

Combo Module

Data sheet DFCM-NNN50-DT0R

A IEEE 802.11b/g/n Wireless LAN Plus Bluetooth Low Energy System On Chip Combo Module.

Contents

1.	Features	5
	1-1. General	5
	1-2. WLAN	5
	1-3. Bluetooth	6
2.	Model No. Definition	7
3.	Block Diagram	8
4.	General Specification	9
5.	Electrical Characteristics	. 10
	5-1. Absolute Maximum Rating	.10
	5-2. Recommended Operating Conditions	.10
	5-2.1. Operating Conditions	.10
	5-2.2. Power Consumption	.10
6.	RF Characteristics	. 11
	6-1. WLAN RF Characteristics	. 11
	6-2. Bluetooth Low Energy RF characteristics	. 13
7.	Pin Description	.14
8.	Slow Clock Requirement	. 16
	8-1. External 32.768KHz crystal oscillator	.16
	8-2. 32.768KHz RC oscillator	. 16
	8-3. 32.768KHz synthesized oscillator	.17
9.	Power-Up Sequence	. 18
10.	Peripheral	. 19
	10-1. Timer/Counters (TIMER)	. 20
	10-2. Real Time Counter (RTC)	. 20
	10-3. AES Electronic Codebook Mode Encryption (ECB)	. 21
	10-4. AES CCM Mode Encryption (CCM)	. 21
	10-5. Accelerated Address Resolver (AAR)	. 22
	10-6. Random Number Generator (RNG)	. 22
	10-7. Watchdog Timer (WDT)	. 23
	10-8. Temperature sensor (TEMP)	. 23

Jun 27 2017

	10-9. BLE Serial Peripheral Interface (SPIS/SPI)	
	10-9.1.SPI Slave Specifications and Parameters	
	10-9.2.SPI Master Specifications and Parameters	
	10-10. Two-wire interface (TWI)	
	10-11. Universal Asynchronous Receiver/Transmitter (UART)	
	10-12. Quadrature Decoder (QDEC)	
	10-13. Analog to Digital Converter (ADC)	
	10-14. GPIO Task Event block (GPIOTE)	
	10-15. Low Power Comparator (LPCOMP)	
	10-16. GPIO	
	10-17. Debugger support	
	10-18. WLAN SPI Slave Interface	
11.	Reference Circuit	
	11-1. Standard Mode	
	11-2. High Speed Mode	
12.	Module Dimensions (mm)	
13.	Recommend Soldering Conditions	
14.	Important Notice	
	14.1 Federal Communications Commission (FCC) Notice	
	14.2 National Communications Commission (NCC) Notice	41

Preliminary Data Sheet

Revision History

Version	Date	Reason of change	Maker
S0.1	2016/8/15	Initial release	Josh
S0.2	2016/11/23	 Modify RF TX output power and RX sensitivity spec VBAT input voltage range Delta logo, mechanical information and reflow profile Add reference schematic 	Josh
S0.3	2016/12/07	Modify 5.2 Recommended Operating Conditions	Josh
S0.4	2016/12/29	Add current consumption data Modify 11-1、11-2 reference circuit	Josh Junru
S0.5	2017/02/22	02/22 Modify application circuit and condition of voltage Correct model no. definition	
S0.6	S0.6 2017/05/22 Modify 6-1. WLAN RF Characteristics according to 3V3T test results		Josh
S0.7	2017/06/22	Modify Remove SDIO application circuit Add important notice 	Josh

Preliminary Data Sheet

Sheet 4 of 41

DFCM-NNN5-DT0R Wireless LAN/BLE SoC Combo Module

This document describes the DFCM-NNN50-DT0R wireless LAN/BLE SoC combo module hardware specification. The modules provide cost effective, low power, and flexible platform to add Wi-Fi® connectivity and BLE for embedded devices for a variety of applications, such as wireless sensors and thermostats. It uses the wireless LAN chip and BLE SoC, which integrating the 2.4GHz transceiver, a 32 bit ARM® Cortex M0 CPU, flash memory, and analog and digital peripherals.

1. Features

1-1. General

- Integrated wireless LAN chip and BLE chip
- Built in RF switch for BLE and WLAN using a single antenna
- Integrated a 32 bit ARM® Cortex M0 CPU,256KB flash memory and 32KB RAM
- Extra 256KB flash memory for user data storage.
- 8/9/10 bit ADC 5 configurable channels
- 14 General Purpose I/O Pins
- Two-wire Master (I2C compatible) support 100K bps and 400K bps
- UART baud rate up to 921600 bps
- SPI bit rate up to 4M bps
- Quadrature Decoder (QDEC)
- Temperature sensor
- LGA42 pin package
- Dimension 12.4mm(L) x 10.9mm(W) x 1.8mm(H)
- RoHS compliant

1-2. WLAN

- IEEE 802.11 b/g/n (1x1) for up to 65 Mbps
- Superior Sensitivity and Range via advanced PHY signal processing
- Advanced Equalization and Channel Estimation
- Advanced Carrier and Timing Synchronization
- Soft-AP support

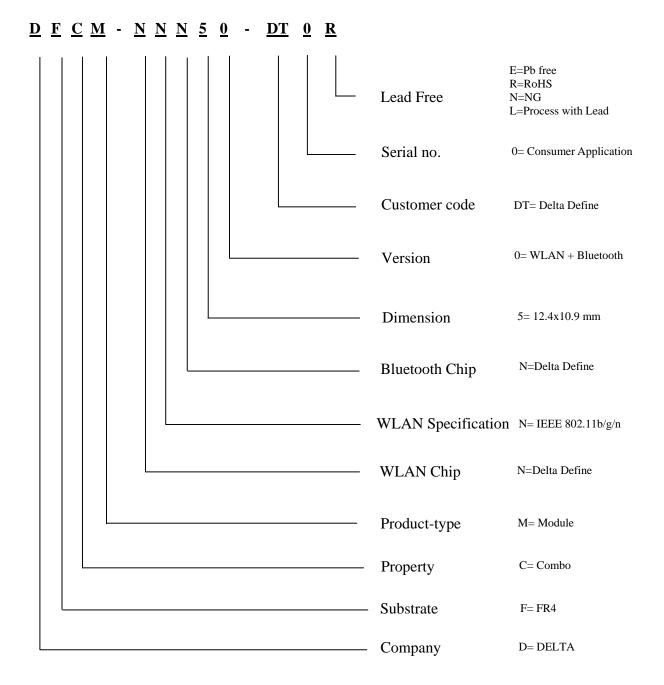
Preliminary Data Sheet

Sheet 5 of 41

Jun 27 2017

- Supports IEEE 802.11 WEP, WPA, WPA2 Security
- SSL Security
- On-Chip network stack offload MCU
 - Integrated Network IP stack to minimize high speed mode host CPU requirements (4KB flash less than 1KB RAM, for Wi-Fi drivers)
 - Network features TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS
- Support SPI host interface

