5	4824.71	27.68	54.00	-26.32	26.34	3.31	33.06	35.03	Average	100	289	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

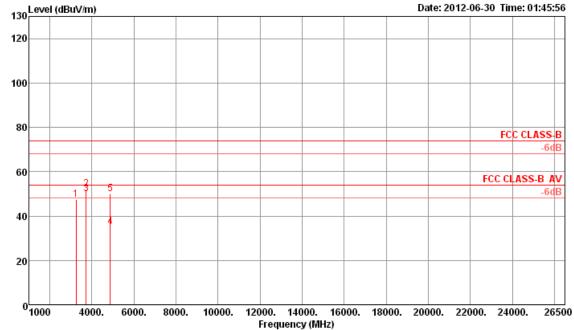
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 91 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11G-20MPower Level3Test Freq. (FX)F1										
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н					

	_			0∨er						A/Pos	-	n 1/nl
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg	
1	3215.98	49.83	74.00	-24.17	52.53	2.65	30.00	35.35	Peak	100	60	HORIZONTAL
2	3732.72	40.70	54.00	-13.30	41.88	2.82	31.21	35.21	Average	103	33	HORIZONTAL
3	3732.80	45.96	74.00	-28.04	47.14	2.82	31.21	35.21	Peak	103	33	HORIZONTAL
4	4823.57	28.42	54.00	-25.58	27.08	3.31	33.06	35.03	Average	100	239	HORIZONTAL
5	4826.29	41.74	74.00	-32.26	40.40	3.31	33.06	35.03	Peak	100	239	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

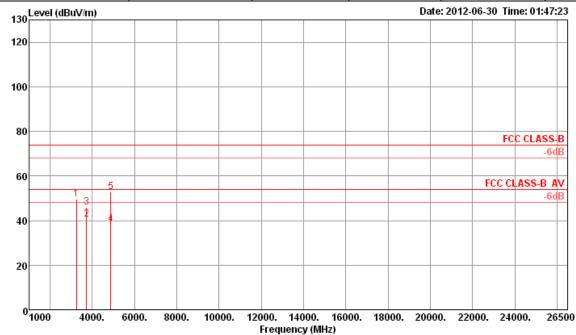
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 92 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11G-20M	Power Level	3	Test Freq. (FX)	F2						
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V						
130 Level (dBuV/m) Date: 2012-06-30 Time: 01:45:56											

	Freq	Level		0ver Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1 2 3 4	3249.38 3732.74 3732.74 4872.65	52.31 49.86	74.00 54.00	-21.69 -4.14	53.49 51.04	2.82	31.21 31.21	35.21 35.21	Peak Average	103 116 116 122	85 VERTICAL 60 VERTICAL 60 VERTICAL 236 VERTICAL
5	4876.21	49.91	74.00	-24.09	48.45	3.33	33.16	35.03	Peak	122	236 VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 93 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11G-20MPower Level3Test Freq. (FX)F2										
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н					

	Free	Level		0ver Limit						A/Pos		Pol/Phase
	пец	Level	LINE	LIMIT	Level	L033	raccor	raccor	Reliai K			FOI/Filase
	MHz	dBu\//m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3249.20	49.78	74.00	-24.22	52.47	2.66	30.00	35.35	Peak	100	60	HORIZONTAL
2	3732.73	40.68	54.00	-13.32	41.86	2.82	31.21	35.21	Average	103	33	HORIZONTAL
3	3732.84	46.02	74.00	-27.98	47.20	2.82	31.21	35.21	Peak	103	33	HORIZONTAL
4	4873.87	38.52	54.00	-15.48	37.06	3.33	33.16	35.03	Average	100	286	HORIZONTAL
5	4874.91	52.73	74.00	-21.27	51.27	3.33	33.16	35.03	Peak	100	286	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

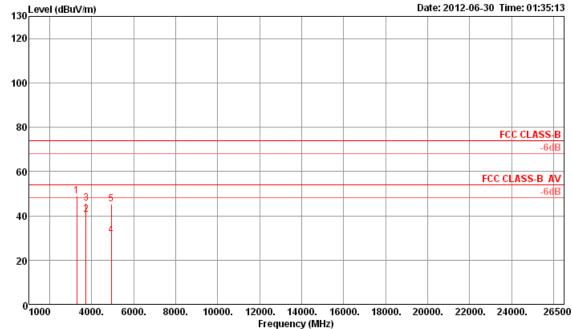
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 94 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11G-20M	Power Level	3	Test Freq. (FX)	F3							
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V							
130 Level (dBuV/m) Date: 2012-06-30 Time: 01:36:16												

	Freq	Level		0∨er Limit						A/Pos	T/Pos	Pol/Phase
-	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1 2 3 4 5	3282.61 3732.74 3732.87 4922.30 4925.72	48.93 51.92 29.22	54.00 74.00 54.00	-5.07 -22.08 -24.78	50.11 53.10 27.62	2.82 2.82 3.35	31.21 31.21 33.26	35.21 35.21 35.01	Average Peak Average	104 117 117 100 100	60 60 251	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 95 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

