

FCC TEST REPORT

REPORT NO.: RF140128D01

MODEL NO.: DDP-A020003 XX- multiple listing see item 3.1

FCC ID: H79DDP-A020003A

RECEIVED: Jan. 17, 2014

TESTED: Jan. 28 ~ Feb. 18, 2014

ISSUED: Mar. 28, 2014

APPLICANT: Delta Electronics Incorporated

ADDRESS: 3, TUNG YUAN ROAD, CHUNGLI INDUSTRIAL ZONE TAOYUAN COUNTY, TAIWAN, R.O.C.

- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

RELE	ASE CONTROL RECORD	4
1.	CERTIFICATION	
2.	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	6
3.	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	DUTY CYCLE OF TEST SIGNAL	11
3.4	DESCRIPTION OF SUPPORT UNITS	
3.4.1	CONFIGURATION OF SYSTEM UNDER TEST	12
3.5	GENERAL DESCRIPTION OF APPLIED STANDARDS	13
4.	TEST TYPES AND RESULTS	
4.1	RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	DEVIATION FROM TEST STANDARD	16
4.1.5	TEST SETUP	
4.1.6	EUT OPERATING CONDITIONS	17
4.1.7	TEST RESULTS	18
4.2	CONDUCTED EMISSION MEASUREMENT	22
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	22
4.2.2	TEST INSTRUMENTS	22
4.2.3	TEST PROCEDURES	23
4.2.4	DEVIATION FROM TEST STANDARD	23
	TEST SETUP	
4.2.6	EUT OPERATING CONDITIONS	23
	TEST RESULTS	
4.3	6dB BANDWIDTH MEASUREMENT	26
4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	26
4.3.2	TEST SETUP	26
4.3.3	TEST INSTRUMENTS	26
4.3.4	TEST PROCEDURE	26
4.3.5	DEVIATION FROM TEST STANDARD	26
4.3.6	EUT OPERATING CONDITIONS	26
4.3.7	TEST RESULTS	
4.4	CONDUCTED OUTPUT POWER	28

4.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	28
4.4.2	TEST SETUP	28
4.4.3	TEST INSTRUMENTS	28
4.4.4	TEST PROCEDURES	28
4.4.5	DEVIATION FROM TEST STANDARD	28
4.4.6	EUT OPERATING CONDITIONS	28
4.4.7	TEST RESULTS	29
4.5	POWER SPECTRAL DENSITY MEASUREMENT	30
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	30
4.5.2	TEST SETUP	30
4.5.3	TEST INSTRUMENTS	30
4.5.4	TEST PROCEDURE	30
4.5.5	DEVIATION FROM TEST STANDARD	30
4.5.6	EUT OPERATING CONDITION	30
4.5.7	TEST RESULTS	31
4.6	CONDUCTED OUT OF BAND EMISSION MEASUREMENT	32
4.6.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT.	32
4.6.2	TEST SETUP	32
4.6.3	TEST INSTRUMENTS	32
4.6.4	TEST PROCEDURE	32
4.6.5	DEVIATION FROM TEST STANDARD	33
4.6.6	EUT OPERATING CONDITION	33
4.6.7	TEST RESULTS	33
4.6.8	TEST RESULTS	34
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	35
6.	INFORMATION ON THE TESTING LABORATORIES	36
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	37

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF140128D01	Original release	Mar. 28, 2014

1. CERTIFICATION

PRODUCT:	DATA COLLECTOR
MODEL NO.:	DDP-A020003 XX – multiple listing see item 3.1
	(X can be any alphanumeric character or blank)
APPLICANT:	Delta Electronics Incorporated
TESTED:	Jan. 28 ~ Feb. 18, 2014
TEST SAMPLE:	ENGINEERING SAMPLE
STANDARDS:	FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10-2009

The above equipment (model no.: DDP-A020003 A) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : <u>Annie Chang</u>, DATE: Mar. 28, 2014 (Annie Chang / Supervisor)

, DATE: Mar. 28, 2014

APPROVED BY

(Rex Lai / Assistant Manager)

Report No.: RF140128D01

2. SUMMARY OF TEST RESULTS

	The EUT has been	tested according to the following specifications:	
--	------------------	---	--

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)				
STANDARD SECTION	STANDARD SECTION TEST TYPE		REMARK	
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.27dB at 0.15781MHz.	
15.247(d) 15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -5.8dB at 2390.00MHz.	
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.	
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.	
15.247(b)	Conducted power	PASS	Meet the requirement of limit.	
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.	
15.203	Antenna Requirement	PASS	Antenna connector is IPEX not a standard connector.	