1-3. Bluetooth


- Bluetooth 4.1 specification compliant
- AES HW encryption

Preliminary Data Sheet

Sheet 6 of 41

2. Model No. Definition

Preliminary Data Sheet

Sheet 7 of 41

Jun 27 2017

3. Block Diagram

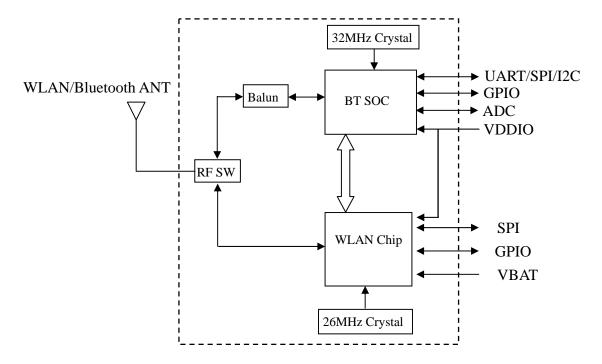


Figure 3-1 DFCM-NNN50-DT0R Block Diagram

Preliminary Data Sheet

Sheet 8 of 41

Jun 27 2017

4. General Specification

Standard	WLAN: IEEE 802.11 b/g/n Bluetooth: V4.1
Frequency	2.412 ~ 2.484 GHz for WLAN 2.402 ~ 2.48 GHz for BT
Modulation	64QAM, 16QAM, QPSK, BPSK, CCK, DQPSK, DBPSK for WLAN GFSK for Bluetooth
Data Rate	802.11b: 1, 2, 5.5, 11 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps BLE: 0.25, 1, 2 Mbps
Operating Temperature	-25~+85
Storage Temperature	-40~+85
Antenna Impedance	50 ohm
Package Size	12.4 X 10.9 X 1.8 mm
Host Interface	UART, SPI

Table 4-1 General Specification

Preliminary Data Sheet

Sheet 9 of 41

5. Electrical Characteristics

5-1. Absolute Maximum Rating

Symbol	Min.	Max.	Units
VBAT	-0.3	5.0	V
VDDIO	-0.3	3.9	V
V _{GPIO}	-0.3	2.1	V
ESD-HBM		1	KV
ESD-CDM		500	V

Table 5-1 Absolute Maximum Rating

5-2. Recommended Operating Conditions 5-2.1. Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VBAT	Supply voltage	3.0	3.3	4.2	V
VDDIO	Supply voltage	2.7	3.3	3.6	V

Table 5-2 Operating Conditions

5-2.2. Power Consumption

Condition: VBAT=3.3V, VDDIO=3.3V, T=25

Conditions	VBAT	VDDIO.
Idle mode	3.7 uA	4.24 mA
Standby mode	3.7 uA	67 uA.
BLE RF TX mode	3.7 uA	18.6 mA
BLE RF RX mode	3.7uA	18 mA
WLAN RF TX mode	252 mA	29.1 mA
WLAN RF RX mode	75 mA	28.9 mA

Table 5-3 Power Consumption

Preliminary Data Sheet

Sheet 10 of 41

Jun 27 2017

6. **RF Characteristics**

6-1. WLAN RF Characteristics

Condition: VBAT=3.3V, VDDIO=3.3V, T=25

ltem	Condition	Min.	Тур.	Max.	Unit		
802.11b Transmit							
Transmit power level	11Mbps	8	12*	16	dBm		
Transmit center frequency tolerance		-25	0	+25	ppm		
Transmit spectral mask	Fc-22MHz <f<fc-11mhz &<br="">Fc+11MHz<f<fc+22mhz< td=""><td></td><td></td><td>-30</td><td>dBr</td></f<fc+22mhz<></f<fc-11mhz>			-30	dBr		
	F <fc-22mhz&f>Fc+22MHz</fc-22mhz&f>			-50	dBr		
Transmit modulation accuracy			11	35	%		
802.11b Receiver							
Receiver minimum input level sensitivity (PER<8%)	11Mbps		-84	-76	dBm		
Receiver maximum input level (PER<8%)				-10	dBm		

Table 6-1 WLAN 802.11b RF Characteristics

Condition: VBAT=3.3V, VDDIO=3.3V, T=25

Item	Condition	Min.	Тур.	Max.	Unit	
802.11g Transmit						
Transmit power level	54Mbps	7.5	11.5*	15.5	dBm	
Transmit center frequency tolerance		-25	0	+25	ppm	
RF carrier suppression	Channel estimation phase		-26	-15	dB	
Transmit modulation accuracy	54Mbps		-31	-25	dB	
Transmit spectral mask	Fc-20MHz <f<fc-11mhz &Fc+11MHz<f<fc+22mhz< td=""><td></td><td></td><td>-20</td><td>dBr</td></f<fc+22mhz<></f<fc-11mhz 			-20	dBr	
	F <fc-30mhz&f>Fc-20MHz</fc-30mhz&f>			-28	dBr	

Preliminary Data Sheet

Sheet 11 of 41

Jun 27 2017

802.11g Receiver					
Receiver minimum input level sensitivity (PER<10%)	54Mbps		-70	-65	dBm
Receiver maximum input level (PER<10%)				-20	dBm

Table 6-2 WLAN 802.11g RF Characteristics

Condition: VBAT=3.3V, VDDIO=3.3 V, T=25

ltem	Condition	Min.	Тур.	Max.	Unit			
802.11n Transmit	802.11n Transmit							
Transmit power level	65Mbps	5	9*	13	dBm			
Transmit center frequency tolerance		-25		+25	ppm			
RF carrier suppression	Channel estimation phase		-22	-15	dB			
Transmit modulation accuracy	65Mbps		-31	-27	dB			
Transmit spectral mask	Fc-20MHz <f<fc-11mhz &Fc+11MHz<f<fc+22mhz< td=""><td></td><td></td><td>-20</td><td>dBr</td></f<fc+22mhz<></f<fc-11mhz 			-20	dBr			
	F <fc-30mhz&f>Fc-20MHz</fc-30mhz&f>			-28	dBr			
802.11n Receiver								
Receiver minimum input level sensitivity (PER<10%)	65Mbps		-65	-64	dBm			
Receiver maximum input level (PER<10%)				-20	dBm			

Table 6-3 WLAN 802.11n RF Characteristics

* Transmit power level may be degraded at extreme temperatures.

