

Report Reference No	TRE1709017302 R/C: 49938	
FCC ID	H79Q38	
Applicant's name:	Delta Electronics Incorporated	
Address	3, Tungyuan Road Chungli Industrial Zone Taoy 32063,Taiwan	uan County
Manufacturer	Delta Electronics Incorporated	
Address	3, Tungyuan Road Chungli Industrial Zone Taoy 32063,Taiwan	uan County
Test item description	HD Pocket Projector	
Trade Mark	VIVITEK	
Model/Type reference:	Q38	
Listed Model(s):	Q38-WH, Q38-BK, Q38-RD, Q38PLUS, Q38PL Q38PLUS-BK, Q38PLUS-RD	US-WH,
Standard:	FCC CFR Title 47 Part 15 Subpart C Section	15.247
Date of receipt of test sample:	Sept. 21, 2017	
Date of testing	Sept. 21, 2017 - Sept. 26, 2017	
Date of issue	Sept. 26, 2017	
Result:	PASS	
Compiled by (Position+Printed name+Signature):	File administrators Becky Liang	by Liong
Supervised by (Position+Printed name+Signature):	Project Engineer Jeff Sun	of Sten
Approved by		michu
(Position+Printed name+Signature):	RF Manager Hans Hu	
Testing Laboratory Name: :	Shenzhen Huatongwei International Inspection	on Co., Ltd.
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Gen Tianliao, Gongming, Shenzhen, China	yu Road,

Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emissions (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20 dB Bandwidth	18
5.5.	Carrier Frequencies Separation	22
5.6.	Hopping Channel Number	24
5.7.	Dwell Time	26
5.8.	Pseudorandom Frequency Hopping Sequence	30
5.9. 5 10	Restricted band (radiated)	31
5.10. 5.11.	Band edge and Spurious Emissions (conducted) Spurious Emissions (radiated)	33 53
<u>6.</u>	TEST SETUP PHOTOS	57
7.	EXTERANAL AND INTERNAL PHOTOS	58

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
00	Sept. 26, 2017	Original

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna Requirement	15.203/15.247 (c)	Pass	William Wang
AC Power Line Conducted Emissions	15.207	Pass	William Wang
Conducted Peak Output Power	15.247 (b)(1)	Pass	William Wang
20 dB Bandwidth	15.247 (a)(1)	Pass	William Wang
Carrier Frequencies Separation	15.247 (a)(1)	Pass	William Wang
Hopping Channel Number	15.247 (a)(1)	Pass	William Wang
Dwell Time	15.247 (a)(1)	Pass	William Wang
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass	William Wang
Restricted band	15.247(d)/15.205	Pass	William Wang
Radiated Emissions	15.247(d)/15.209	Pass	William Wang

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Delta Electronics Incorporated	
Address:	3, Tungyuan Road Chungli Industrial Zone Taoyuan County 32063, Taiwan	
Manufacturer:	Delta Electronics Incorporated	
Address:	3, Tungyuan Road Chungli Industrial Zone Taoyuan County 32063, Taiwan	

3.2. Product Description

Name of EUT:	HD Pocket Projector	
Trade Mark:	VIVITEK	
Model No.:	Q38	
Listed Model(s):	Q38-WH, Q38-BK, Q38-RD, Q38PLUS, Q38PLUS-WH, Q38PLUS-BK, Q38PLUS-RD	
Power supply:	7.4Vd.c. from internal battery & 12Vd.c. from Adapter	
Adapter information:	Model:ADP-66CR B Input:100~240Va.c.,50/60Hz,2A Output: 12Vd.c., 5.5A max	
Hardware version:	2800-AS56P1-06 V56+S905X	
Software version:	Android 6.0	
Bluetooth		
Version:	Supported BT4.0+EDR	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	Integral Antenna	
Antenna gain:	4 dBi	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2403
:	÷
39	2441
:	:
77	2479
78	2480

> <u>TEST MODE</u>

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

		Manufacturer:	/
	7	Model No.:	/
,		Manufacturer:	/
	7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Condu	Conducted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13	
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	-	-	

Radiated Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI test receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
2	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13
3	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
4	Horn antenna	ShwarzBeck	9120D	1011	2016/11/13
5	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
6	Amplifier	Sonoma	310N	E009-13	2016/11/13
7	JS Amplifier	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13
8	Amplifier	Compliance Direction systems	PAP1-4060	120	2016/11/13
9	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
10	EMI test Software	Rohde&Schwarz	ESK1	-	-
11	EMI test Software	Audix	E3	-	-
12	TURNTABLE	MATURO	TT2.0	-	-
13	ANTENNA MAST	MATURO	TAM-4.0-P	-	-

RF Co	onducted methods				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13
2	MXA Signal Analyzer	Agilent Technologies	N9020A	MY5050187	2016/11/13

The Cal.Interval was one year.