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY UNCERTAINTY	
Conducted emissions	150kHz~30MHz	3.46 dB
Padiated omissions	30MHz ~ 1GHz	4.00 dB
Radiated emissions	Above 1GHz	3.36 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	DATA COLLECTOR		
MODEL NO.	DDP-A020003 XX- multiple listing see Note		
POWER SUPPLY	AC I/P Rating: 100-240V, 0.2A, 50-60Hz		
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK for OFDM		
MODULATION TECHNOLOGY	OFDM		
TRANSFER RATE	802.11g: 54/ 48/ 36/ 24/ 18/ 12/ 9/ 6Mbps		
OPERATING FREQUENCY	2412 ~ 2462MHz		
NUMBER OF CHANNEL	11		
OUTPUT POWER	101.9mW		
ANTENNA TYPE	Dipole antenna with 3.8dBi gain		
ANTENNA CONNECTOR	I-PEX connector		
DATA CABLE	Non-Shielded 2-Pin AC cable (1.7m)		
I/O PORTS	Refer to user's manual		
ACCESSORY DEVICES	N/A		

NOTE:

- 1. The EUT is a wireless DATA COLLECTOR with a RJ45 port (10/100Mbps).
- 2. The EUT has several models, which are identical to each other except for their model differences only, as the following:

Model	Differentiation
DDP-A020003 XX	
SOL-GW-M1-N4Z	Marketing Differentiation
EOE90010583	

The "X" in the model name could be defined as any alphanumeric character or blank for their marketing differentiation. During the test, the model: **DDP-A020003 A** was chosen as representative model and its test data was recorded in this report.

3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

Modulation Mode	Tx Function
802.11g	1TX

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT			APPLICABLE	го			D	
CONFIGURE MODE	RE≥1G	RE<1G	PLC	APCM	ОВ		DESCRIP	TION
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-		
Where RE≥1G: Radiated Emission above 1GHz RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement OB: Conducted Out-Band Emission Measurement NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned of Z-plane.								
Pre-Scan ha combination antenna dive	s been cor s between ersity archi	nducted availabl tecture).	DVE 1GHz): to determine e modulation: e) selected fo	s, data rates	and ante	enna po	rts (if EUT	with
MODE		ABLE	TESTED CHANNEL	MODULATION TECHNOLOG		ilation (Pe	DATA RATE (Mbps)	
			1, 6, 11 _OW 1GHz):	OFDM	BF	PSK	6.0	
DIATED EMI Pre-Scan ha combination antenna dive	SSION TE s been cor s between ersity archi	ST (BEI nducted available tecture).	_OW 1GHz): to determine e modulation	the worst-ca s, data rates	se mode and ante	from al	ll possible rts (if EUT v.	with
DIATED EMI Pre-Scan ha combination antenna dive	SSION TE s been cor s between ersity archi annel(s) w AVAIL	ST (BEI nducted available tecture).	<u>_OW 1GHz):</u> to determine e modulation	the worst-ca s, data rates	se mode and ante st as liste	from al	ll possible rts (if EUT v. DATA RATE	with
PIATED EMI Pre-Scan ha combination antenna dive Following ch	SSION TE s been cor s between ersity archi annel(s) w AVAIL CHA	ST (BEL nducted available tecture). vas (were _ABLE	LOW 1GHz): to determine e modulations e) selected fo TESTED	the worst-ca s, data rates r the final tes MODULATION	se mode and ante at as liste ארד רד	e from all enna po ed below PLATION	ll possible rts (if EUT v. DATA	with
DIATED EMI Pre-Scan ha combination antenna dive Following ch MODE 802.11g WER LINE C Pre-Scan ha combination antenna dive	SSION TE s been cor s between ersity archi- annel(s) w AVAIL CHA 1 tr SONDUCT s been cor s between ersity archi-	ST (BEI available tecture). vas (were ABLE NNEL o 11 ED EMIS nducted available tecture).	<u>-OW 1GHz):</u> to determine e modulations e) selected fo TESTED CHANNEL 1 SSION TEST: to determine e modulations	the worst-ca s, data rates r the final tes MODULATION TECHNOLOG OFDM	se mode and ante at as liste MODU MODU BF	e from al enna po ed below VLATION YPE PSK e from al enna po	II possible rts (if EUT v. DATA RATE (Mbps) 6.0 II possible rts (if EUT	
DIATED EMI Pre-Scan ha combination antenna dive Following ch MODE 802.11g WER LINE C Pre-Scan ha combination antenna dive	SSION TE s been cor s between ersity archir annel(s) w AVAIL CHA 1 tr CONDUCT s been cor s between ersity archir annel(s) w AVAIL	ST (BEI available tecture). vas (were ABLE NNEL o 11 ED EMIS nducted available tecture).	LOW 1GHz): to determine e modulations e) selected fo TESTED CHANNEL 1 SSION TEST: to determine e modulations	the worst-ca s, data rates r the final tes MODULATION TECHNOLOG OFDM	se mode and ante and ante t as liste MODU se mode and ante at as liste	e from al enna po ed below VLATION YPE PSK e from al enna po	II possible rts (if EUT v. DATA RATE (Mbps) 6.0 II possible rts (if EUT	