6-2. Bluetooth Low Energy RF characteristics

Condition: VDDIO=3.3V, T=25

Item	Condition	Min.	Тур.	Max.	Unit		
RF Characteristics							
Output Power		-20	2.5	8	dBm		
Initial Frequency Offset		-75	0	75	KHz		
	F1 Average	225	250	275	KHz		
Modulation Characteristics	F2 Maximum	185	217		KHz		
	F2 / F1 Ratio	0.8	0.91				
Sensitivity (PER<30.8%)	250Kbps		-91	-70	dBm		
Maximum Input Level (PER<30.8%)	250Kbps		0		dBm		

Table 6-4 Bluetooth RF Characteristics

Preliminary Data Sheet

Sheet 13 of 41

7. Pin Description

Pin	Definition	Function	Description
1	BT_P0.23	Digital I/O	Bluetooth General purpose I/O pin
2	BT_P0.03	Digital I/O	Bluetooth General purpose I/O pin
3	GND	Gnd	Ground
4	ANT	RF	WLAN/Bluetooth RF input/output
5	GND	Gnd	Ground
6	BT_P0.25	Digital I/O	Bluetooth general purpose I/O pin
7	BT_P0.13	Digital I/O	Bluetooth general purpose I/O pin
8	BT_P0.20	Digital I/O	Bluetooth general purpose I/O pin
9	BT_P0.17	Digital I/O	Bluetooth general purpose I/O pin
10	BT_P0.16	Digital I/O	Bluetooth general purpose I/O pin
11	BT_SWDCLK	Digital input	Hardware debug and flash programming I/O
12	BT_SWDIO	Digital I/O	System reset (active low). Also hardware debug and flash
12	BT_SWDIO	Digital I/O	programming I/O
13	GND	Gnd	Ground
14	IRQN	Digital I/O	Interrupt pin to host
15	SPI_MOSI	Digital I/O	SPI_MOSI
16	WL_GPIO5	Digital I/O	WLAN GPIO5, firmware debug purpose
17	GND	Gnd	Ground
18	WL_I2C_SDA	Digital I/O	WLAN I2C slave data, hardware debug purpose
19	WL_I2C_SCL	Digital I/O	WLAN I2C slave clock, hardware debug purpose
20	SD_DAT3	Digital I/O	NC
21	SD_CLK	Digital I/O	NC
		Digital I/O	Bluetooth general purpose I/O pin
22	BT_P0.06	Digital I/O Analog input	ADC input 7
		Analog Input	ADC Reference voltage input 1
23	BT_P0.05	Digital I/O	Bluetooth general purpose I/O pin
20	0.05	Analog input	ADC input 6
24	BT_P0.04	Digital I/O	Bluetooth general purpose I/O pin

Preliminary Data Sheet

Sheet 14 of 41

Jun 27 2017

24	BT_P0.04	Analog input	ADC input 5
25	BT_P0.31	Digital I/O	Bluetooth general purpose I/O pin
26	GND	Gnd	Ground
27	VBAT	Power	VBAT power supply input
28	GND	Gnd	Ground
29	BT_P0.30	Digital I/O	Bluetooth general purpose I/O pin
30	BT P0.00	Digital I/O	General purpose I/O.
30	BI_P0.00	Analog input	ADC Reference voltage.
31	SPI_MISO	Digital I/O	SPI_MISO
32	SPI_SCK	Digital I/O	SPI_SCK
33	SPI_SSN	Digital I/O	SPI_SSN
			Bluetooth general purpose I/O pin
34	BT_P0.27	Digital I/O	ADC input 1
54	DT_F0.27	Analog input	Crystal connection for 32.768 kHz crystal oscillator or
			external 32.768 kHz crystal reference
35	BT_P0.29	Digital I/O	Bluetooth general purpose I/O pin
		Digital I/O	Bluetooth general purpose I/O pin
36	BT_P0.26	C C	ADC input 0
		Analog input	Crystal connection for 32.768 kHz crystal oscillator
37	BT_P0.24	Digital I/O	Bluetooth general purpose I/O pin
38	GND	Gnd	Ground
39	VDDIO	Power	Power supply input of VDDIO
40	GND	Gnd	Ground
41	BT_P0.21	Digital I/O	Bluetooth general purpose I/O pin
42	BT_P0.22	Digital I/O	Bluetooth general purpose I/O pin

Table 7-1 Pin Description

Preliminary Data Sheet

Sheet 15 of 41

8. Slow Clock Requirement

8-1. External 32.768KHz crystal oscillator

The 32.768 kHz crystal oscillator is designed for use with a quartz crystal in parallel resonant mode. To achieve correct oscillation frequency, the load capacitance must match the specification in the crystal data sheet. Table 8-1 shows the specification of 32.768 kHz crystal oscillator.

Symbol	Description	Min.	Тур.	Max.	Units	Test level
f _{NOM,X32k}	Crystal frequency.		32.768		kHz	N/A
f _{TOL,X32k,BLE}	Frequency tolerance, <i>Bluetooth</i> low energy applications.			±250	ppm	N/A
C _{L,X32k}	Load capacitance.			12.5	pF	N/A
C _{0,X32k}	Shunt capacitance.			2	pF	N/A
R _{S,X32k}	Equivalent series resistance.		50	80	kΩ	N/A
P _{D,X32k}	Drive level.			1	μW	N/A
C _{pin}	Input capacitance on XL1 and XL2 pads.		4		pF	1
I _{X32k}	Run current for 32.768 kHz crystal oscillator.		0.4	1	μΑ	1
I _{START,X32k}	Startup current for 32.768 kHz crystal oscillator.		1.3	1.8	μΑ	1
t _{START,X32k}	Startup time for 32.768 kHz crystal oscillator.		0.3	1	S	2

Table 8-1 32.768 kHz crystal oscillator specification

8-2. 32.768KHz RC oscillator

The 32.768 kHz RC low frequency oscillator may be used as an alternative to the 32.768 kHz crystal oscillator. It has a frequency accuracy of less than \pm 250 ppm in a stable temperature environment or when calibration is periodically performed in changing temperature environments. The 32.768 kHz RC oscillator does not require external components.

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
f _{NOM,RC32k}	Nominal frequency.			32.768		kHz	N/A
f _{TOL,RC32k}	Frequency tolerance.			±2		%	3
f _{TOL,CAL,RC32k}	Frequency tolerance.	Calibration interval 4 s			±250	ppm	1
I _{RC32k}	Run current.		0.5	0.8	1.1	μΑ	1
t _{START,RC32k}	Startup time.			100		μs	1

Table 8-2 32.768 kHz RC oscillator specification

8-3. 32.768KHz synthesized oscillator

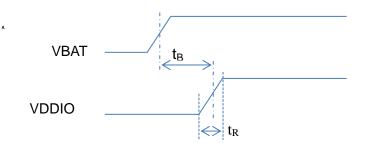
The low frequency clock can be synthesized from the high frequency clock. This saves the cost of a crystal but increases average power consumption as the high frequency clock source will have to be active.

