

FCC Test Report

(Part 24)

Report No.: RF140107C15F-1

FCC ID: H8N-PCT3200

Test Model: TN450A1

Series Model: TN450A1(WOS), C-One, C-One(WOS)

Received Date: Mar. 27, 2015

Test Date: Jun. 22 ~ Aug. 25, 2015 (All tests except EIRP & Radiated Emission Below 1GHz

tests)

Dec. 01, 2015 ~ Jan. 13, 2016 (EIRP & Radiated Emission Below 1GHz tests)

Issued Date: Jan. 22, 2016

Applicant: Askey Computer Corp

Address: 10F, No. 119, Chienkang Rd Chung-Ho, Taipei, 235, Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383,

TAIWAN (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF140107C15F-1 Page No. 1 / 43 Report Format Version: 6.1.1 Reference No.: 150327C14

Table of Contents

R	Release Control Record3						
1	Certificate of Conformity4						
2	2 Summary of Test Results						
	2.1 2.2	Measurement Uncertainty Test Site and Instruments					
3		eneral Information					
	3.1 3.2	General Description of EUT					
	3.2.1	Description of Support Units					
	3.3	Test Mode Applicability and Tested Channel Detail					
	3.4	EUT Operating Conditions					
	3.5	General Description of Applied Standards					
4		est Types and Results					
4							
	4.1	Output Power Measurement					
		Limits of Output Power Measurement					
		Test Procedures					
		Test Setup					
		Test Results					
	4.2	Frequency Stability Measurement					
		Limits of Frequency Stability Measurement					
		Test Procedure					
		Test Setup					
	4.2.4	Test Results					
		Occupied Bandwidth Measurement					
		Test Setup					
		Test Result					
	4.4	Band Edge Measurement					
		Limits of Band Edge Measurement					
		Test Setup					
		Test Procedures					
		Test Results					
	4.5	Peak To Average Ratio	25				
	4.5.1	Limits of Peak To Average Ratio Measurement	25				
	4.5.2	Test Setup	25				
	4.5.3	Test Procedures	25				
		Test Results					
	4.6	Conducted Spurious Emissions					
		Limits of Conducted Spurious Emissions Measurement					
		Test Setup					
		Test Procedure					
	4.0.4	Test Results					
		Limits of Radiated Emission Measurement					
		Test Procedure					
		Deviation from Test Standard					
		Test Setup					
		Test Results					
_							
5	Pictures of Test Arrangements42						
A	Appendix – Information on the Testing Laboratories43						

Release Control Record

Issue No.	Description	Date Issued
RF140107C15F-1	Original release	Jan. 22, 2016

Page No. 3 / 43 Report Format Version: 6.1.1

Report No.: RF140107C15F-1 Reference No.: 150327C14

Report Format Version: 6.1.1

1 Certificate of Conformity

Product: Rugged Enterprise Smartphone

Brand: TURBONET, COPPERNIC

Test Model: TN450A1

Series Model: TN450A1(WOS), C-One, C-One(WOS)

Sample Status: Mass production

Applicant: Askey Computer Corp

Test Date: Jun. 22 ~ Aug. 25, 2015 (All tests except EIRP & Radiated Emission Below 1GHz

tests)

Dec. 01, 2015 ~ Jan. 13, 2016 (EIRP & Radiated Emission Below 1GHz tests)

Standards: FCC Part 24, Subpart E

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Jan. 22, 2016

lvy Lin / Specialist

Approved by: , Date: Jan. 22, 2016

Dylan Chiou / Project Engineer

2 Summary of Test Results

Applied Standard: FCC Part 24 & Part 2						
FCC Clause	Test Item		Remarks			
2.1046 24.232	I Effective Radiated Power		Meet the requirement of limit.			
			Meet the requirement of limit.			
2.1055 24.235	Frequency Stability	Pass	Meet the requirement of limit.			
2.1049 24.238(b)	Occupied Bandwidth	Pass	Meet the requirement of limit.			
24.238(b)	Band Edge Measurements	Pass	Meet the requirement of limit.			
2.1051 24.238	Conducted Spurious Emissions	Pass	Meet the requirement of limit.			
2.1053 24.238	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -18.60 dB at 3700.40MHz.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (
-------------	-----------	------------------------------