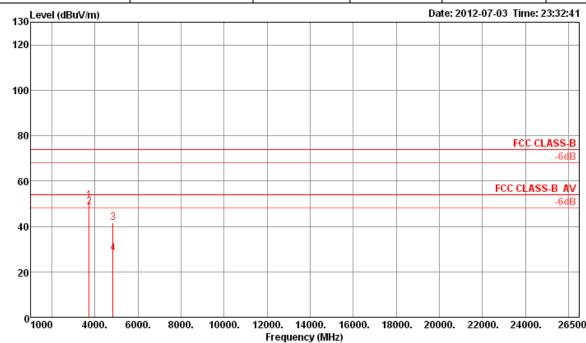
	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11G-20M	Power Level	3	Test Freq. (FX)	F3						
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н						
Level (dBuV/m) Date: 2012-06-30 Time: 01:35:13											

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase
-	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1 2 3 4 5	3732.81	40.68 45.68 31.03	54.00 74.00 54.00	-13.32 -28.32 -22.97	41.86 46.86 29.43	2.82 2.82 3.35	31.21 31.21 33.26	35.21 35.21 35.01	Average Peak Average	114 104 104 100 100	36 36 279	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.


Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 96 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Report No. : FR253104

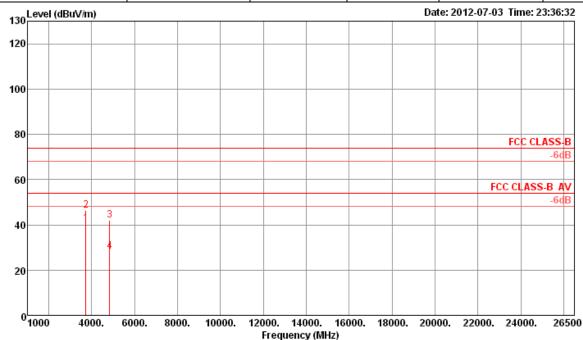
3.5.14 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11N2.4G-20M

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11N2.4G-20M	Power Level	1	Test Freq. (FX)	F1							
Operating Function	Operating Function Transmit Ant. No. 3 Polarization V											

	Freq	Level	Limit Line	0ver Limit						A/Pos	-	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3732.46	51.50	74.00	-22.50	52.68	2.82	31.21	35.21	Peak	100	61	VERTICAL
2	3732.74	48.37	54.00	-5.63	49.55	2.82	31.21	35.21	Average	100	61	VERTICAL
3	4823.68	41.76	74.00	-32.24	40.42	3.31	33.06	35.03	Peak	100	195	VERTICAL
4	4823.76	28.31	54.00	-25.69	26.97	3.31	33.06	35.03	Average	100	195	VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 97 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N2.4G-20M	Power Level	1	Test Freq. (FX)	F1						
Operating Function	Operating Function Transmit Ant. No. 3 Polarization H										

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg
1	3732.73	40.40	54.00	-13.60	41.58	2.82	31.21	35.21	Average	147	40 HORIZONTAL
2	3733.06	46.39	74.00	-27.61	47.57	2.82	31.21	35.21	Peak	147	40 HORIZONTAL
3	4823.56	42.13	74.00	-31.87	40.79	3.31	33.06	35.03	Peak	100	163 HORIZONTAL
4	4823.79	28.39	54.00	-25.61	27.05	3.31	33.06	35.03	Average	100	163 HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 98 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Modulation Mode

20

0 1000

4000.

11N2 4G-20M

Test Fred (FX) F2

22000.

26500

WOUL	ilation wode	11112.40-201	VI	POWEI LE	VEI	1		rest Freq. (FA)					
Oper	ating Function	Transmit		Ant. No.		3		Polarization \					
130	Level (dBuV/m)						Date: 2012-07-03 Time: 23:30:						
120													
100													
80									CC CLASS	S-B			
60	1							FCC	CLASS-B				
40	3	5							-0	ub			

Transmitter Radiated Unwanted Emissions (Above 1GHz)

Power I evel

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg	
1	3732.68	52.07	74.00	-21.93	53.25	2.82	31.21	35.21	Peak	100	62	VERTICAL
2	3732.73	48.59	54.00	-5.41	49.77	2.82	31.21	35.21	Average	100	62	VERTICAL
3	4873.57	42.56	74.00	-31.44	41.10	3.33	33.16	35.03	Peak	100	116	VERTICAL
4	4874.50	28.49	54.00	-25.51	27.03	3.33	33.16	35.03	Average	100	116	VERTICAL
5	7310.52	45.28	74.00	-28.72	40.66	4.06	35.96	35.40	Peak	100	195	VERTICAL
6	7311.47	31.59	54.00	-22.41	26.97	4.06	35.96	35.40	Average	100	195	VERTICAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

12000. 14000. 16000. 18000. 20000.

Frequency (MHz)

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

10000.

8000.