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
f _{NOM,SYNT32k}	Nominal frequency.			32.768		kHz	1
f _{TOL,SYNT}	Frequency tolerance.			TOL,XO16M ±8 TOL,XO32M ±8		ppm	1
I _{SYNT32k}	Run and startup current for 32.768 kHz Synthesized clock including the 16M XOSC.			15		μΑ	1
t _{START,SYNT32k}	Startup time for 32.768 kHz Synthesized clock.			100		μs	1

Table 8-3 32.768 kHz synthesized oscillator specification

Preliminary Data Sheet

Sheet 17 of 41


Jun 27 2017

9. Power-Up Sequence

Power-Up Sequence

The power-up sequence for DFCM-NNN50-DT0R is shown in Figure 9.1 The timing parameters are provided in Table 9.1

Figure 9.1 Power-Up Sequence

Parameter	Min	Max	Units	Description	Notes
t _B	0		ms	VBAT rise to VDDIO rise	VBAT and VDDIO can rise simultaneously
t _R		100	ms	VDDIO supply rise time (0V to supply voltage)	The on-chip power on reset circuitry may not function properly for rise times outside the specified internal

Table 9.1 Power-Up Sequence Timing

Preliminary Data Sheet

Sheet 18 of 41

10. Peripheral

Peripheral blocks which have a register interface and/or interrupt vector assigned are instantiated, one or more times, in the device address space. The instances, associated ID (for those with interrupt vectors), and base address of features are found in *Table 10-1*.

ID	Base address	Peripheral	Instance	Description
0	0x40000000	POWER	POWER	Power Control.
0	0x40000000	CLOCK	CLOCK	Clock Control.
1	0x40001000	RADIO	RADIO	2.4 GHz Radio.
2	0x40002000	UART	UARTO	Universal Asynchronous Receiver/Transmitter.
3	0x40003000	SPI	SPI0	SPI Master.
3	0x40003000	TWI	TWI0	I2C compatible Two-Wire Interface 0.
4	0x40004000	SPIS	SPIS1	SPI Slave.
4	0x40004000	SPI	SPI1	SPI Master.
4	0x40004000	TWI	TWI1	I2C compatible Two-Wire Interface 1.
5				Unused.
6	0x40006000	GPIOTE	GPIOTE	GPIO Task and Events.
7	0x40007000	ADC	ADC	Analog to Digital Converter.
8	0x40008000	TIMER	TIMERO	Timer/Counter 0.
9	0x40009000	TIMER	TIMER1	Timer/Counter 1.
10	0x4000A000	TIMER	TIMER2	Timer/Counter 2.
11	0x4000B000	RTC	RTC0	Real Time Counter 0.
12	0x4000C000	TEMP	TEMP	Temperature Sensor.
13	0x4000D000	RNG	RNG	Random Number Generator.
14	0x4000E000	ECB	ECB	Crypto AES ECB.
15	0x4000F000	CCM	CCM	AES Crypto CCM.
15	0x4000F000	AAR	AAR	Accelerated Address Resolver.
16	0x40010000	WDT	WDT	Watchdog Timer.
17	0x40011000	RTC	RTC1	Real Time Counter 1.
18	0x40012000	QDEC	QDEC	Quadrature Decoder.
19	0x40013000	LPCOMP	LPCOMP	Low Power Comparator.
20 - 25				Reserved as software interrupt.
26 - 29				Unused.
30	0x4001E000	NVMC	NVMC	Non-Volatile Memory Controller.
31	0x4001F000	PPI	PPI	Programmable Peripheral Interconnect.
NA	0x50000000	GPIO	GPIO	General Purpose Input and Output.
NA	0x10000000	FICR	FICR	Factory Information Configuration Registers.
NA	0x10001000	UICR	UICR	User Information Configuration Registers.

Table 10-1 Peripheral instance reference

Preliminary Data Sheet

Sheet 19 of 41

Jun 27 2017

10-1. Timer/Counters (TIMER)

The timer/counter runs on the high-frequency clock source (HFCLK) and includes a 4 bit (1/2X) prescaler that can divide the HFCLK.

The task/event and interrupt features make it possible to use the PPI system for timing and counting tasks between any system peripheral including any GPIO of the device. The PPI system also enables the TIMER task/event features to generate periodic output and PWM signals to any GPIO. The number of input/outputs used at the same time is limited by the number of GPIOTE channels.

Instance	Bit-width	Capture/Compare registers
TIMER0	8/16/24/32	4
TIMER1	8/16	4
TIMER2	8/16	4

Table 10-2 Timer/Counter properties

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{TIMER0/1/2}	Timer at 16 MHz run current.			30		μΑ	1
t _{TIMER} ,START	Time from START task is given until timer starts counting.			0.25		μs	1

Table 10-3 Timer specification

10-2. Real Time Counter (RTC)

The Real Time Counter (RTC) module provides a generic, low power timer on the low-frequency clock source(LFCLK). The RTC features a 24 bit COUNTER, 12 bit (1/X) prescaler, capture/compare registers, and a tick event generator for low power, tickless RTOS implementation.

Instance	Capture/Compare registers
RTC0	3
RTC1	4

Table 10-4 RTC properties

Preliminary Data Sheet

Sheet 20 of 41

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{RTC}	Timer (LFCLK source).		0.1		μΑ	1

Table 10-5 RTC specification

10-3. AES Electronic Codebook Mode Encryption (ECB)

The ECB encryption block supports 128 bit AES block encryption. It can be used for a range of cryptographic functions like hash generation, digital signatures, and keystream generation for data encryption/decryption. ECB encryption uses EasyDMA to access system RAM for in-place operations on cleartext and ciphertext during encryption.

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{ECB}	Run current for ECB.		550		μΑ	1
t _{STARTECB} , ENDECB	Time for a 16 byte AES block encrypt.		8.5	17	μs	1

Table 10-6 ECB specification

10-4. AES CCM Mode Encryption (CCM)

Cipher Block Chaining - Message Authentication Code (CCM) Mode is an authenticated encryption algorithm designed to provide both authentication and confidentiality during data transfer. CCM combines counter mode encryption and CBC-MAC authentication.

Note: The CCM terminology "Message Authentication Code (MAC)" is called the "Message Integrity Check (MIC)" in Bluetooth terminology.