2.2 Test Site and Instruments

Test date: Jun. 22 ~ Aug. 25, 2015

	Test date. 3df. 22 Adg. 23, 2015							
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due				
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Dec. 01, 2014	Nov. 30, 2015				
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Mar. 30, 2015	Mar. 29, 2016				
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Feb. 06, 2015	Feb. 05, 2016				
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Feb. 09, 2015	Feb. 08, 2016				
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Feb. 09, 2015	Feb. 08, 2016				
Preamplifier Agilent	8449B	3008A01911	Aug. 09, 2014	Aug. 08, 2015				
			Aug. 09, 2015	Aug. 08, 2016				
Preamplifier	8447D	2944A10638	Aug. 09, 2014	Aug. 08, 2015				
Agilent	01115		Aug. 09, 2015	Aug. 08, 2016				
RF signal cable	SUCOFLEX 104	248780/4 309222/4	Aug. 09, 2014	Aug. 08, 2015				
HUBER+SUHNNER		274092/4	Aug. 09, 2015	Aug. 08, 2016				
RF signal cable	8D-FB	Cable-CH9-01	Aug. 11, 2014	Aug. 10, 2015				
Worken	05.5	04510 0110 01	Aug. 11, 2015	Aug. 10, 2016				
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA				
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA				
Turn Table EMCO	2087-2.03	NA	NA	NA				
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA				
Turn Table BV ADT	TT100	TT93021705	NA	NA				
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA				
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 09, 2015	Jun. 08, 2016				
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA				

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 215374.
- 5. The IC Site Registration No. is IC 7450F-9.

Test date: Dec. 01, 2015 ~ Jan. 13, 2016

Test date: Dec. 01, 2015 ~ Jan. 13, 2016						
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due		
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	Apr. 10, 2015	Apr. 09, 2016		
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Mar. 30, 2015	Mar. 29, 2016		
BILOG Antenna SCHWARZBECK	VULB9168	9168-148	Feb. 02, 2015	Feb. 01, 2016		
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Feb. 09, 2015	Feb. 08, 2016		
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Feb. 09, 2015	Feb. 08, 2016		
Preamplifier Agilent	8449B	3008A01911	Aug. 09, 2015	Aug. 08, 2016		
Preamplifier Agilent	8447D	2944A10638	Aug. 09, 2015	Aug. 08, 2016		
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-02(309222 +248780)	Aug. 09, 2015	Aug. 08, 2016		
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-03(274092)	Aug. 09, 2015	Aug. 08, 2016		
RF signal cable Woken	8D-FB	Cable-CH9-01	Aug. 11, 2015	Aug. 10, 2016		
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA		
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA		
Turn Table EMCO	2087-2.03	NA	NA	NA		
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA		
Turn Table BV ADT	TT100	TT93021705	NA	NA		
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA		
WIT Standard Temperature And Humidity Chamber	TH-4S-C	W981030	Jun. 08, 2015	Jun. 07, 2016		
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jun. 09, 2015	Jun. 08, 2016		
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA		

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 215374.
- 5. The IC Site Registration No. is IC 7450F-9.

3 General Information

3.1 General Description of EUT

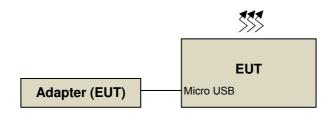
Product	Rugged Enterprise Smartphone		
Brand	TURBONET, COPPERNIC		
Test Model	TN450A1		
Series Model	TN450A1(WOS), C-One, C-One(WOS)		
Status of EUT	Mass production		
	3.7Vdc (Battery)		
Dower Supply Pating	5.35Vdc (Adapter)		
Power Supply Rating	5.0Vdc (Cradle)		
	19Vdc (Wireless Power Charger)		
Modulation Type	GSM, GPRS: GMSK		
Modulation Type	EDGE: 8PSK		
Operating Frequency	1850.2MHz ~ 1909.8MHz		
	GSM: 851.138mW (29.3dBm)		
Max. EIRP Power	GPRS: 707.946mW (28.5dBm)		
	EDGE: 301.995mW (24.8dBm)		
Antenna Type	PIFA antenna with 1.72dBi gain		
Antenna Connector	ipex		
Accessory Device	Refer to Note as below		
Data Cable Supplied	Refer to Note as below		

Note:

1. All brands and models are listed as below. After pretesting, the model of the TN450A1 was worst case and chosen for final test.