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 99 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

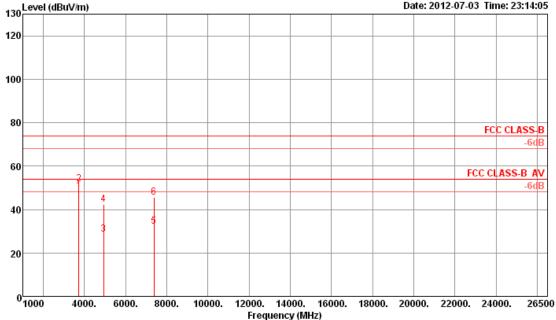
lodu	ılatioı	n Mode	11N2.4	4G-2	20M	F	Powe	r Level	1		. , ,		F		
per	ating	Function	Transr	nit		-	Ant. N	lo.	3	P		Pol	arizatio	n	Н
130	Level (d	BuV/m)				•					Date:	2012-	07-03 Tim	ne: 23:24	1:29
120															
100															
80													FC	C CLASS	S-E
60													FCC CL	ASS-B	_
40		2 3	5											-6	dB
20															
0	1000	4000.	5000. 8	000.	10000			4000. 16 ncy (MHz)	000. 1	8000. 2	20000.	220	00. 240	00. 2	65

Transmitter Radiated Unwanted Emissions (Above 1GHz) Power Level 1

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3732.60	46.01	74.00	-27.99	47.19	2.82	31.21	35.21	Peak	157	145	HORIZONTAL
2	3732.72	40.09	54.00	-13.91	41.27	2.82	31.21	35.21	Average	157	145	HORIZONTAL
3	4873.75	42.20	74.00	-31.80	40.74	3.33	33.16	35.03	Peak	100	135	HORIZONTAL
4	4874.43	28.62	54.00	-25.38	27.16	3.33	33.16	35.03	Average	100	135	HORIZONTAL
5	7310.75	46.54	74.00	-27.46	41.92	4.06	35.96	35.40	Peak	100	237	HORIZONTAL
6	7311.46	32.37	54.00	-21.63	27.75	4.06	35.96	35.40	Average	100	237	HORIZONTAL

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

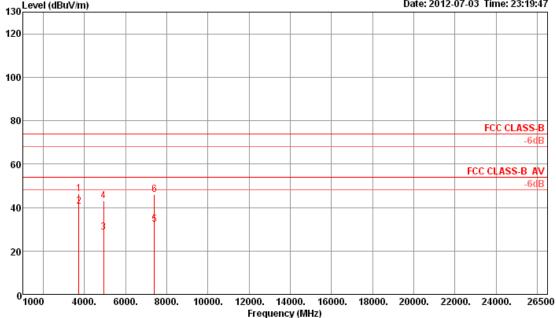
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 100 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N2.4G-20M	Power Level	1	Test Freq. (FX)	F3						
Operating Function	Transmit	Ant. No.	3	Polarization	V						
Level (dBuV/m) Date: 2012-07-03 Time: 23:14:05											

	Freq	Level		Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	3732.74	48.65	54.00	-5.35	49.83	2.82	31.21	35.21	Average	100	62	VERTICAL
2	3732.83	51.93	74.00	-22.07	53.11	2.82	31.21	35.21	Peak	100	62	VERTICAL
3	4923.24	28.70	54.00	-25.30	27.10	3.35	33.26	35.01	Average	100	180	VERTICAL
4	4926.32	42.41	74.00	-31.59	40.81	3.35	33.26	35.01	Peak	100	180	VERTICAL
5	7383.74	32.25	54.00	-21.75	27.50	4.06	36.09	35.40	Average	100	252	VERTICAL
6	7383.92	45.65	74.00	-28.35	40.90	4.06	36.09	35.40	Peak	100	252	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

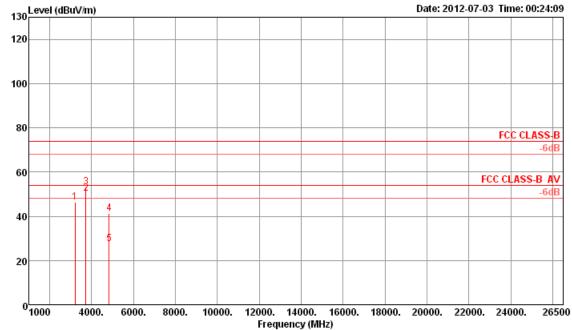
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 101 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode11N2.4G-20MPower Level1Test Freq. (FX)F3											
Operating Function	Transmit	Ant. No.	3	Polarization	Н						
130 Level (dBuV/m)			Date	e: 2012-07-03 Time: 23:19	9:47						
120											

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	3732.72	46.28	74.00	-27.72	47.46	2.82	31.21	35.21	Peak	149	40	HORIZONTAL
2	3732.76	40.56	54.00	-13.44	41.74	2.82	31.21	35.21	Average	149	40	HORIZONTAL
3	4923.72	28.67	54.00	-25.33	27.07	3.35	33.26	35.01	Average	100	63	HORIZONTAL
4	4923.75	43.08	74.00	-30.92	41.48	3.35	33.26	35.01	Peak	100	63	HORIZONTAL
5	7385.54	32.15	54.00	-21.85	27.40	4.06	36.09	35.40	Average	100	157	HORIZONTAL
6	7385.74	45.90	74.00	-28.10	41.15	4.06	36.09	35.40	Peak	100	157	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