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	23deg. C, 71%RH	120Vac, 60Hz	Joey Liu
RE<1G	23deg. C, 71%RH	120Vac, 60Hz	Joey Liu
PLC	21deg. C, 76%RH	120Vac, 60Hz	Saxon Lee
OB	25deg. C, 60%RH	120Vac, 60Hz	Dalen Dai
APCM	25deg. C, 60%RH	120Vac, 60Hz	Dalen Dai

3.3 DUTY CYCLE OF TEST SIGNAL

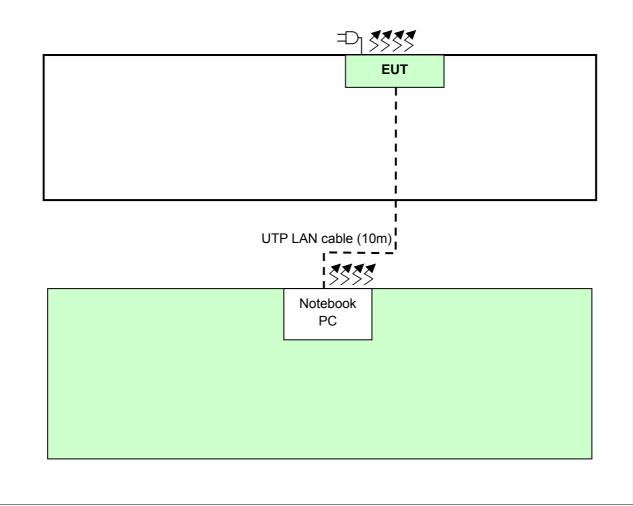
Duty cycle is < 98%, duty factor shall be considered.

11 :	Ref 11 dBm	Att 20 dB	RBW1MHz VBW3MHz SWT3ms	[T1]PK CLRWR	Marker 1 [T1] -13.46 dBm 1.026000 ms
0- -10-	numulumulumunum	1) ^{MWWWWWWWWWWW}	www.	hummer and the	Detta 2 [T1] 6.70 dB 1.092000 ms Detta 3 [T1] 0.06 dB 1.380000 ms
-20 · -30 ·					
-40 · -50 ·					
-60 · -70 ·		Mapp	Nurhwapul		
-80 · -89 ·	Center 2.412 GHz	I I I 300 u	I I Is/	I I	

802.11g: Duty cycle = 1.092/1.38 = 0.791, Duty factor = 10 * log(1/0.791) = 1.02

3.4 DESCRIPTION OF SUPPORT UNITS

EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK				
I	COMPUTER	DELL	E5410	BW33YM1	FCC DoC Approved

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	10m UTP LAN cable

NOTE: All power cords of the above support units are non shielded (1.8m).