Brand	Model		Description
TURBONET	TN450A1	Scanner	-
TURBUNET	TN450A1(WOS)	Non-scanner	-
COPPERNIC	C-One		Model: C-One is electrically identical to TN450A1, different brand and model names are for marketing purpose.
COFFERNIC	C-One(WOS)	Non-scanner	Model: C-One(WOS) is electrically identical to TN450A1(WOS), different brand and model names are for marketing purpose.

2. The EUT contains the following accessories.


No.	Product	Brand	Model	Description	Remark
1	Adapter	Sunny COMPUTER TECHNOLOGY CO.,LTD.	SYS1561-1105-1	Input: 100-240Vac, 1.0A MAX, 50-60Hz Output: +5.35Vdc/ 2A	Accessory
2	Battery 1	ETI CA Battery	BP13-001080	Rating: 3.7Vdc Capacity, 3450mA	Accessory
3	Battery 2	inc.	BP14-001160	Type: Li-ion	Accessory
4	Micro USB cable	-	-	1m shielded USB to Micro B cable without core	Accessory
5	Cradle 1	TURBONET	DS11000	Input: 5Vdc	Support unit
6	Cradle 2	COPPERNIC	DS-One	Input: 5Vdc	Support unit
7	Wireless Power Charger	yardiX	CXT31106	Input: 19Vdc, 0.5A Output: 19Vdc, 0.5A	Support unit
8	Adapter (for Wireless Power Charger)	-	HNC190050U	Input: 100-240Vac, 50/60Hz, 0.35A Max Output: 19.0Vdc, 0.5A 1.55m cable with 1 core attached on adapter	Support unit

^{*} The Battery and cradle models are electrically identical, different brand and model names are for marketing purpose. Battery 1 was chosen for final test.

^{3.} The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Configuration of System Under Test

Remote site

Tester (A)

Universal Radio
Communication

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
	Universal Radio	D 0 C	CMILIOOO	447000	NA	
Α.	Communication	R&S	CMU200	117260	NA	-
	Tester					

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item A acted as a communication partner to transfer data.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case was found when positioned on Z-plane. Following channel(s) was (were) selected for the final test as listed below:

Test results are presented in the report as below.

Test Mode	Test Condition	
Α	Power from adapter	
В	Power from battery	

GSM MODE

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Mode				
Α	EIRP	512 to 810	512, 661, 810	GSM, GPRS, EDGE				
В	Frequency Stability	512 to 810	661	GSM				
Α	Occupied Bandwidth	512 to 810	512, 661, 810	GSM, GPRS, EDGE				
Α	Band Edge	512 to 810	512, 810	GSM, GPRS, EDGE				
А	Peak To Average Ratio	512 to 810	512, 661, 810	GSM, GPRS, EDGE				
Α	Condcudeted Emission	512 to 810	512, 661, 810	GSM, GPRS, EDGE				
А	Radiated Emission Below 1GHz	512 to 810	661	GSM				
Α	Radiated Emission Above 1GHz	512 to 810	512, 661, 810	GSM				

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
EIRP	IRP 24deg. C, 65%RH		Tank Wu
Frequency Stability	24deg. C, 64%RH	3.7Vdc	Match Tsui
Occupied Bandwidth	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
Band Edge	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
Peak To Average Ratio	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
Conducted Emission	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
Radiated Emission	25deg. C, 65%RH, 18deg. C, 70%RH	120Vac, 60Hz	Tank Wu, Nick Hsu

Report No.: RF140107C15F-1 Page No. 11 / 43 Report Format Version: 6.1.1

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 24

KDB 971168 D01 Power Meas License Digital Systems v02r02

ANSI/TIA/EIA-603-C 2004

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF140107C15F-1 Page No. 12 / 43 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

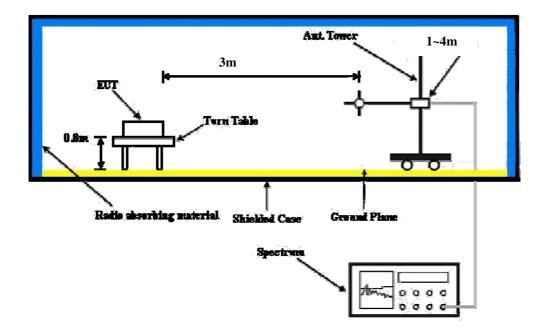
Mobile / Portable station are limited to 2 watts e.i.r.p.