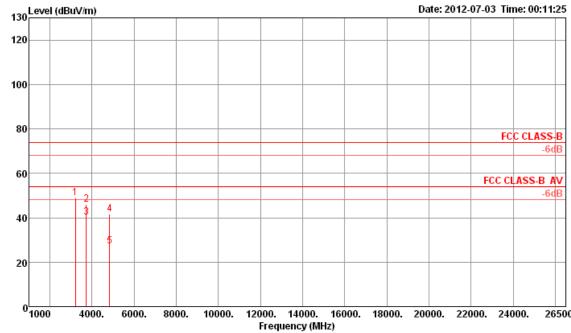
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 102 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N2.4G-20M	Power Level	2	Test Freq. (FX)	F1							
Operating Function	Operating Function Transmit Ant. No. 2,3 Polarization V											
Level (dBuV/m)	Level (dBuV/m) Date: 2012-07-03 Time: 00:24:09											

	Freq	Level	Limit Line	0∨er Limit						A/Pos		Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2 3 4	3216.08 3732.74 3732.85 4823.60	50.41 53.10	54.00 74.00	-3.59 -20.90	51.59 54.28	2.82	31.21 31.21	35.21 35.21	Average Peak	100 116 116 100	41 \	VERTICAL VERTICAL VERTICAL VERTICAL
5									Average	100		VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

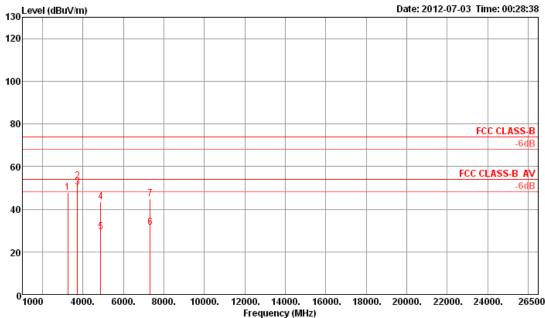
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 103 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	Modulation Mode 11N2.4G-20M Power Level 2 Test Freq. (FX) F1											
Operating Function	Transmit	Ant. No.	2,3	Polarization	Н							

	Freq	Level		Over Limit						A/Pos	T/Pos	Pol/Phase
-	MHz	dBu\∕/m	dBu\//m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	3215.90	48.72	74.00	-25.28	51.42	2.65	30.00	35.35	Peak	100	126	HORIZONTAL
2	3732.57	46.16	74.00	-27.84	47.34	2.82	31.21	35.21	Peak	169	121	HORIZONTAL
3	3732.75	40.36	54.00	-13.64	41.54	2.82	31.21	35.21	Average	169	121	HORIZONTAL
4	4823.63	41.47	74.00	-32.53	40.13	3.31	33.06	35.03	Peak	100	180	HORIZONTAL
5	4823.72	27.18	54.00	-26.82	25.84	3.31	33.06	35.03	Average	100	180	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

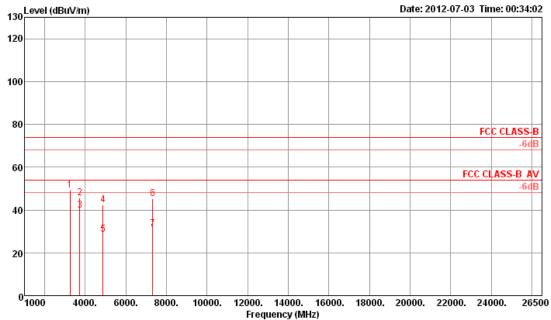
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 104 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	Modulation Mode 11N2.4G-20M Power Level 2 Test Freq. (FX) F2											
Operating Function Transmit Ant. No. 2,3 Polarization V												

	Freq	Level	Limit Line	0ver Limit		CableA Loss				A/Pos	T/Pos	Pol/Phase
•	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3249.29	47.76	74.00	-26.24	50.45	2.66	30.00	35.35	Peak	100	316	VERTICAL
2	3732.68	53.22	74.00	-20.78	54.40	2.82	31.21	35.21	Peak	116	40	VERTICAL
3	3732.74	50.25	54.00	-3.75	51.43	2.82	31.21	35.21	Average	116	40	VERTICAL
4	4874.80	43.31	74.00	-30.69	41.85	3.33	33.16	35.03	Peak	118	271	VERTICAL
5	4874.88	29.18	54.00	-24.82	27.72	3.33	33.16	35.03	Average	118	271	VERTICAL
6	7311.90	31.41	54.00	-22.59	26.79	4.06	35.96	35.40	Average	100	263	VERTICAL
7	7315.66	44.89	74.00	-29.11	40.27	4.06	35.96	35.40	Peak	100	263	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 105 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	Modulation Mode 11N2.4G-20M Power Level 2 Test Freq. (FX) F2										
Operating Function	Transmit	Ant. No.	2,3	Polarization	Н						