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

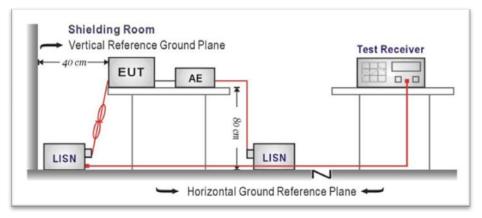
Test Result:

🛛 Passed

Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

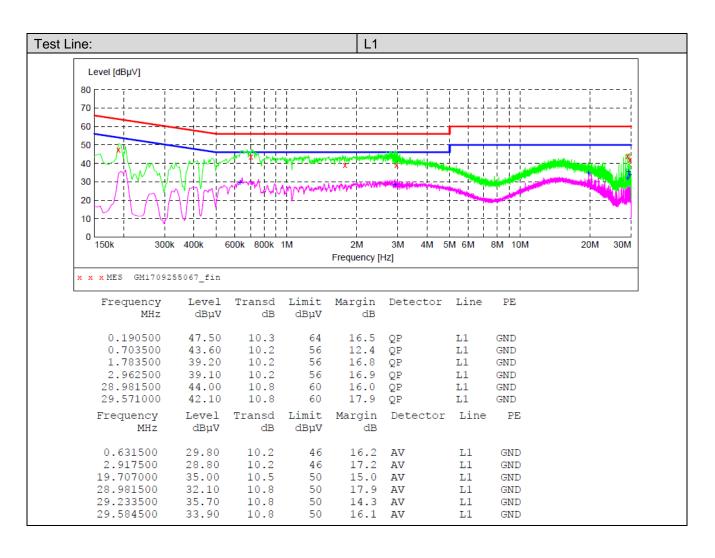
FCC CFR Title 47 Part 15 Subpart C Section 15.207

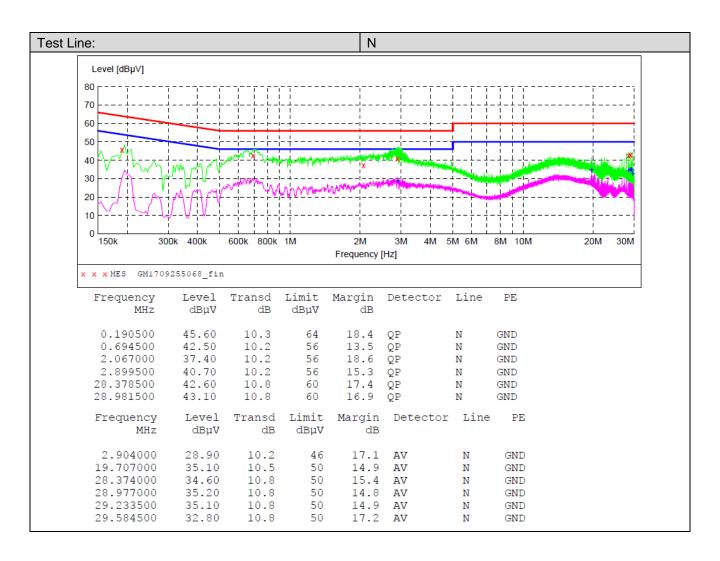
	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