3.4.1 CONFIGURATION OF SYSTEM UNDER TEST

TEST CONFIGURATION

3.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v03r01 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 26, 2013	Feb. 25, 2014
HP Preamplifier	8449B	3008A01201	Feb. 26, 2013	Feb. 25, 2014
Agilent TEST RECEIVER	N9038A	MY51210129	Jan. 18, 2014	Jan. 17, 2015
Schwarzbeck Antenna	VULB 9168	137	Mar. 20, 2013	Mar. 19, 2014
Schwarzbeck Antenna	VHBA 9123	480	May 29, 2013	May 28, 2015
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V7. 6.15.9.2	NA	NA	NA
SUHNER RF cable	SF102	CABLE-CH6	Aug. 16, 2013	Aug. 15, 2014
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	May 13, 2013	May 12, 2014
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSP 40	100036	May. 17, 2013	May. 16, 2014
Anritsu Power Sensor	MA2411B	0738404	Apr. 24, 2013	Apr. 23, 2014
Anritsu Power Meter	ML2495A	0842014	Apr. 25, 2013	Apr. 24, 2014

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

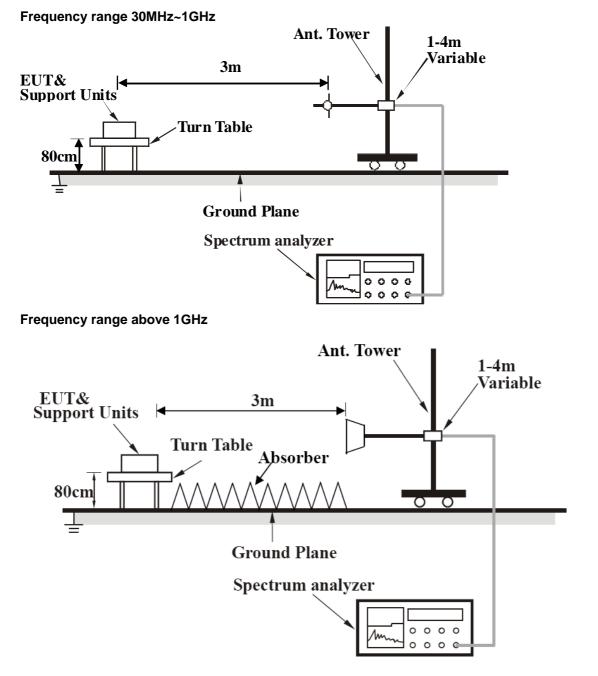
4. The Industry Canada Reference No. IC 7450E-6.

5. The FCC Site Registration No. is 447212.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 100kHz and video bandwidth is 300kHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 1kHz(Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Notebook PC ran a test program to enable all functions of EUT via an UTP LAN cable.
- b. Set the EUT under transmission/receiving condition continuously at specific channel frequency continuously.

4.1.7 TEST RESULTS

ABOVE 1GHz DATA

802.11g

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	64.1 PK	74.0	-9.9	1.00 H	155	68.37	-4.29
2	2390.00	48.2 AV	54.0	-5.8	1.00 H	155	52.47	-4.29
3	*2412.00	106.8 PK			1.00 H	155	111.03	-4.20
4	*2412.00	95.2 AV			1.00 H	155	99.40	-4.20
5	4824.00	58.8 PK	74.0	-15.2	1.00 H	149	56.02	2.76
6	4824.00	46.3 AV	54.0	-7.7	1.00 H	149	43.56	2.76
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	58.1 PK	74.0	-15.9	1.00 V	144	62.40	-4.29
2	2390.00	43.0 AV	54.0	-11.0	1.00 V	144	47.32	-4.29
3	*2412.00	103.6 PK			1.00 V	144	107.75	-4.20
4	*2412.00	91.0 AV			1.00 V	144	95.19	-4.20
5	4824.00	52.5 PK	74.0	-21.5	1.00 V	184	49.72	2.76
6	4824.00	43.0 AV	54.0	-11.0	1.00 V	184	40.21	2.76