The CCM block generates an encrypted keystream, applies it to the input data using the XOR operation, and generates the 4 byte MIC field in one operation. The CCM and radio can be configured to work synchronously. The CCM will encrypt in time for transmission and decrypt after receiving bytes into memory from the Radio. All operations can complete within the packet RX or TX time.

Preliminary Data Sheet

Sheet 21 of 41

Jun 27 2017

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{CCM}	Run current for CCM.		550		μΑ	1

Table 10-7 CCM specification

10-5. Accelerated Address Resolver (AAR)

Accelerated Address Resolver is a cryptographic support function to implement the "Resolvable Private Address Resolution Procedure" described in the *Bluetooth Core Specification* v4.0. "Resolvable Private Address Generation" should be achieved using ECB and is not supported by AAR. The procedure allows two devices that share a secret key to generate and resolve a hash based on their device address.

The AAR block enables real-time address resolution on incoming packets. This allows real-time packet filtering (whitelisting) using a list of known shared secrets (Identity Resolving Keys (IRK) in *Bluetooth*). The following table outlines the properties of the AAR.

Instance	Number of IRKs supported for simultaneous resolution
AAR	8

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{AAR}	Run current for AAR.		550		μΑ	1
t _{START,RESOLVED}	Time for address resolution of 8 IRKs.		68		μs	1

Table 10-8 AAR properties

Table 10-9 AAR specification

10-6. Random Number Generator (RNG)

The Random Number Generator (RNG) generates true non-deterministic random numbers derived from thermal noise that are suitable for cryptographic purposes. The RNG does not require a seed value.

Preliminary Data Sheet

Sheet 22 of 41

Jun 27 2017

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{RNG}	Run current at 16 MHz.			60		μΑ	1
t _{RNG,RAW}	Run time per byte in RAW mode.	Uniform distribution of 0 and 1 is not guaranteed.		167		μs	1
t _{RNG,UNI}	Run time per byte in Uniform mode.	Uniform distribution of 0 and 1 is guaranteed. Time to generate a byte cannot be guaranteed.		677		μs	1

Table 10-10 Random Number Generator (RNG) specifications

10-7. Watchdog Timer (WDT)

A countdown watchdog timer using the low-frequency clock source (LFCLK) offers configurable and robust protection against application lock-up. The watchdog can be paused during long CPU sleep periods for low power applications and when the debugger has halted the CPU.

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{WDT}	Run current for watchdog timer.		0.1		μΑ	1
t _{WDT}	Time out interval, watchdog timer.	30 µs		36 hrs		1

Table 10-11 Watchdog Timer specifications

10-8. Temperature sensor (TEMP)

The temperature sensor measures die temperature over the temperature range of the device with 0.25° C resolution.

Symbol	Description	Min.	Тур.	Max.	Units	Test level
ITEMP	Run current for Temperature sensor.		185		μΑ	1
t _{TEMP}	Time required for temperature measurement.		35		μs	1
T _{RANGE}	Temperature sensor range.	-25		75	°C	N/A
T _{ACC}	Temperature sensor accuracy.	-4		+4	°C	N/A
T _{RES}	Temperature sensor resolution.		0.25		°C	1

Table 10-12 Temperature sensor

10-9. BLE Serial Peripheral Interface (SPIS/SPI)

The SPI interfaces enable full duplex synchronous communication between devices. They support a threewire (SCK, MISO, MOSI) bi-directional bus with fast data transfers. The SPI Master can communicate with multiple slaves using individual chip select signals for each of the slave devices attached to a bus. Control of chip select signals is left to the application through use of GPIO signals. SPI Master has double buffered I/O data. The SPI Slave includes EasyDMA for data transfer directly to and from RAM allowing Slave data transfers to occur while the CPU is IDLE.

The GPIOs used for each SPI interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of printed circuit board space and signal routing.

The SPI peripheral supports SPI mode 0, 1, 2, and 3.

Instance	Master/Slave
SPI0	Master
SPI1	Master
SPIS1	Slave

Table 10-13 SPI properties

Preliminary Data Sheet

10-9.1.SPI Slave Specifications and Parameters

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{SPIS125K}	Run current for SPI slave at 125 kbps. ¹		180		μΑ	1
I _{SPIS2M}	Run current for SPI slave at 2 Mbps. ¹		183		μΑ	1
f _{SPIS}	Bit rates for SPIS.	0.125		2	Mbps	N/A

1. CSN asserted.

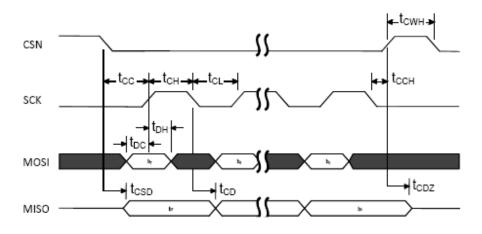


Figure 10-1 SPIS timing diagram, one byte transmission, SPI Mode 0

Preliminary Data Sheet

Sheet 25 of 41

Jun 27 2017

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
t _{DC}	Data to SCK setup.		10			ns	1
t _{DH}	SCK to Data hold.		10			ns	1
t _{CSD}	CSN to Data valid.	Low power mode. ¹ Constant latency mode. ¹			7100 2100	ns	1
t _{CD}	SCK to Data Valid.				60	ns	1
t _{CL}	SCK Low time.		40			ns	1
t _{CH}	SCK High time.		40			ns	1
t _{CC}	CSN to SCK Setup.	Low power mode. ¹ Constant latency mode. ¹	7000 2000			ns	1
t _{CCH}	Last SCK edge to CSN Hold.		2000			ns	1
t _{CWH}	CSN Inactive time.		300			ns	1
t _{CDZ}	CSN to Output High Z.				40	ns	1
f _{SCK}	SCK frequency.		0.125		2	MHz	1
t _{R,} t _F	SCK Rise and Fall time.				100	ns	1

Table 10-15 SPIS timing parameters

10-9.2.SPI Master Specifications and Parameters

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{SPI125K}	Run current for SPI master at 125 kbps.		180		μΑ	1
I _{SPI4M}	Run current for SPI master at 4 Mbps.		200		μΑ	1
f _{SPI}	Bit rates for SPI.	0.125		4	Mbps	N/A