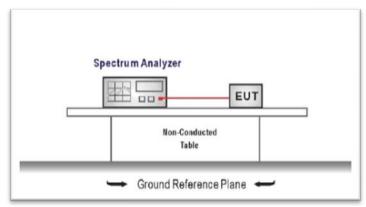

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level



5.3. Conducted Peak Output Power

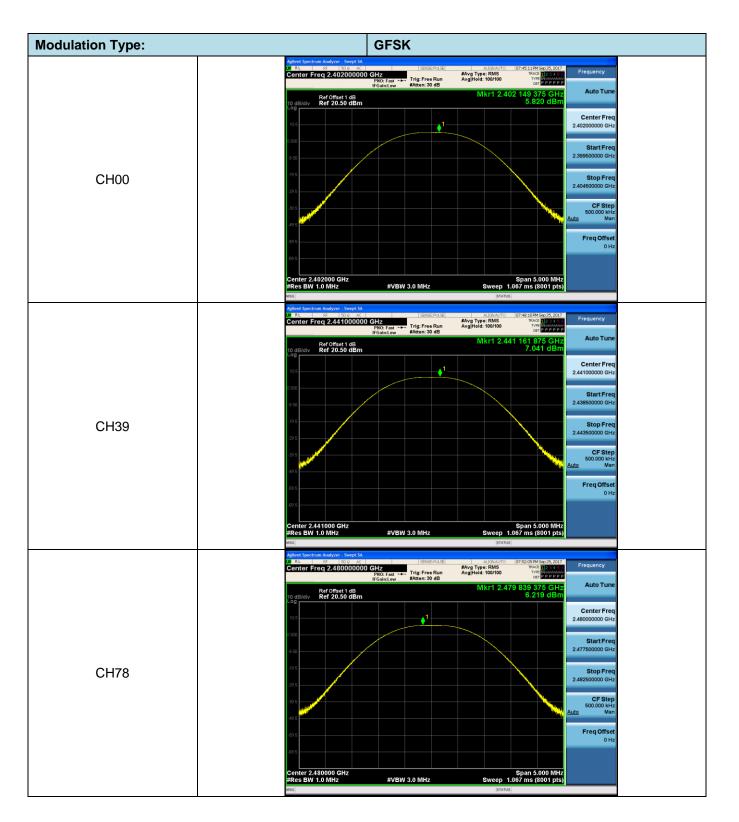
LIMIT

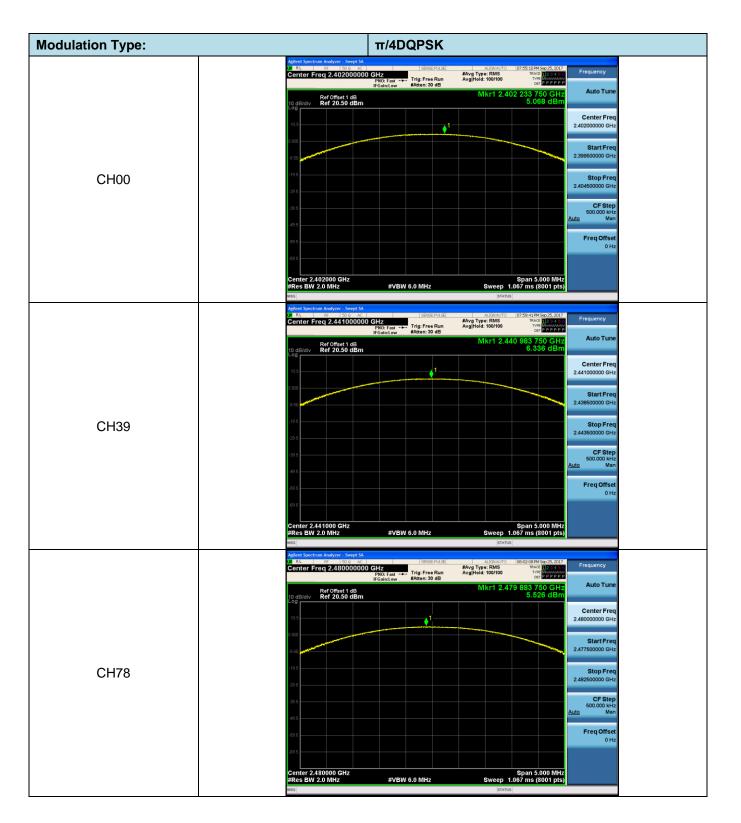
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

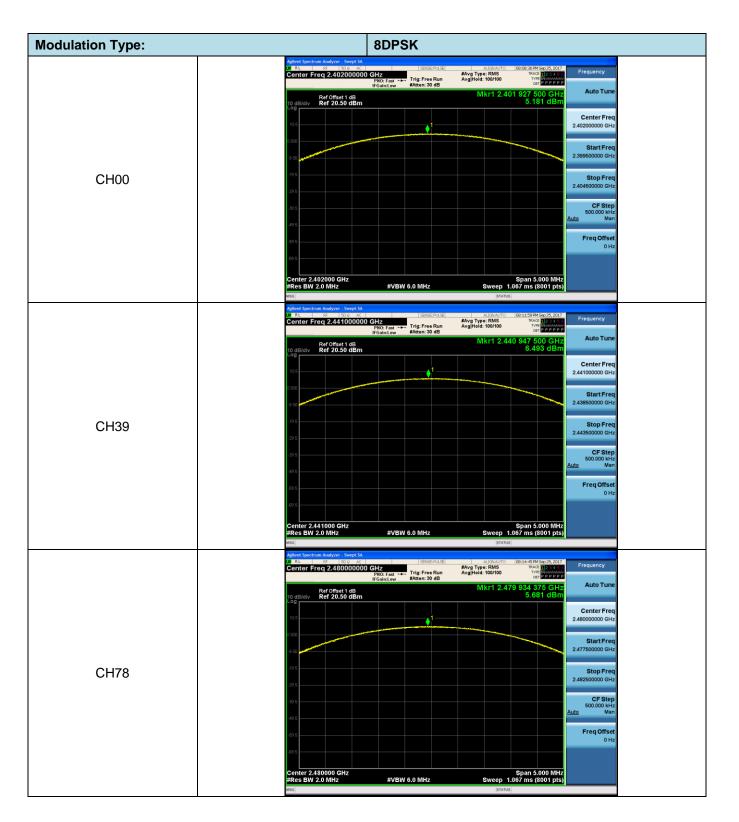
TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

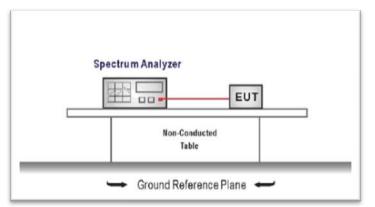

TEST MODE:


Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Channel	PK Output power (dBm)	Limit (dBm)	Result	
	00	5.820			
GFSK	39	7.041	≤ 30.00	Pass	
	78	6.219			
	00	5.068			
π/4DQPSK 39	6.336	≤ 21.00	Pass		
	78	5.526			
	00	5.181			
8DPSK	39	6.493	≤ 21.00	Pass	
	78	5.681			



5.4. 20 dB Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

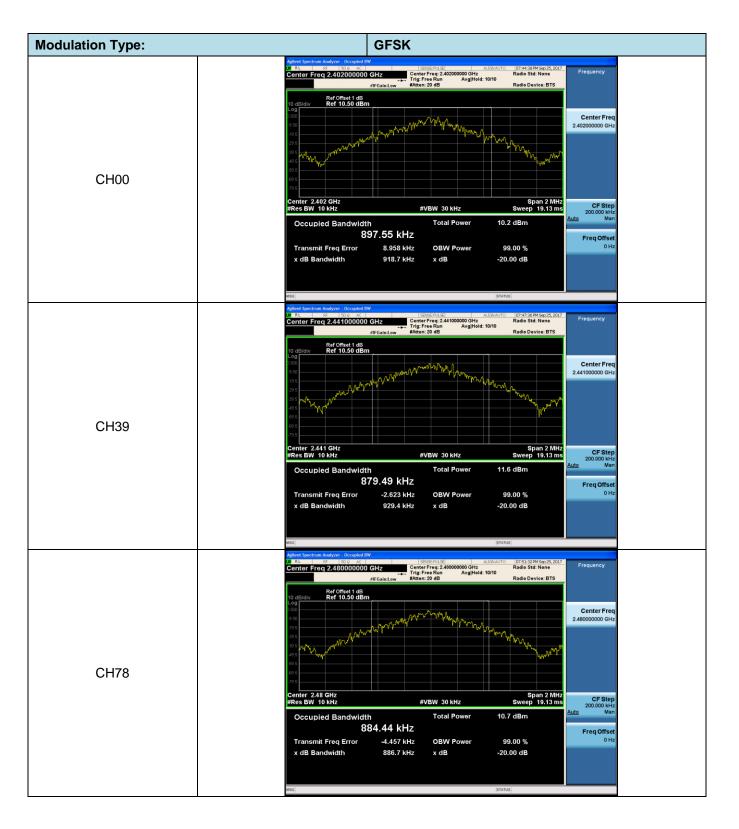
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \ge 1% of the 20 dB bandwidth, VBW \ge RBW

Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

TEST MODE:


Please refer to the clause 3.3

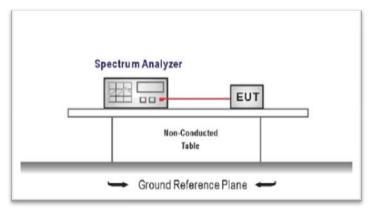
TEST RESULTS

⊠ Passed

Not Applicable

Modulation type	Channel	20 dB Bandwidth (MHz)	Limit (MHz)	Result
	00	0.9187		
GFSK	39	0.9294	-	Pass Pass Pass
	78	0.8867		
	00	1.336		_
π/4DQPSK 39 1.320	-	Pass		
	78	1.339		
	00	1.314		
8DPSK	39	1.344	-	Pass
	78	1.294		

dulation Type:	π/4DQPSK
	Agitert Spectrum Analyzer - Dicupied BW OU RL RF S0 A AC SPECEDUSE AUSVAUTO 07:54:360H Sp25, 2017 Center Freq 2.402000000 GHz Center Freq 2.402000000 GHz Radio Std: None #IFGaint.ew #Atten: 20 dB Radio Device: BTS
CH00	Ref Offset 1 dB Center Freq 10 dB/div Ref 10.50 dBm 00 Center Freq 030 Center Freq 035 Center Freq 045 Center Freq
	735 Center 2.402 GHz #VBW 100 kHz Sweep 2.667 ms #Res BW 30 kHz #VBW 100 kHz Sweep 2.667 ms 250.000 kHz 2 #VBW 100 kHz Sweep 2.667 ms
	Occupied Bandwidth Total Power 7.64 dBm 1.1872 MHz Transmit Freq Error 5.355 kHz OBW Power 99.00 % x dB Bandwidth 1.336 MHz x dB -20.00 dB
	Mig atrata
	Albred Spectrame Analyzer: Docapide BW O R.L 99 AC Center Freq 2.441000000 GHz Center Freq 2.44100000 GHz Ref Offset 1 dB Ref Offset 1 dB Sol Sol Sol Sol Sol Sol Sol Sol
CH39	Center 2.441 GHz #VBW 100 kHz Sweep 2.667 ms
	Occupied Bandwidth Total Power 8.99 dBm
	1.2030 MHz Freq Offset Transmit Freq Error 8.801 kHz OBW Power 99.00 % x dB Bandwidth 1.320 MHz x dB -20.00 dB
	MG STATUS
	OB RF 500 arC Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Frequency Frequency
CH78	10 dB/d/w Ref 10.50 dBm 200 400 405 405 405 405 405 405 4
	735 Center 2.48 GHz Span 2.5 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 2.667 ms
	Occupied Bandwidth Total Power 8.54 dBm Auto Man
	1.2097 MHz Freq Offset Transmit Freq Error 1.431 kHz OBW Power 99.00 % x dB Bandwidth 1.339 MHz x dB -20.00 dB
	M60 (874706)



5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 2/3*20 dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

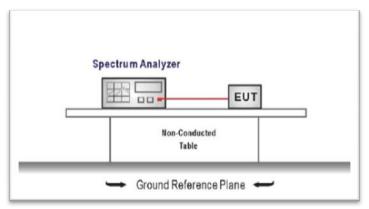
TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz) *	Result
GFSK	39	1.025	≥0.929	Pass
π/4DQPSK	39	1.282	≥0.880	Pass
8DPSK	39	1.146	≥0.896	Pass

Note:

*: GFSK limit = The maximum 20 dB Bandwidth for GFSK modulation on the section 5.4. $\pi/4DQPSK$ limit = 2/3 * The maximum 20 dB Bandwidth for $\pi/4DQPSK$ modulation on the section 5.4. 8DPSK limit = 2/3 * The maximum 20 dB Bandwidth for 8DPSK modulation on the section 5.4