4.1.2 Test Procedures

EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM, GPRS & EDGE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power 2.15dBi.

Conducted Power Measurement:


The EUT was set up for the maximum power with GSM, GPRS & EDGE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Report No.: RF140107C15F-1 Page No. 13 / 43 Report Format Version: 6.1.1

4.1.3 Test Setup

EIRP / ERP MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.4 Test Results

CONDUCTED OUTPUT POWER (dBm)

Band	GSM1900				
Channel	512	661	810		
Frequency (MHz)	1850.2	1880.0	1909.8		
GSM	28.69	28.76			

EIRP Power (dBm)

For GSM Mode:

MOD	E	TX channel 512					
	Antenna Polarity & Test Distance: Horizontal at 3 M						
No Freg (MHz) Reading S.G Power Correct				Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)

1

For GPRS Mode:

MODE TX channel 512						
Antenna Polarity & Test Distance: Horizontal at 3 M						
No. Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)

Report No.: RF140107C15F-1 Reference No.: 150327C14

Page No. 17 / 43

For EDGE Mode:

MODE	TX channel 512					
Antenna Polarity & Test Distance: Horizontal at 3 M						
No. Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)

4.2 Frequency Stability Measurement

4.2.1 Limits of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.2.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the

Report No.: RF140107C15F-1 Page No. 19 / 43 Report Format Version: 6.1.1

4.2.4 Test Results

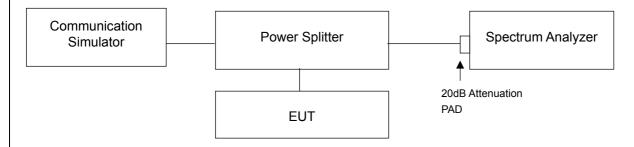
Frequency Error vs. Voltage

\\altaga \\\altaga	Frequency Error (ppm)	Limit (nam)	
Voltage (Volts)	GSM	Limit (ppm)	
4.15	-0.010	2.5	
3.7	-0.010	2.5	
3.67	-0.010	2.5	

NOTE: The applicant defined the normal working voltage of the battery is from 3.7Vdc to 4.15Vdc.

Frequency	Error vs.	Temperature.
-----------	-----------	--------------

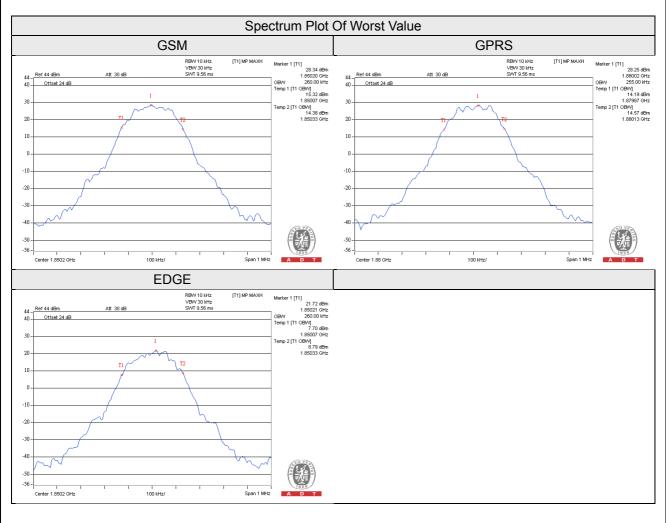
Temp.	



4.3 Occupied Bandwidth Measurement

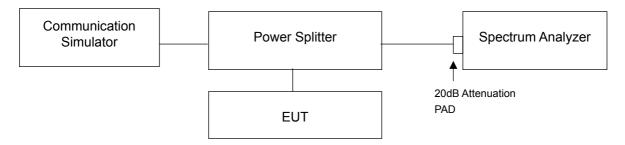
4.3.1 Test Procedure

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range, The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.