Table 10-16 SPI specifications

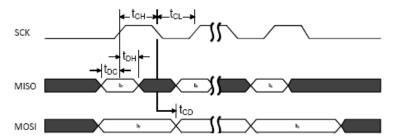


Figure 10-2 SPI timing diagram, one byte transmission, SPI Mode 0

Preliminary Data Sheet

Sheet 26 of 41

Jun 27 2017

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
t _{DC}	Data to SCK setup.		10			ns	1
t _{DH}	SCK to Data hold.		10			ns	1
t _{CD}	SCK to Data valid.	C _{LOAD} = 10 pF			97 ¹	ns	1
t _{CL}	SCK Low time.		40			ns	1
t _{CH}	SCK High time.		40			ns	1
f _{SCK}	SCK Frequency.		0.125		4	MHz	1
t _{R,} t _F	SCK Rise and Fall time.				100	ns	1

1. Increases/decreases with 1.2 ns/pF load.

Table 10-17 SPI timing parameters

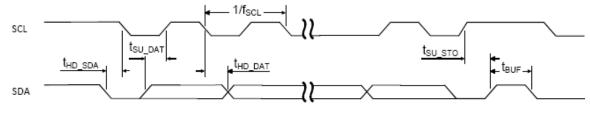
10-10. Two-wire interface (TWI)

The two-wire interface can communicate with a bi-directional wired-AND bus with two lines (SCL, SDA). The protocol makes it possible to interconnect up to 127 individually addressable devices. The interface is capable of clock stretching, supporting data rates of 100 kbps and 400 kbps.

The GPIOs used for each two-wire interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing

Instance	Master/Slave
TWI0	Master
TWI1	Master

Table 10-18 Two-wire properties


Preliminary Data Sheet

Sheet 27 of 41

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{2W100K}	Run current for TWI at 100 kbps.			380		μΑ	1
I _{2W400K}	Run current for TWI at 400 kbps.			400		μΑ	1
f _{2W}	Bit rates for TWI.		100		400	kbps	N/A
t _{twi,start}	Time from STARTRX/STARTTX task is given until start condition.	Low power mode. ¹ Constant latency mode. ¹		3 1	4.4	μs	1

Table 10-19 TWI specification

Figure 10-3 SCL/SDA timing

Symbol	Description	Stand Min.		Fa Min.	ast Max.	Units	Test level
f _{SCL}	SCL clock frequency.		100		400	kHz	1
t _{HD_STA}	Hold time for START and repeated START condition.	5200		1300		ns	1
t _{SU_DAT}	Data setup time before positive edge on SCL.	300		300		ns	1
t _{HD_DAT}	Data hold time after negative edge on SCL.	300		300		ns	1
t _{SU_STO}	Setup time from SCL goes high to STOP condition.	5200		1300		ns	1
t _{BUF}	Bus free time between STOP and START conditions.	4700		1300		ns	1

Table 10-20 TWI timing parameters

Preliminary Data Sheet

Sheet 28 of 41

Jun 27 2017

10-11. Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter offers fast, full-duplex, asynchronous serial communication with built-in flow control (CTS, RTS) support in hardware up to 1 Mbps baud. Parity checking is supported.

The GPIOs used for each UART interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing.

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{UART1M}	Run current at max baud rate.			230		μΑ	1
I _{UART115k}	Run current at 115200 bps.			220		μΑ	1
IUART1k2	Run current at 1200 bps.			210		μΑ	1
f _{UART}	Baud rate for UART.		1.2		1000	kbps	N/A

Table 10-21 UART specifications

10-12. Quadrature Decoder (QDEC)

The quadrature decoder provides buffered decoding of quadrature-encoded sensor signals. It is suitable for mechanical and optical sensors with an optional LED output signal and input debounce filters. The sample period and accumulation are configurable to match application requirements.

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{QDEC}				12		μΑ	1
t _{SAMPLE}	Time between sampling signals from quadrature decoder.		128		16384	μs	N/A
t _{LED}	Time from LED is turned on to signals are sampled.	Only valid for optical sensors.	0		511	μs	N/A

Table 10-22 Quadrature Decoder specifications

Preliminary Data Sheet

Sheet 29 of 41

10-13. Analog to Digital Converter (ADC)

The 10 bit incremental Analog to Digital Converter (ADC) enables sampling of up to 5 external signals through a front-end multiplexer. The ADC has configurable input and reference prescaling, and sample resolution (8, 9, and 10 bit).

Note: The ADC module uses the same analog inputs as the LPCOMP module (AIN0, AIN1, AIN5, AIN6, AIN07, and AREF1). Only one of the modules can be enabled at the same time.

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
DNL _{10b}	Differential non-linearity (10 bit mode).			< 1		LSB	2
INL _{10b}	Integral non-linearity (10 bit mode).			2		LSB	2
V _{OS}	Offset error.		-2		+2	%	2
e _G	Gain error.		-2		+2	%	2
V _{REF_INT}	Internal reference voltage.		-1.5	1.20 V	+1.5	%	2
TC _{REF_INT}	Internal reference voltage drift.		-200		+200	ppm/°C	2
V _{REF_EXT}	External reference voltage.		0.83	1.2	1.3	V	1
t _{ADC10b}	Time required to convert a single sample in 10 bit mode.			68		μs	1
t _{ADC9b}	Time required to convert a single sample in 9 bit mode.			36		μs	1
t _{ADC8b}	Time required to convert a single sample in 8 bit mode.			20		μs	1
I _{ADC}	Current drawn by ADC during conversion.			260		μΑ	1
ADC_ERR_1V8				3		LSB	2
ADC_ERR_2V2	Absolute error when used for	Internal		2		LSB	2
ADC_ERR_2V6	battery measurement at 1.8 V, 2.2 V, 2.6 V, 3.0 V and	reference, input from VDD/3, 10		1		LSB	2
ADC_ERR_3V0	3.4 V.	bit mode.		1		LSB	2
ADC_ERR_3V4				1		LSB	2

Table 10-23 Analog to Digital Converter (ADC) specifications

Preliminary Data Sheet

Sheet 30 of 41

10-14. GPIO Task Event block (GPIOTE)

A GPIOTE block enables GPIOs on Port 0 to generate events on pin state change which can be used to carry out tasks through the PPI system. A GPIO can also be driven to change state on system events using the PPI system. Low power detection of pin state changes on Port 0 is possible when in System ON or System OFF.

Instance	Number of GPIOTE channels
GPIOTE	4

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{GPIOTE,IN}	Run current with 1 or more GPIOTE active channels in Input mode.		22		μΑ	1
I _{GPIOTE,OUT}	Run current with 1 or more GPIOTE active channels in Output mode.		0.1		μΑ	1
I _{GPIOTE,IDLE}	Run current when all channels in Idle mode. PORT event can be generated with a delay of up to t_{1V2} .		0.1		μΑ	1

Table 10-24 GPIOTE properties

Table 10-25 GPIOTE specification

Note: Setting up one or more GPIO DETECT signals to generate PORT EVENT, which can be used

either as a wakeup source or to give an interrupt, will not lead to an increase of the current consumption.