1	
	Aglient Spectrum Analyzer - Swopt SA D R.L. BP SD 9 AC SPIGER/LSE ALIGNAUTO (08:27:21PM Spip2; 2017) Marker 1 1.024750000 HZ Control 1:5 Res Run Avg Heid>100/100 (08:27:21PM Spip2; 2017) File: Free Run Avg Heid>100/100 (08:27:21PM Spip2; 2017) File: File:
	IFGain:Low #Atten: 26 dB
	10 dB/div Ref 16.50 dBm 0.176 dB
	500 350 as many and a second
	-235 7
	43.5 Next Pk Left
GFSK	43.5 Marker Delta
	72.5 Start 2.440500 GHz Stop 2.442500 GHz
	Start 2.440500 CHz Stop 2.442500 CHz #VBW 100 kHz Stop 2.133 ms (8001 pts) Mkr→CF #Res BW 30 kHz x y Function Function <t< td=""></t<>
	1 Δ2 1 f L024 75 MHz (Δ) 0.176 dB 2 F 1 f 2.440 962 25 GHz 3.544 dBm
	4 Mkr→RefLvi
	7 8 9 9 More 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	11 c
	MSG [TATUB] Adjent Spectrum Analyzer - Sweyt SA DI R E EF 50 g Ac [SPICEPULSE] ALS24.070 [05:3204194/Sep 25.2017
	0 RL RF 1500 AC STREENASE AND DESCRIPTION OF THE RESERVENCE AND DESCRIPTI
	Ref Offset1 dB ΔMkr1 1.282 00 MHz Next Peak 10 dB/div Ref 16.50 dBm 3.602 dB
	300 135 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	23.5 Next Pk Left
π/4DQPSK	43.5 Marker Delta
	Start 2.440500 GHz Stop 2.442500 GHz #Res BW 30 kHz #VBW 100 kHz Sweep 2.133 ms (8001 pts) Mkr—CF
	MRR MODE TICL X Y FUNCTION FUNCTION WDTH FUNCTION VALUE 1 0.2 1.1 f (.0) 1.252.00 Mirz (.0) 3.650.2 BI 2 F 1.1 f 2.440.6 BI DI DI
	2 F 1 7 2.440 88175 GH2 -1.300 dBm 4 Mkr→RefLvl
	6 3 3 More
	с <u>х</u> мод <u></u> ятатия
	Addent Spectram Analyzer - Sweet SA 0 R 8 87 509 AC SPACE ALSE AUDIANTO 08:36:34PM Stor25, 2017 Marker 1 1,145500000 MHz PHO: Wide C Trig: Free Run Avg1Hide 200100 1176
	IFGain:Low #Atten: 26 dB
	Ref Offset 1 dB Limit 1 i to 30 win2 10 dBidiv Ref 1 i to 30 win2 10 dBidiv Ref 1 i to 30 win2 Loal 10 dBidiv
	50
	43.5
	-335 Next Pk Left
8DPSK	63.5 Marker Delta
	735 Start 2.440500 GHz Stop 2.442500 GHz
	#Res BW 30 kHz #VBW 100 kHz Sweep 2.133 ms (8001 pts)
	1 Ω2 1 f (Δ) 1.146 50 MHz (Δ) 4.400 dB 2 F I f 2.441 018 00 GHz -0.993 dBm
	4 MKr→KerLvi
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	p1/1/09

5.6. Hopping Channel Number

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = the frequency band of operation RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

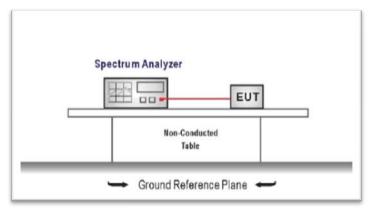
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15.00	Pass
8DPSK	79		


	Adient Spectrum Analyzer - Sweet SA. 27 R 52 500 AC SPECEALSE AUXAUTO 082611PASpc23,2017 Marker 1 77.769313690 MHz Ar San Ar S
	PRO: Fast Ing: Free Run Avgineid: 100/100 0FPPPPPP IFGainLow #Atten: 26 dB NUTCH
	Ref Offset 1 dB 0.404 dB
	6.00 5.00 5.00 X2
	- Next Pk L
0501/	405
GFSK	635 Marker De
	Start 2.40000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.113 ms (8350 pts) Mkr⊸
	NKR MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE
	1 Δ2 1 f (Δ) 77.759 MHz (Δ) 0.404 dB 4 2 F 1 f 2.402 180 GHz 5.702 dBm 4
	9 9 10
	MBG BTATUS Aglent Spectrum Analyzer - Swept SA
	Office End Sector Action Mathematical action Mathematical action Peak Search Markor 1 77.669301713 MHz/c Trig: Free Run Avg Tryo: RMS Tryo: RMS <t< td=""></t<>
	Next Pe
	Ref Offset1 dB Δ1/// 17.069 MHz 10 dB/div Ref 16.50 dBm 0.632 dB Log λΔ2
	6.00 3.00 X2
	33.6 Next Pk L
π/4DQPSK	
	All Andread All An
	Start 2.40000 GHz Stop 2.48350 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.113 ms (8350 pts) Mkr⊸
	MRR HODE TC SQ. Y Function Function value O I A2 1 f (A) 77.659 Mrr (A) 0.652 dB I F I A2.022 A2.064 4.376 dBm Image: A376 Ima
	2 F 1 7 2.402.240 GHz 4.376 dBm 3 4 Mkr→Ref
	8 Million Mill
	Agient Spectrum Analyzer - Swept SA Spectrum Spectrum Analyzer - Swept SA W RL RF 30.0 AC SPECE PLLSE AUSNAUTO 08:34:391M/Sep 25, 2017 Dev10 Seconds
	Marker 1 77.879326865 MHz Sector All Sector
	Ref Offset 1 dB AMkr1 77.879 MHz
	350 373
	025
8DPSK	635 Marker De
	73.5
	Start 2.40000 GHz Stop 2.48350 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.113 ms (8350 pts) Mkr⊸
	Meril Model TRG Std. X Y Function Runction worth Punction value Λ 1 Δ2 1 f (Δ) 777.879 MHz (Δ) 0.600 dB F 0.2402 330 GHz 4.381 dBm 6
	4 Mkr-Ref
	8 9 10 11