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2437.00	106.5 PK			1.00 H	171	110.58	-4.10		
2	*2437.00	94.4 AV			1.00 H	171	98.46	-4.10		
3	4874.00	57.1 PK	74.0	-16.9	1.00 H	170	54.27	2.84		
4	4874.00	45.3 AV	54.0	-8.7	1.00 H	170	42.45	2.84		
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2437.00	104.8 PK			1.00 V	146	108.87	-4.10		
2	*2437.00	92.8 AV			1.00 V	146	96.92	-4.10		
3	4874.00	54.7 PK	74.0	-19.3	1.00 V	146	51.83	2.84		
4	4874.00	42.6 AV	54.0	-11.4	1.00 V	146	39.73	2.84		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	108.5 PK			1.00 H	171	112.47	-3.99
2	*2462.00	95.9 AV			1.00 H	171	99.93	-3.99
3	2483.50	64.1 PK	74.0	-9.9	1.00 H	171	68.04	-3.91
4	2483.50	47.3 AV	54.0	-6.7	1.00 H	171	51.19	-3.91
5	4924.00	61.1 PK	74.0	-12.9	1.00 H	171	58.25	2.88
6	4924.00	47.9 AV	54.0	-6.1	1.00 H	171	45.06	2.88
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	104.8 PK			1.00 V	148	108.81	-3.99
2	*2462.00	93.0 AV			1.00 V	148	96.94	-3.99
3	2483.50	61.4 PK	74.0	-12.6	1.00 V	148	65.28	-3.91
4	2483.50	44.0 AV	54.0	-10.0	1.00 V	148	47.87	-3.91
5	4924.00	53.4 PK	74.0	-20.6	1.00 V	147	50.53	2.88
6	4924.00	43.4 AV	54.0	-10.6	1.00 V	147	40.54	2.88

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

BELOW 1GHz WORST-CASE DATA

802.11g

CHANNEL	TX Channel 1	DETECTOR	Quasi Bask (QD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	120.36	36.1 QP	43.5	-7.4	1.53 H	127	52.00	-15.86		
2	240.00	37.7 QP	46.0	-8.3	1.74 H	63	51.78	-14.06		
3	288.07	38.5 QP	46.0	-7.5	1.36 H	80	50.32	-11.78		
4	336.17	37.5 QP	46.0	-8.5	1.64 H	90	48.15	-10.65		
5	528.05	36.8 QP	46.0	-9.2	1.53 H	78	43.69	-6.90		
6	625.11	37.7 QP	46.0	-8.3	1.23 H	43	42.39	-4.67		
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	96.32	35.8 QP	43.5	-7.7	1.53 V	148	54.56	-18.74		
2	147.13	34.2 QP	43.5	-9.4	1.17 V	79	47.69	-13.54		
3	375.04	38.5 QP	46.0	-7.5	1.25 V	255	48.42	-9.95		
4	480.32	37.5 QP	46.0	-8.5	1.06 V	114	45.24	-7.78		
5	625.17	37.9 QP	46.0	-8.1	1.53 V	300	42.56	-4.67		
6	750.03	37.9 QP	46.0	-8.1	1.16 V	267	40.53	-2.60		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15 ~ 0.5	66 to 56	56 to 46			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 TEST INSTRUMENTS

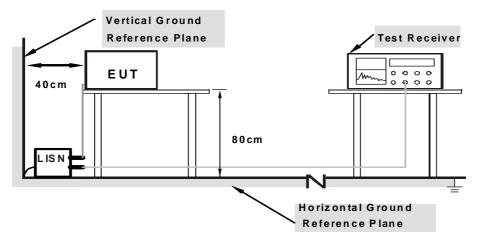
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due	
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	834115/016	Mar. 21, 2013	Mar. 20, 2014	
ROHDE & SCHWARZ Artificial Mains Network (For EUT)	ESH2-Z5	828075/003	Sep. 06, 2013	Sep. 05, 2014	
LISN With Adapter (for EUT)	AD10	C03Ada-001	Sep. 06, 2013	Sep. 05, 2014	
EMCO L.I.S.N. (For peripherals)	3825/2	9504-2359	Jul. 23, 2013	Jul. 22, 2014	
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 15, 2013	May 14, 2014	
Software	ADT_Cond_V7.3.7	NA	NA	NA	
Software	ADT_ISN_V7.3.7	NA	NA	NA	
RF cable (JYEBAO)	5D-FB	Cable-C03.01	Sep. 26, 2013	Sep. 25, 2014	
LYNICS Terminator (For EMCO LISN)	0900510	E1-01-300	Jan. 17, 2014	Jan. 16, 2015	
LYNICS Terminator (For EMCO LISN)	0900510	E1-01-301	Jan. 27, 2014	Jan. 26, 2015	

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 3.