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu\⁄/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3249.33	49.31	74.00	-24.69	52.00	2.66	30.00	35.35	Peak	100	115	HORIZONTAL
2	3732.66	45.46	74.00	-28.54	46.64	2.82	31.21	35.21	Peak	167	117	HORIZONTAL
3	3732.73	39.89	54.00	-14.11	41.07	2.82	31.21	35.21	Average	167	117	HORIZONTAL
4	4874.01	42.29	74.00	-31.71	40.83	3.33	33.16	35.03	Peak	100	30	HORIZONTAL
5	4874.47	28.58	54.00	-25.42	27.12	3.33	33.16	35.03	Average	100	30	HORIZONTAL
6	7310.79	45.22	74.00	-28.78	40.60	4.06	35.96	35.40	Peak	100	126	HORIZONTAL
7	7311.08	31.22	54.00	-22.78	26.60	4.06	35.96	35.40	Average	100	126	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

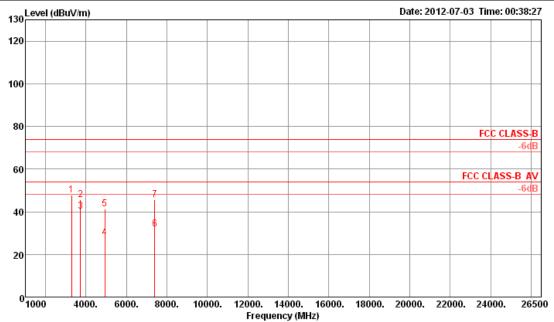
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 106 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

						al e u u	iiwaii	teu Ei	11133101	ns (Ab	OVC	IGHZ	Z)	
dul	ation Mo	ode	11N2.	4G-20	M	Pow	er Lev	vel 2	2		Te	st Fr	eq. (FX)	F3
era	ting Fun	ction	Trans	mit		Ant.	No.	2	2,3		Po	olariza	ation	٧
130	Level (dBuV	/m)					Date: 2012-07-03 Time: 00:44						Time: 00:44:	:05
120														
100														
100														
80													FCC CLASS	В
													-60	_
60														
00		3										FCC	CLASS-B A	_
	1	Δ	+	7									-60	IB.
40		₩Ť												Н
		5												
20														Ш
20		11 1												
20														
	1000 4	000.	6000.	8000.	10000.				. 18000	. 20000). 22	2000. 2	24000. 26	5500
	1000 4	1000.	6000.	8000.	10000.		14000. uency (M		. 18000	. 2000). 22	2000. 2	24000. 26	5500
	1000 4	000.	6000.	8000.	10000.				. 18000	. 20000	D. 22	2000. 2	24000. 26	5500
	1000 4	0000.	6000.	8000.	10000.				. 18000	. 20000). 22	2000. 2	24000. 26	5500
	1000 4	000.	6000.	8000.	10000.				. 18000	. 20000). 22	2000. ;	24000. 26	5500
	1000 4	1000.	6000.	8000.	10000.				. 18000	20000). 22	2000. 3	24000. 26	5500
	1000 4	000.	6000.	8000.	10000.				. 18000	. 20000	O. 22	2000. 2	24000. 26	5500
	1000 4	000.	6000.	8000.	10000.				. 18000	. 20000). <u>2</u> 2	2000. ;	24000. 26	5500
	1000 4	0000.	6000.	8000.	10000.				. 18000	20000	0. 22	2000.	24000. 26	6500
	1000 4	0000.	6000.	8000.	10000.				. 18000	20000	O. 22	2000.	24000. 26	6500
			Limit	0ve r	Read	Frequ	uency (M	Hz) Preamp				T/Pos		
				0ve r	Read	Frequ	uency (M	Hz) Preamp					24000. 26	
	Freq	Level	Limit	Over Limit	Read	Frequ	uency (M	Preamp Factor					Pol/Phase	
	Freq MHz 3282.60	Level dBu√/m 46.85	Limit Line dBuV/m 74.00	Over Limit dB	Read Level dBuV 49.50	Cable/Loss dB	Antenna Factor dB/m	Preamp Factor dB 35.34	Remark ————————————————————————————————————		/Pos 	T/Pos deg	Pol/Phase	
1 2	Freq MHz 3282.60 3732.62	Level dBuV/m 46.85 53.11	Limit Line dBuV/m 74.00 74.00	Over Limit dB -27.15 -20.89	Read Level dBu/ 49.50 54.29	Cable/Loss dB 2.69 2.82	Antenna Factor dB/m 30.00	Preamp Factor dB 35.34 35.21	Remark	Α,	cm 149 116	T/Pos deg 303 34	Pol/Phase VERTICAL VERTICAL	
0 1 2 3	Freq MHz 3282.60 3732.62 3732.74	Level dBuV/m 46.85 53.11 50.27	Limit Line dBuV/m 74.00 74.00 54.00	Over Limit dB -27.15 -20.89 -3.73	Read Level dBuV 49.50 54.29 51.45	Cable# Loss dB 2.69 2.82 2.82	Antenna Factor dB/m 30.00 31.21 31.21	Preamp Factor dB 35.34 35.21 35.21	Remark Peak Peak Average	Α,	cm 149 116 116	T/Pos deg 303 34 34	Pol/Phase VERTICAL VERTICAL VERTICAL	
0, 1 2 3 4	Freq MHz 3282.60 3732.62 3732.74 4923.53	Level dBuV/m 46.85 53.11 50.27 41.82	Limit Line dBuV/m 74.00 74.00 54.00 74.00	Over Limit dB -27.15 -20.89 -3.73 -32.18	Read Level dBuV 49.50 54.29 51.45 40.22	Cables Loss dB 2.69 2.82 2.82 3.35	Antenna Factor dB/m 30.00 31.21 33.26	Preamp Factor dB 35.34 35.21 35.21 35.01	Remark Peak Peak Average	Α,	cm · 149 116 116 100	T/Pos deg 303 34 34 133	Pol/Phase VERTICAL VERTICAL VERTICAL VERTICAL	
1 2 3 4 5	Freq MHz 3282.60 3732.62 3732.74 4923.53 4923.63	Level dBuV/m 46.85 53.11 50.27 41.82 27.71	Limit Line dBuV/m 74.00 74.00 54.00 54.00	Over Limit dB -27.15 -20.89 -3.73 -32.18 -26.29	Read Level dBuV 49.50 54.29 51.45 40.22 26.11	Cable/ Loss dB 2.69 2.82 2.82 3.35 3.35	Antenna Factor dB/m 30.00 31.21 31.21 33.26 33.26	Preamp Factor dB 35.34 35.21 35.21 35.01 35.01	Remark Peak Peak Average Peak Average	A,	Cm 149 116 116 100 100	T/Pos deg 303 34 34 133 133	POl/Phase VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	
0, 1 2 3 4	Freq MHz 3282.60 3732.62 3732.74 4923.53	Level dBuV/m 46.85 53.11 50.27 41.82 27.71 31.83	Limit Line dBuV/m 74.00 74.00 54.00 54.00 54.00	Over Limit dB -27.15 -20.89 -3.73 -32.18 -26.29 -22.17	Read Level dBuV 49.50 54.29 51.45 40.22 26.11 27.08	Cable/ Loss dB 2.69 2.82 2.82 3.35 3.35 4.06	Antenna Factor 30.00 31.21 31.21 33.26 33.26 36.09	Preamp Factor dB 35.34 35.21 35.21 35.01 35.01	Remark Peak Average Peak Average Average	A,	cm · 149 116 116 100	T/Pos 303 34 34 133 133 205	Pol/Phase VERTICAL VERTICAL VERTICAL VERTICAL	