5.7. Dwell Time

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW Sweep = as necessary to capture the entire dwell time per hopping channel, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable


Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
	DH1	0.118		
GFSK	DH3	0.261	≤ 0.40	Pass
	DH5	0.306		
	2DH1	0.122		
2DH1 0.122 π/4DQPSK 2DH3 0.261 \leq 0.40	Pass			
	2DH5	0.307		
	3DH1	0.122		
8DPSK	3DH3	0.261	≤ 0.40	≤ 0.40 Pass
	3DH5	0.307		

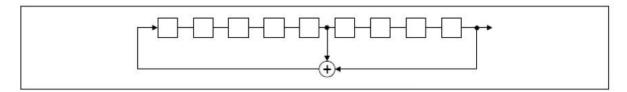
Note:

1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

2. Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2DH1, 3DH1 Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2DH3, 3DH3 Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2DH5, 3DH5

Modulation Type:	GFSK
DH1	Addient Spectrum Analyzer : Swept 52 Center Freq 2.441000000 GHz Frig Data 253 ms #Avg Type: RMS Trig Data 253 ms #Avg Type: RMS Center Freq 2.441000000 GHz RMS MODE TRI Data 253 ms #Avg Type: RMS Trig Data 253 ms #Avg Type:
DH3	Ballon in the served SA Center Freq 2.441000000 GHz PhO: Fail Frequency Frequency Frequency If goes Plus = intermed and power fuel colspan and
DH5	Addition Spectrum Analyzer Sweet SM (1) ESDERALSE (1) ALXAN/TO (07.4755) Mise 26, 2017 Tree Frequency Centrer Freq 2.44100000 GHz PR0: Fast

5.8. Pseudorandom Frequency Hopping Sequence


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

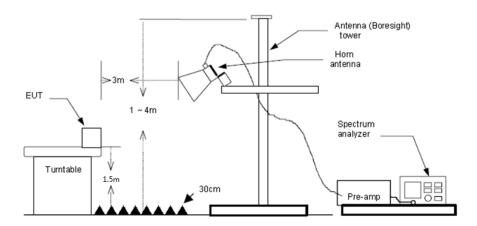
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

3 75 7	73	1	78		64	62		6	4	2	0
		 \square	1	1			 Γ				Т
	1		1								
	1		1	[

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.


5.9. Restricted band (radiated)

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 3.3

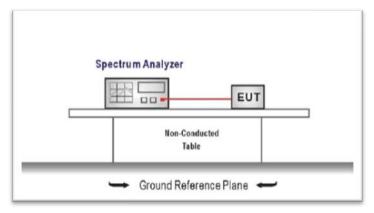
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.
- 3) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	35.87	27.27	6.62	37.65	32.11	74.00	-41.89	Horizontal	Peak
2390.03	36.12	27.53	6.75	37.87	32.53	74.00	-41.47	Horizontal	Peak
2399.98	39.00	27.57	6.77	37.90	35.44	74.00	-	Horizontal	Peak
2310.00	35.72	27.27	6.62	37.65	31.96	74.00	-42.04	Vertical	Peak
2390.03	36.03	27.53	6.75	37.87	32.44	74.00	-41.56	Vertical	Peak
2399.98	36.84	27.57	6.77	37.90	33.28	74.00	-	Vertical	Peak
2310.00	23.31	27.27	6.62	37.65	19.55	54.00	-34.45	Horizontal	Average
2390.03	23.34	27.53	6.75	37.87	19.75	54.00	-34.25	Horizontal	Average
2399.98	29.18	27.57	6.77	37.90	25.62	54.00	-	Horizontal	Average
2310.00	23.77	27.27	6.62	37.65	20.01	54.00	-33.99	Vertical	Average
2390.03	23.74	27.53	6.75	37.87	20.15	54.00	-33.85	Vertical	Average
2399.98	26.04	27.57	6.77	37.90	22.48	54.00	-	Vertical	Average


					CH78				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	36.10	27.85	6.83	37.87	32.91	74.00	-41.09	Horizontal	Peak
2500.00	35.16	27.90	6.84	37.87	32.03	74.00	-41.97	Horizontal	Peak
2483.50	35.88	27.85	6.83	37.87	32.69	74.00	-41.31	Vertical	Peak
2500.00	36.47	27.90	6.84	37.87	33.34	74.00	-40.66	Vertical	Peak
2483.50	22.96	27.85	6.83	37.87	19.77	54.00	-34.23	Horizontal	Average
2500.00	22.95	27.90	6.84	37.87	19.82	54.00	-34.18	Horizontal	Average
2483.50	23.11	27.85	6.83	37.87	19.92	54.00	-34.08	Vertical	Average
2500.00	23.06	27.90	6.84	37.87	19.93	54.00	-34.07	Vertical	Average