4.3.2 Test Setup

4.3.3 Test Result

Channel	Frequency	99% Occupied Bandwidth (kHz)			
Chamilei	(MHz)	GSM	GPRS	EDGE	
512	1850.20	260.0	250.0	260.0	
661	1880.00	255.0	255.0	260.0	
810	1909.80	250.0	250.0	255.0	

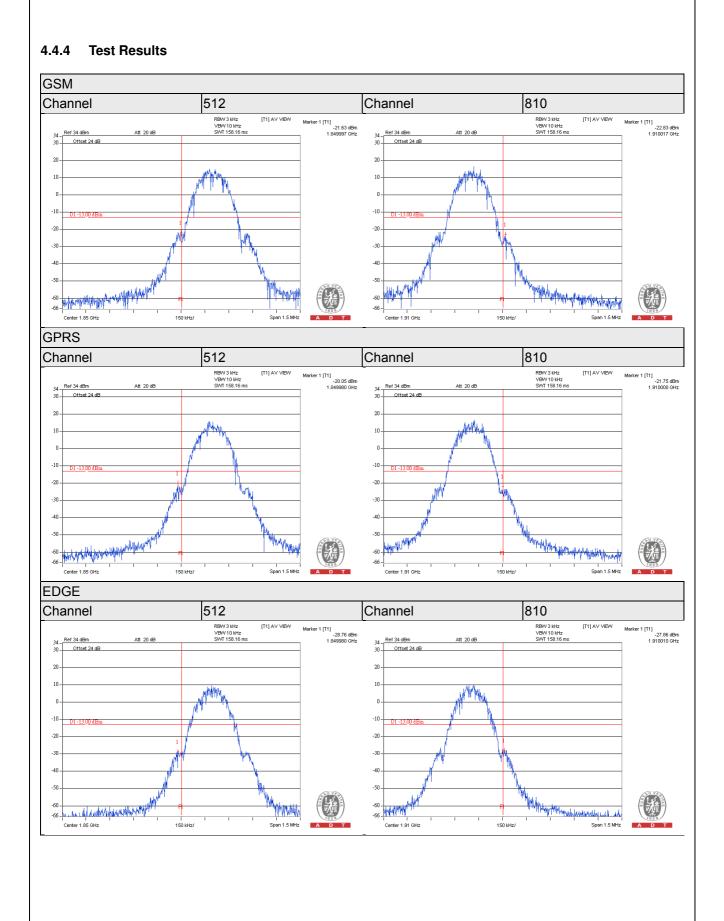


4.4 Band Edge Measurement

4.4.1 Limits of Band Edge Measurement

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

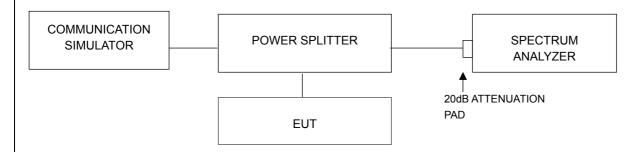
4.4.2 Test Setup



4.4.3 Test Procedures

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1.5MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GSM/GPRS/EDGE).
- c. Record the max trace plot into the test report.