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

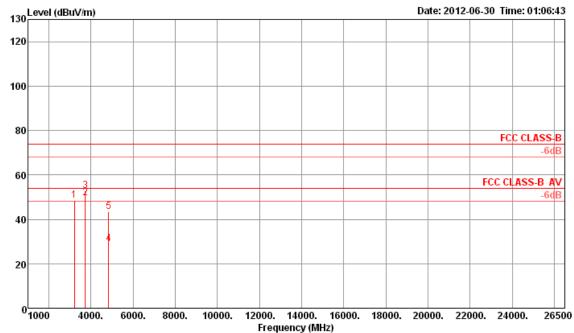
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 107 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	Modulation Mode 11N2.4G-20M Power Level 2 Test Freq. (FX) F3											
Operating Function Transmit Ant. No. 2,3 Polarization H												

	Freq	Level	Limit Line	0ver Limit		CableA Loss				A/Pos	T/Pos	Pol/Phase
-	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3282.67	47.82	74.00	-26.18	50.47	2.69	30.00	35.34	Peak	100	113	HORIZONTAL
2	3732.71	45.52	74.00	-28.48	46.70	2.82	31.21	35.21	Peak	169	105	HORIZONTAL
3	3732.74	40.28	54.00	-13.72	41.46	2.82	31.21	35.21	Average	169	105	HORIZONTAL
4	4923.25	27.75	54.00	-26.25	26.15	3.35	33.26	35.01	Average	100	190	HORIZONTAL
5	4924.42	41.31	74.00	-32.69	39.71	3.35	33.26	35.01	Peak	100	190	HORIZONTAL
6	7385.37	31.89	54.00	-22.11	27.14	4.06	36.09	35.40	Average	100	259	HORIZONTAL
7	7386.68	45.52	74.00	-28.48	40.77	4.06	36.09	35.40	Peak	100	259	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