5.10. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

est Item:	Band edge	Modulation type:	GFSK
CH00 No hopping mode	Center Freq	2400 06 Hz 553 ellem 2400 06 Hz 553 ellem 2300 000 Hz 553 ellem 2300 ellem 2300 ellem 2300 ellem 2300 ellem 2300 ellem 230	Freq Offset 0 Hz
CH00 Hopping mode	Marker 1 2.4	CH2 2.444.050 GH2 2.444.050 GH2 2.444.050 GH2 2.444.050 GH2 2.444.050 GH2 2.444.050 GH2 2.444.050 GH2 2.444.050 GH2 3.444.050 GH2 4.451 GH2 4.451 GH2 4.452 GH2 4.154 dBm 2.384.480 GH2 4.154 dBm	
CH78 No hopping mode	OT RL F Center Freq	2.439000000 GHz PR0: Fast → IFG: Free Run Baten: 30 dB #Arg Type: RMS Arg Hel:: 100/00 rf Offset 1 dB ef 20.50 dBm Mkr4 2. 1 Image: State of the	10752-46PH Sep 25, 2017 Frequency 10752-46PH Sep 25, 2017 Frequency 10752-46PH Sep 25, 2017 Auto Tune 4.433 736 50 GHz Center Freq -57.462 dBm Start Freq -1133 dF Stop Freq Stop 2,50000 GHz 220000 MHz 2.133 ms (8001 pts) Muto Tune H Function Value - - - - - -

	Agilent Spectrum Analyzer - Swigt SA Spectrum Analyzer - Swigt SA Ull RL RF 500 AC Spectrum Analyzer - Swigt SA Marker 1 2.479012000000 GHz Fris: Free Run #Avg Type: RMS House Base Sa Point Sate Free Run AvgHeld>100/100 trie: Free Run #Addem 26 dB Sd Base Sa Trie: Free Run
	Ref offset 1dB Mkr4 2.497 470 GHz 10 dB/dtv Ref 16.50 dBm -60.309 dBm -60.309 dBm
	100 Next Pk Right
CH78	523 5 533 5 43.5 43.5
Hopping mode	535
	Start 2.47800 GHz #VEW 300 kHz Stop 2.50000 GHz Mkr.→CF #Res BW 100 kHz #VEW 300 kHz Sweep 2.133 ms (1001 pts) Mkr.→CF
	1 N 1 f 2.479 012 GHz 5.902 dBm 2 N 1 f 2.438 560 GHz 61.485 dBm 3 N 1 f 2.438 560 GHz 61.485 dBm 3 N 1 f 2.500 000 GHz 52.445 dBm 6 1 f 2.497 470 GHz 460.309 dBm Mkr→RefLvi
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	K STATUS

Test Item:	Band edge	Modulation	type:	π/4DQPSK
CH00 No hopping mode		Adjunt Spectrum Andyzer Step (S0) Step (S0) </td <td>Avg1746::00/100 TT Mkr4 2:373 -57.5</td> <td>523 dBm Center Freq 1 Center Freq 2.357500000 GHz Start Freq 2.310000000 GHz Stop Freq 2.405000000 GHz Stop Freq</td>	Avg1746::00/100 TT Mkr4 2:373 -57.5	523 dBm Center Freq 1 Center Freq 2.357500000 GHz Start Freq 2.310000000 GHz Stop Freq 2.405000000 GHz Stop Freq
CH00 Hopping mode		Ref Offset 1 dB Control	ALEXPLANTO 09:31:01 SAvg Type: RMS AvglHeid>100/00 Im Mkr4 2.387 -61.2 Mkr4 2.387 -61.2 Stop 2.4 Sweep 9.133 ms Stop 2.4 Sweep 9.133 ms FRICTION FUNCTION WOTH	Next Pk Right
CH78 No hopping mode		Note: State State <th< td=""><td>Avg Held: 100/100 T Mkr4 2.487 003 -56. </td><td>Stop Freq 2.50000000 GHz 3 Stop Freq 2.50000000 GHz</td></th<>	Avg Held: 100/100 T Mkr4 2.487 003 -56. 	Stop Freq 2.50000000 GHz 3 Stop Freq 2.50000000 GHz

	Agilent Spectrum Analyzer Server 15 word 5A Server 15 word 5A UP RL FF 50 0 AC Server PLUSE ALIONAUTO 00:833:30 PM 50p.25, 2012 Marker 1 2.478176000000 CHz FRO: Fire Run Avg]Held>100/100 Trig: Free Run Avg]Held>100/100 Trig: Free Run Marker 200 Free Run Avg]Held>100/100 Trig: Free Run Avg]Held>100/100 Trig: Free Run	
	Ref Offset 1 dB Mkr4 2.483 544 GH2 10 dB/dlv Ref 16.50 dBm -59.066 dBm -59.066	Next Peak
	550 500 500 500 500 500 500 500 500 500	Next Pk Right
CH78		Next Pk Left
Hopping mode	333 39 735	Marker Delta
	Start 2.47800 GHz Stop 2.50000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.133 ms (1001 pts Mrs HODE TRC SCL X Y Function worth Function worth 1 N 1 7 2478 176 GHz 4.336 dBm Function worth Function worth	Mkr→CF
	2 N 1 r 2 2493 500 GHz 60 560 dBm 3 N 1 r 2 509 000 GHz 63 528 dBm N 1 r 2 403 544 GHz 69 066 dBm 5 r	Mkr→RefLvl
		More 1 of 2
	MSG STATUS	