10-15. Low Power Comparator (LPCOMP)

In System ON, the block can generate separate events on rising and falling edges of a signal, or sample the current state of the pin as being above or below the threshold. The block can be configured to use any of the analog inputs on the device. Additionally, the low power comparator can be used as an analog wakeup source from System OFF or System ON. The comparator threshold can be programmed to a range of fractions of the supply voltage.

Note: The LPCOMP module uses the same analog inputs as the ADC module (AIN0, AIN1, AIN5, AIN6, AIN7, and AREF1). Only one of the modules can be enabled at the same time.

Preliminary Data Sheet

Sheet 31 of 41

Jun 27 2017

Symbol	Description	Min.	Тур.	Max.	Units	Test level
ILPC	Run current for LPCOMP.		0.5		μΑ	1
t _{LPCANADETOFF}	Time from VIN crossing to ANADETECT signal generated when in System OFF.			15 ¹	μs	1
t _{LPCANADETON}	Time from VIN crossing to ANADETECT signal generated when in System ON.			15 ¹	μs	1

1. For 50 mV overdrive

Table 10-26 Low power comparator specifications

10-16. GPIO

The general purpose I/O is organized as one port with up to 14 I/Os enabling. Each GPIO can be accessed individually with the following user configurable features:

- Input/output direction
- Output drive strength
- Internal pull-up and pull-down resistors
- Wake-up from high or low level triggers on all pins
- Trigger interrupt on all pins
- All pins can be used by the PPI task/event system; the maximum number of pins that can be interfaced through the PPI at the same time is limited by the number of GPIOTE channels
- All pins can be individually configured to carry serial interface or quadrature demodulator signals

Symbol	Parameter (condition)	Note	Min.	Тур.	Max.	Units
V _{IH}	Input high voltage.		0.7 VDD		VDD	V
V _{IL}	Input low voltage.		VSS		0.3 VDD	V
V _{он}	Output high voltage (std. drive, 0.5 mA).		VDD-0.3		VDD	V
V _{OH}	Output high voltage (high-drive, 5 mA).	1	VDD-0.3		VDD	V
V _{OL}	Output low voltage (std. drive, 0.5 mA).		VSS		0.3	V
V _{OL}	Output low voltage (high-drive, 5 mA).		VSS		0.3	V
R _{PU}	Pull-up resistance.		11	13	16	kΩ
R _{PD}	Pull-down resistance.		11	13	16	kΩ

1. Maximum number of pins with 5 mA high drive is 3.

Note: The VDDIO is 3.3V

Preliminary Data Sheet

Sheet 32 of 41

Table 10-27 General Purpose I/O(GPIO) specifications

10-17. Debugger support

The two pin Serial Wire Debug (SWD) interface provided as a part of the Debug Access Port (DAP) in conjunction with the Nordic Trace Buffer (NTB) offers a flexible and powerful mechanism for non-intrusive debugging of program code. Breakpoints, single stepping, and instruction trace capture of code execution flow are part of this support.

10-18. WLAN SPI Slave Interface

WLAN provides a Serial Peripheral Interface (SPI) that operates as a SPI slave. The SPI Slave interface can be used for control and for serial I/O of 802.11 data. The SPI Slave pins are mapped as shown in Table 10-28. The RXD pin is same as Master Output, Slave Input (MOSI), and the TXD pin is same as Master Input, Slave Output (MISO). The SPI Slave is a full-duplex slave-synchronous serial interface that is available immediately following reset when module pin 25 is tied to VDDIO.

Pin	SPI Function
25	CFG: Must be tied to VDDIO
33	SSN: Active Low Slave Select
32	SCK: Serial Clock
15	RXD: Serial Data Receive (MOSI)
31	TXD: Serial Data Transmit (MISO)

Table 10-28 SPI Slave Interface Pin Mapping

When the SPI is not selected, i.e., when SSN is high, the SPI interface will not interfere with data transfers between the serial-master and other serial-slave devices. When the serial slave is not selected, its transmitted data output is buffered, resulting in a high impedance drive onto the serial master receive line.

The SPI Slave interface responds to a protocol that allows an external host to read or write any register in the chip as well as initiate DMA transfers. For the details of the SPI protocol and more specific instructions please refer to ATWILC1000A-UU Programming Guide.

The SPI Slave interface supports four standard modes as determined by the Clock Polarity (CPOL) and Clock Phase (CPHA) settings. These modes are illustrated in Table 10-29 and Figure 10-4. The red lines in Figure 10-4 correspond to Clock Phase = 0 and the blue lines correspond to Clock Phase = 1. The SPI Slave timing is provided in Figure 10-5 and Table 10-30

Preliminary Data Sheet

Sheet 33 of 41

Jun 27 2017

Mode	CPOL	СРНА
0	0	0
1	0	1
2	1	0
3	1	1

Table 10-29 SPI Slave Interface Pin Mapping

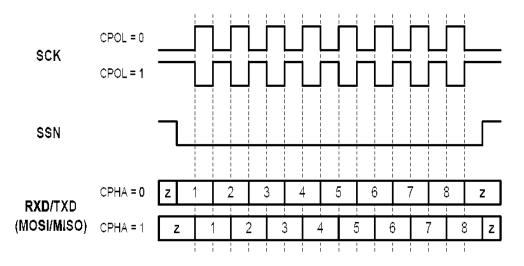


Figure 10-4 SPI Slave Clock Polarity and Clock Phase Timing

Preliminary Data Sheet

Sheet 34 of 41

Jun 27 2017

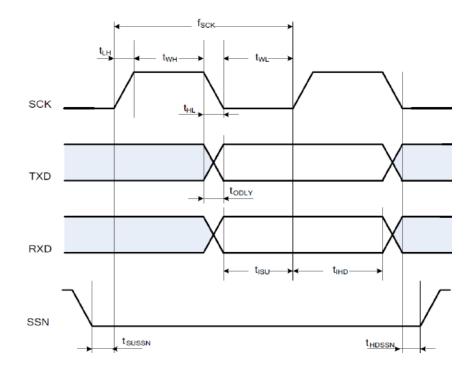


Figure 10-5 SPI Slave Timing Diagram

Parameter	Symbol	Min	Мах	Units
Clock Input Frequency	f _{scк}		48	MHz
Clock Low Pulse Width	t _{w∟}	15		ns
Clock High Pulse Width	t _{wH}	15		ns
Clock Rise Time	t _{LH}		10	ns
Clock Fall Time	t _{HL}		10	ns
Input Setup Time	t _{isu}	5		ns
Input Hold Time	t _{IHD}	5		ns
Output Delay	t _{odly}	0	20	ns
Slave Select Setup Time	t _{sussn}	5		ns
Slave Select Hold Time	t _{HDSSN}	5		ns