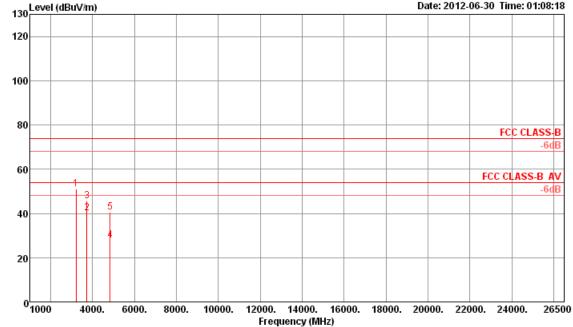
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 108 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	Modulation Mode 11N2.4G-20M Power Level 3 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V						

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
•	MHz	dBu\//m	dBu\//m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	3215.93	48.40	74.00	-25.60	51.10	2.65	30.00	35.35	Peak	102	40	VERTICAL
2	3732.74	49.79	54.00	-4.21	50.97	2.82	31.21	35.21	Average	116	68	VERTICAL
3	3732.76	52.71	74.00	-21.29	53.89	2.82	31.21	35.21	Peak	116	68	VERTICAL
4	4823.75	29.12	54.00	-24.88	27.78	3.31	33.06	35.03	Average	100	288	VERTICAL
5	4824.05	43.60	74.00	-30.40	42.26	3.31	33.06	35.03	Peak	100	288	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

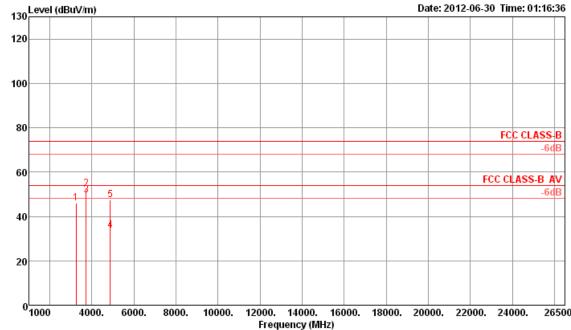
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 109 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11N2.4G-20M	Power Level	3	Test Freq. (FX)	F1							
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н							
130 Level (dBuV/m) Date: 2012-06-30 Time: 01:08:18												

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu√/m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	3215.98	50.90	74.00	-23.10	53.60	2.65	30.00	35.35	Peak	100	54	HORIZONTAL
2	3732.74	40.32	54.00	-13.68	41.50	2.82	31.21	35.21	Average	103	41	HORIZONTAL
3	3732.90	45.69	74.00	-28.31	46.87	2.82	31.21	35.21	Peak	103	41	HORIZONTAL
4	4823.77	27.84	54.00	-26.16	26.50	3.31	33.06	35.03	Average	100	285	HORIZONTAL
5	4823.91	40.59	74.00	-33.41	39.25	3.31	33.06	35.03	Peak	100	285	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

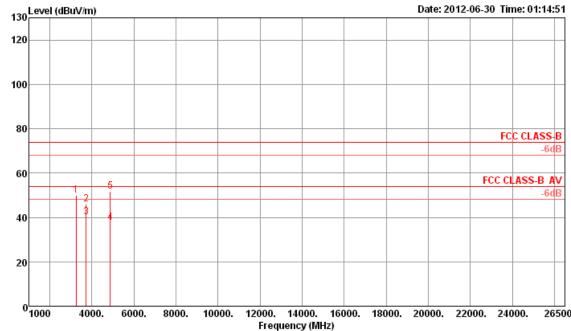
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 110 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11N2.4G-20M	Power Level	3	Test Freq. (FX)	F2							
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V							
Level (dRuV/m)	2012-06-30 Time: 01:	16:36										

	Freq	Level		0ver Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1	3249.28	46.15	74.00	-27.85	48.84	2.66	30.00	35.35	Peak	102	38 VERTICAL
2	3732.51	52.55	74.00	-21.45	53.73	2.82	31.21	35.21	Peak	116	65 VERTICAL
3	3732.73	49.60	54.00	-4.40	50.78	2.82	31.21	35.21	Average	116	65 VERTICAL
4	4876.61	33.53	54.00	-20.47	32.07	3.33	33.16	35.03	Average	100	242 VERTICAL
5	4877.38	47.36	74.00	-26.64	45.90	3.33	33.16	35.03	Peak	100	242 VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

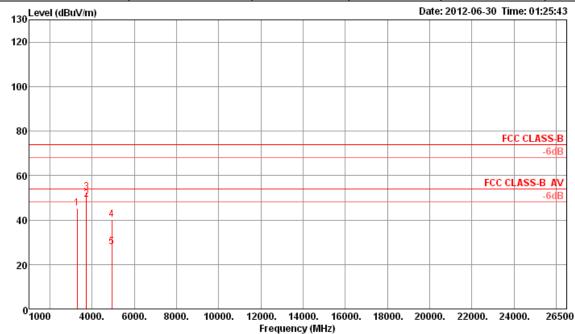
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 111 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11N2.4G-20M	Power Level	3	Test Freq. (FX)	F2							
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н							
			Data	2042 06 20 Time: 04:4	14.54							