Test Item:	Band edge	1	Modulation 1	ype:	8DPSK	
CH00 No hopping mode		Ageinst Spectrum Analyzer Snept SM 2 Tit is a constrained set of the constrained set of th	NO: Foat → If ig: Fride Run Gaint.Gow #Atten: 30 dB #VEW 300 kHz #VEW 300 kHz V P 0 cHz 2672 dBm 0 cHz 2673 dBm	Mkr4 2.354 58	164 dBm 2.357500000 GHz 2.31000000 GHz 2.310000000 GHz 2.405000000 GHz	
CH00 Hopping mode		Addinat Sourcham Analyzer Swept SA Office 68 900 AC Marker 1 2.4050000000000 G Fill Image: Start 1 2.4050000000000 G Fill Ref Offset 1 dB 000 AC Fill Image: Start 2.31000 GHz Fill AC Fill Start 2.31000 GHz X Fill AC AC Image: Start 2.31000 GHz X Fill AC A	NO: Feat Ing: Free Run Gaint.fow RAtten: 26 dB	ALBRAITO 0093541 Bivg Type-RMS 11 Arghteids-100100 11 Mkr4 2.322 -60. Image: State of the state	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CH78 No hopping mode		Action Action<	W0: Fast → If get 1 = get 1	ALBANO 008:352 diva Type: RMS 11 Argihid: 500150 11 Mkr4 2.433 611 -56. Image: State of the sta	956 dBm Center Freq 2.48900000 GHz 15210 Start Freq 2.478000000 GHz 3 Stop Freq 2.50000000 GHz	

	Agtient Spectrum Analyzer - Swigt SA ISPGEPULSE RUDNATO 0038216/PM Sin 25, 3017 Marker 1 2,480178000000 GHz File: Free Run #Avg Type: RMS Tride: Free Run File: Free Run Marker 5 0.9 File: Free Run Avg Heid>100/100 CHI P P P P P P P P File: Free Run
	Ref Orfset 1 dB Mkr4 2.483 786 GHz 10 dBldiv Ref 16.50 dBm -59.829 dBm
	6.50 3.50 1.35 1.35 1.50 1
CH78	225 Next Pk Left
Hoppig mode	SSS 3 SSS 3 775 3 Marker Delta
	Start 2.47800 GHZ Stop 2.50000 GHZ #Res BW 100 kHz #VBW 300 kHz Sweep 2.133 ms (1001 pts) Mkr—CF
	1 N 1 7 2490 178 GHz 4.174 dBm 2 N 1 7 2483 800 GHz 451 071 dBm 3 N 1 7 2483 800 GHz 451 071 dBm 4 N 1 7 2483 800 GHz 451 071 dBm 6 1 7 2.483 766 GHz 459 829 dBm
	8 More 10 I I I I I I I I I I I I I I I I I I I
	K STATUS

Test Item:	SE		type:	GF	SK	
		Agilent Spectrum Analyzer Swept St 04 RL RF 50 Ω AC Center Freq 1.51500000	SENSE:PULSE	ALIGNAUTO 07: #Avg Type: RMS Avg Hold: 14/100	46:17 PM Sep 25, 2017 TRACE 2 3 4 5 6 TYPE MUSEUM	Frequency
		Ref Offset 1 dB 10 dB/div Ref 21.00 dBm		Mkr2 2 -{	2.675 2 GHz 55.376 dBm	Auto Tune
		11.0		1		Center Freq 1.515000000 GHz
		1.00				Start Freq 30.00000 MHz
CH00		-19.0			-14.36 dBe	Stop Freq
30MHz~3GHz		-29.0			_	3.00000000 GHz
		-49.0				CF Step 297.000000 MHz <u>Auto</u> Man
		-59.0			haddillardan giyai	Freq Offset 0 Hz
		-69.0				
		Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	St Sweep 284.3 Status	top 3.000 GHz ms (8001 pts)	
		Aglent Spectrum Analyzer - Swept SA Use RL RF 50 ฉ AC Center Freq 4.00000000		ALIGNAUTO 07: #Avg Type: RMS	16:26 PM Sep 25, 2017 TRACE 2 3 4 5 6	Frequency
		Ref Offeet 1 dB	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 15/100	886 00 GHz 56.379 dBm	Auto Tune
		10 dB/div Ref 21.00 dBm		*	56.379 dBm	Center Freq
		1.00				4.00000000 GHz
CH00		-9.00			-14.36 dBn	Start Freq 3.000000000 GHz
3GHz~5GHz		-19.0				Stop Freq 5.000000000 GHz
3612~3612		-39.0			_	CF Step 200.000000 MHz Auto Man
			atomat filla en tra como		1	Freq Offset
		-69.0	na an an an an an Anna an Anna an Anna A Anna Anna			0 Hz
		Start 3.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Silveep 191.5	top 5.000 GHz ms (8001 pts)	
		MSG Agilent Spectrum Analyzer - Swept SA		STATUS		
		04 RL RF 50.9 AC Center Freq 7.5000000	SBNSE:PULSE PNO: Fast →→ IFGain:Low #Atten: 30 dB	#Avg Type: RMS Avg Hold: 11/100	46:37 PM Sep 25, 2017 TRACE 2 3 4 5 6 TYPE MUNICIP P P P P	Frequency
		Ref Offset 1 dB 10 dB/div Ref 21.00 dBm		Mkr1 6.1	41 875 GHz 55.519 dBm	Auto Tune
		11.0			_	Center Freq 7.500000000 GHz
•		-9.00				Start Freq 5.00000000 GHz
CH00		-19.0			-14.35 dBn	Stop Freq
5GHz~10GHz		-29.0				10.00000000 GHz
		-49.0				CF Step 500.000000 MHz <u>Auto</u> Man
		-59.0 Constraint for an analytic statement for a large statement				Freq Offset 0 Hz
		-69.0 Start 5 000 GHz			op 10 000 CHz	
		Start 5.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sto Sweep 477.9	ms (8001 pts)	