Report No.: RF140107C15F-1 Reference No.: 150327C14



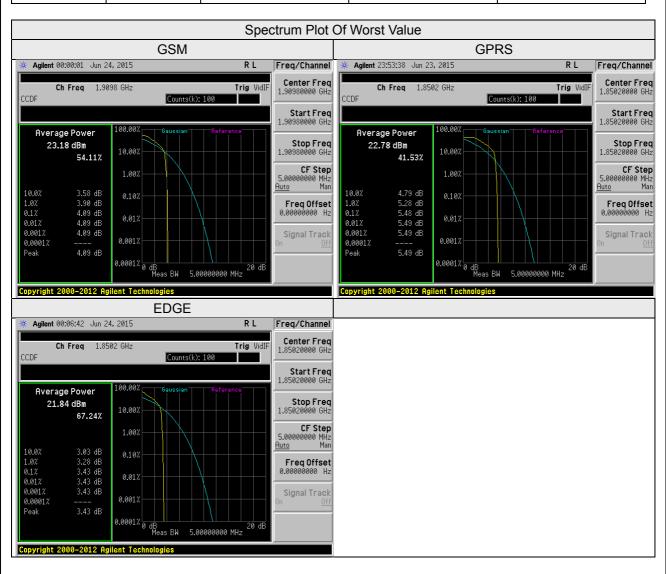
4.5 Peak To Average Ratio

4.5.1 Limits of Peak To Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

4.5.2 Test Setup

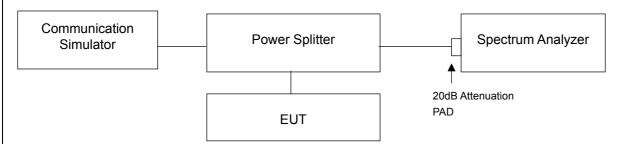
4.5.3 Test Procedures


- a. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b. Set the number of counts to a value that stabilizes the measured CCDF curve;
- c. Record the maximum PAPR level associated with a probability of 0.1%.

Report No.: RF140107C15F-1 Reference No.: 150327C14

4.5.4 Test Results

Channel	Frequency	Peak To Average Ratio (dB)			
Channel	(MHz)	GSM	GPRS	EDGE	
512	1850.20	3.75	5.48	3.43	
661	1880.00	3.70	5.43	3.39	
810	1909.80	4.09	5.11	2.66	

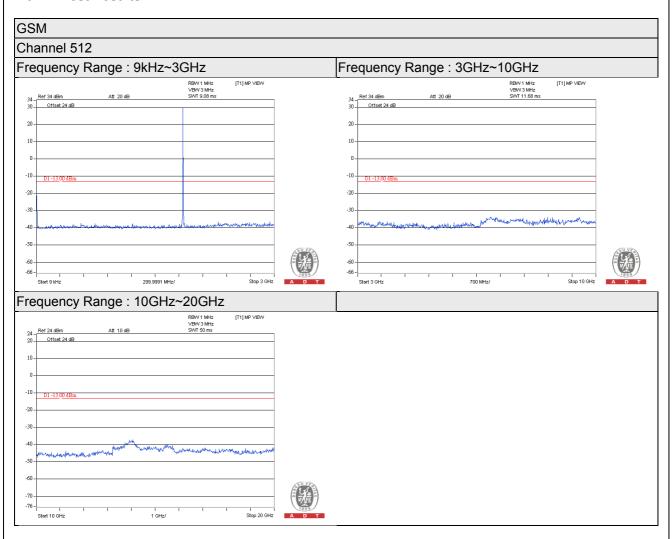


4.6 Conducted Spurious Emissions

4.6.1 Limits of Conducted Spurious Emissions Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to –13dBm.

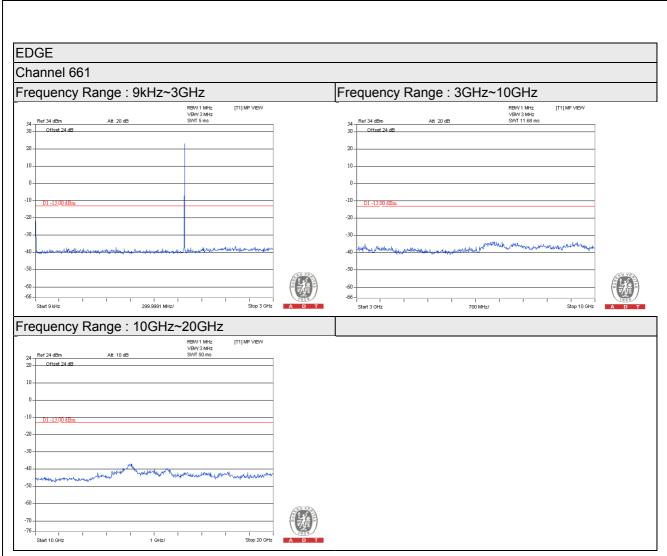
4.6.2 Test Setup


4.6.3 Test Procedure

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9 kHz to 20GHz. 20dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

Report No.: RF140107C15F-1 Page No. 27 / 43 Report Format Version: 6.1.1 Reference No.: 150327C14