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3249.27	49.81	74.00	-24.19	52.50	2.66	30.00	35.35	Peak	100	64	HORIZONTAL
2	3732.40	46.04	74.00	-27.96	47.22	2.82	31.21	35.21	Peak	103	39	HORIZONTAL
3	3732.76	40.37	54.00	-13.63	41.55	2.82	31.21	35.21	Average	103	39	HORIZONTAL
4	4874.14	37.74	54.00	-16.26	36.28	3.33	33.16	35.03	Average	100	289	HORIZONTAL
5	4874.24	51.96	74.00	-22.04	50.50	3.33	33.16	35.03	Peak	100	289	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

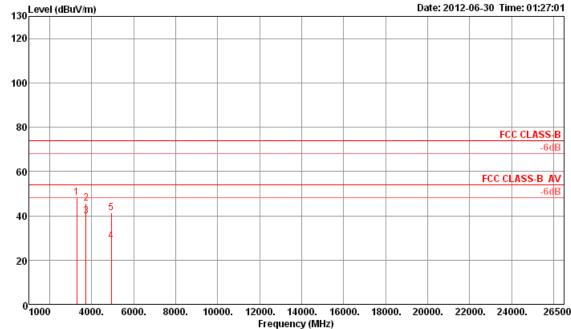
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 112 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N2.4G-20M	Power Level	3	Test Freq. (FX) F3							
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	V						

				0∨er						A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
-	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3282.51	45.31	74.00	-28.69	47.96	2.69	30.00	35.34	Peak	103	95	VERTICAL
2	3732.74	49.34	54.00	-4.66	50.52	2.82	31.21	35.21	Average	118	64	VERTICAL
3	3732.83	52.37	74.00	-21.63	53.55	2.82	31.21	35.21	Peak	118	64	VERTICAL
4	4923.33	40.31	74.00	-33.69	38.71	3.35	33.26	35.01	Peak	100	325	VERTICAL
5	4923.65	27.86	54.00	-26.14	26.26	3.35	33.26	35.01	Average	100	325	VERTICAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 113 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11N2.4G-20M	Power Level	3	Test Freq. (FX)	F3							
Operating Function	Transmit	Ant. No.	1,2,3	Polarization	Н							
Level (dBuV/m) Date: 2012-06-30 Time: 01:27:01												

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	3282.67	48.22	74.00	-25.78	50.87	2.69	30.00	35.34	Peak	112	60	HORIZONTAL
2	3732.36	45.70	74.00	-28.30	46.88	2.82	31.21	35.21	Peak	104	38	HORIZONTAL
3	3732.74	39.78	54.00	-14.22	40.96	2.82	31.21	35.21	Average	104	38	HORIZONTAL
4	4923.95	28.62	54.00	-25.38	27.02	3.35	33.26	35.01	Average	100	163	HORIZONTAL
5	4926.77	41.23	74.00	-32.77	39.63	3.35	33.26	35.01	Peak	100	163	HORIZONTAL

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 114 of 117
TEL: 886-3-327-3456 Report Version : Rev. 01

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 14, 2011	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 14, 2011	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9K ~ 30MHz	Nov. 30, 2011	Conduction (CO01-CB)
PULSE LIMITER	R&S	ESH3-Z2	100430	9K~30MHz	Feb. 03, 2012	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2011	Conduction (CO01-CB)

Report No.: FR253104

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Signal analyzer	R&S	FSV40	100979	9kHz ~ 40GHz	Sep. 26, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-12	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-13	-	1GHz ~ 26.5GHz	Nov. 17, 2011	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz ~ 40GHz	Nov. 01, 2011	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz ~ 40GHz	Nov. 01, 2011	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. Page No. : 115 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

RF Cable-high

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2012	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 25, 2011	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Dec. 22, 2011	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 29, 2011	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 03, 2011	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N/A	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N/A	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30MHz ~ 1GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1GHz ~ 26.5GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1GHz ~ 26.5GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1GHz ~ 40GHz	Nov. 17, 2011	Radiation (03CH01-CB)
1		I	1		1	

Report No.: FR253104

Radiation

(03CH01-CB)

Nov. 17, 2011

Note: Calibration Interval of instruments listed above is one year.

Woken

High Cable-4

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
	-		04455	0.111 00.1411	Sep. 09, 2010*	Radiation
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz		(03CH01-CB)

N/A

1GHz ~ 40GHz

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. Page No. : 116 of 117 TEL: 886-3-327-3456 Report Version : Rev. 01

Certification of TAF Accreditation 5

Certificate No.: L1190-120405

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria :

ISO/IEC 17025:2005

Accreditation Number :

1190

Originally Accredited

December 15, 2003

Effective Period

: January 10, 2010 to January 09, 2013

Accredited Scope

Testing Field, see described in the Appendix

Specific Accreditation

Accreditation Program for Designated Testing Laboratory

for Commodities Inspection

Program

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: April 05, 2012

P1, total 24 pages

SPORTON INTERNATIONAL INC. : 117 of 117 Page No. TEL: 886-3-327-3456 Report Version : Rev. 01