Table 10-30 SPI Slave Timing Parameters

Preliminary Data Sheet

Sheet 35 of 41

11. Reference Circuit

11-1. Standard Mode

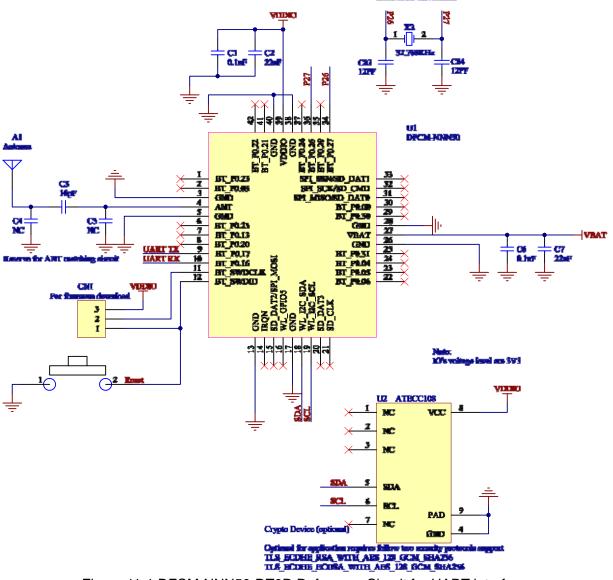


Figure 11-1 DFCM-NNN50-DT0R Reference Circuit for UART interface

Preliminary Data Sheet

Sheet 36 of 41

Jun 27 2017

11-2. High Speed Mode

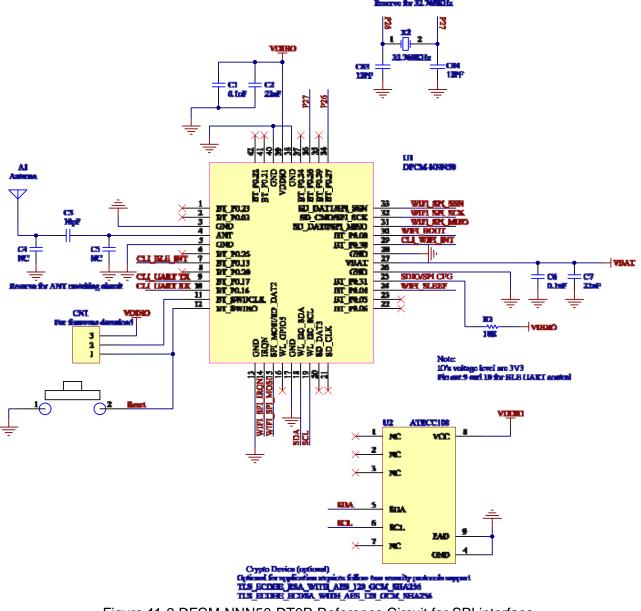


Figure 11-2 DFCM-NNN50-DT0R Reference Circuit for SPI interface

Preliminary Data Sheet

Sheet 37 of 41

Jun 27 2017

12. Module Dimensions (mm)

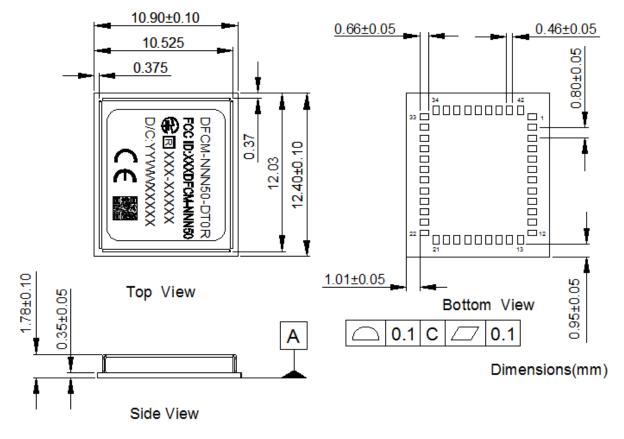


Figure 12-1 DFCM-NNN50-DT0R Module Dimension

Sheet 38 of 41

13. Recommend Soldering Conditions

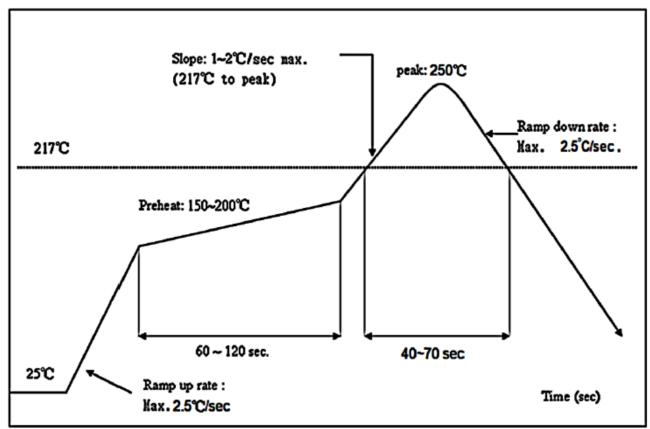


Figure 13-1 Reflow temperature Profile

Preliminary Data Sheet

Sheet 39 of 41

Jun 27 2017

14. Important Notice

14.1 Federal Communications Commission (FCC) Notice

You are cautioned that changes or modifications not expressly approved by the part responsible for compliance could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

1) this device may not cause interference and

2) this device must accept any interference, including interference that may cause undesired operation of the device.

RF Radiation Exposure Statement:

1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

2. This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

Preliminary Data Sheet

Sheet 40 of 41

Jun 27 2017

Required end product labeling:

Any device incorporating this module must include an external, visible, permanent marking or label which states: "Contains FCC ID: H79DFCM-NNN50."

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warming as shown in this manual.

14.2 National Communications Commission (NCC) Notice

根據 NCC 低功率電波輻射性電機管理辦法規定:

第十二條 經型式認證合格之低功率射頻電機,非經許可,公司、商號或使用者均不得擅自變更頻率、加 大功率或變更原設計之特性及功能。

第十四條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信;經發現有干擾現象時,應立即停 用,並改善至無干擾時方得繼續使用。前項合法通信,指依電信法規定作業之無線電通信。低功率射頻電 機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。

此模組於取得認證後將依規定於模組本體標示審驗合格標籤,並要求平台廠商於平台上標示 「本產品內 含射頻模組:ID 編號」字樣。

Preliminary Data Sheet