4.6.4 Test Results



4.7 Radiated Emission Measurement

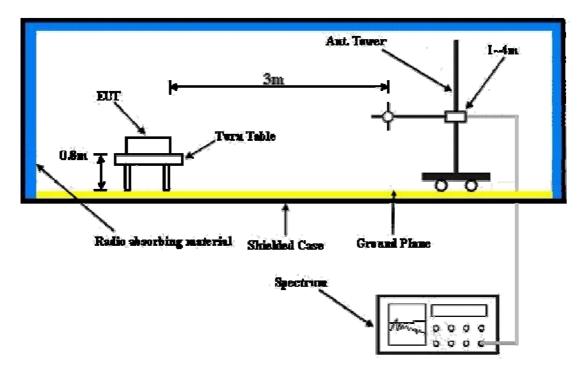
4.7.1 Limits of Radiated Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

4.7.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power 2.15dBi.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.


4.7.3 Deviation from Test Standard

No deviation.

Report No.: RF140107C15F-1 Page No. 37 / 43 Report Format Version: 6.1.1

4.7.4 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.5 Test Results

Below 1GHz

Mode	TX channel 661	Frequency Range	Below 1000 MHz
Environmental Conditions	18deg. C, 70%RH	Input Power	120Vac, 60Hz
Tested By	Nick Hsu		

		Antenr	na Polarity & Te	est Distance: H	orizontal at 3 N	1	
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	57.12	-59.2	-54.1	-8.2	-62.4	-13.0	-49.4
2	84.34	-68.4	-74.5	-0.4	-75.0	-13.0	-62.0
3	131.00	-67.4	-73.9	-0.1	-74.0	-13.0	-61.0
4	162.11	-64.0	-70.7	0.7	-70.0	-13.0	-57.0
5	183.50	-53.9	-65.8	3.4	-62.4	-13.0	-49.4
6	214.61	-65.4	-79.5	5.5	-74.1	-13.0	-61.1
		Anter	nna Polarity & 1	Test Distance:	Vertical at 3 M		
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	30.00	-54.5	-50.7	-12.2	-62.9	-13.0	-49.9
2	57.12	-66.3	-65.0	-8.2	-73.2	-13.0	-60.2
3	111.56	-68.2	-76.2	0.4	-75.8	-13.0	-62.8
4	134.89	-66.1	-70.2	-0.2	-70.4	-13.0	-57.4
5	166.00	-71.9	-75.3	1.1	-74.2	-13.0	-61.2
		-64.3	-71.4	4.1	-67.3	-13.0	-54.3

Remarks:

- Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).
 Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Page No. 39 / 43 Report Format Version: 6.1.1

Report No.: RF140107C15F-1 Reference No.: 150327C14

Above 1GHz

Mode	TX channel 512	Frequency Range Above 1000MHz	
Environmental Conditions	25deg. C, 65%RH	Input Power	120Vac, 60Hz
Tested By	Tank Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	3700.40	-41.5	-33.0	1.4	-31.6	-13.0	-18.6
	Antenna Polarity & Test Distance: Vertical at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	3700.40	-47.0	-38.8	1.4	-37.4	-13.0	-24.4

Remarks:

- 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 661	Frequency Range Above 1000MHz	
Environmental Conditions	25deg. C, 65%RH	Input Power	120Vac, 60Hz
Tested By	Tank Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	3760.00	-43.7	-35.2	1.3	-33.9	-13.0	-20.9
	Antenna Polarity & Test Distance: Vertical at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	3760.00	-45.3	-37.0	1.3	-35.7	-13.0	-22.7

Remarks:

- 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 810	Frequency Range Above 1000MHz	
Environmental Conditions	25deg. C, 65%RH	Input Power	120Vac, 60Hz
Tested By	Tank Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	3819.60	-42.5	-34.2	1.4	-32.8	-13.0	-19.8
	Antenna Polarity & Test Distance: Vertical at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	3819.60	-44.3	-36.1	1.4	-34.7	-13.0	-21.7

Remarks:

- 1. Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Report No.: RF140107C15F-1 Reference No.: 150327C14 Page No. 41 / 43 Report Format Version: 6.1.1

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Report No.: RF140107C15F-1 Reference No.: 150327C14

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF140107C15F-1 Page No. 43 / 43 Report Format Version: 6.1.1 Reference No.: 150327C14