3. The VCCI Site Registration No. C-274.

4.2.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

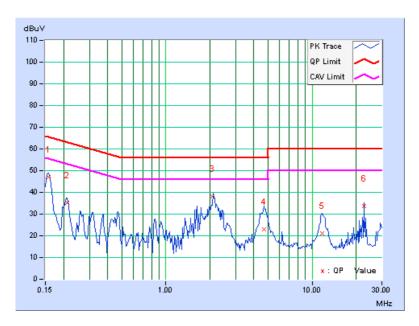
4.2.5 TEST SETUP

Note: Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

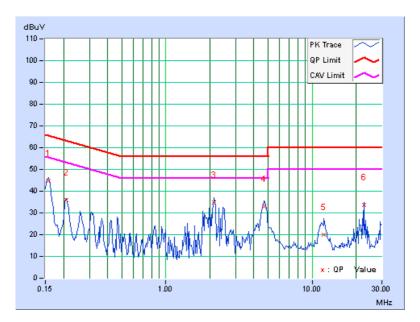

4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA : 802.11g

PHA	PHASE Line 1				6dB	6dB BANDWIDTH 9kHz					
	Eroa	Co	rr.	Readin	g Value	Emissic	on Level	Lin	nit	Mai	rgin
No	Freq.	Fac	tor	[dB((uV)]	[dB	(uV)]	[dB (uV)]	(d	B)
	[MHz]	(dE	3)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	0.2	23	46.72	42.08	46.95	42.31	65.58	55.58	-18.63	-13.27
2	0.21250	0.2	26	34.87	31.93	35.13	32.19	63.11	53.11	-27.98	-20.92
3	2.09254	0.4	-0	37.66	21.98	38.06	22.38	56.00	46.00	-17.94	-23.62
4	4.67969	0.5	55	22.45	12.24	23.00	12.79	56.00	46.00	-33.00	-33.21
5	11.67578	0.7	0	20.25	14.27	20.95	14.97	60.00	50.00	-39.05	-35.03
6	22.62110	0.8	89	32.63	30.41	33.52	31.30	60.00	50.00	-26.48	-18.70

REMARKS:

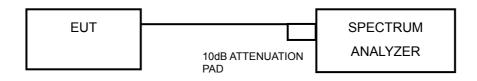
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



PHA	PHASE Line 2				6dB	6dB BANDWIDTH 9			9kHz		
Co			Readin	g Value	Emissio	on Level	Lir	nit	Mai	rgin	
No	Freq.	Factor		(uV)]		(uV)]		(uV)]		B)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15781	0.31	44.42	36.79	44.73	37.10	65.58	55.58	-20.85	-18.48	
2	0.20859	0.34	35.63	30.70	35.97	31.04	63.26	53.26	-27.29	-22.22	
3	2.13919	0.53	34.44	20.70	34.97	21.23	56.00	46.00	-21.03	-24.77	
4	4.69531	0.63	32.31	24.72	32.94	25.35	56.00	46.00	-23.06	-20.65	
5	12.04688	0.73	19.12	12.08	19.85	12.81	60.00	50.00	-40.15	-37.19	
6	22.63281	0.88	32.75	31.24	33.63	32.12	60.00	50.00	-26.37	-17.88	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

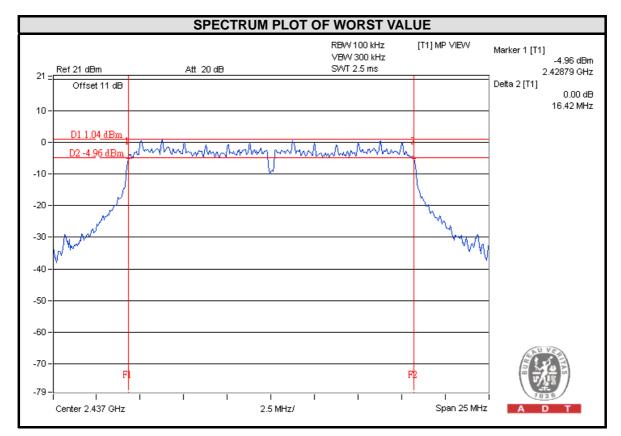
Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURE

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 DEVIATION FROM TEST STANDARD

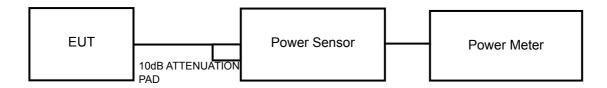
No deviation.


4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
802.11g				
1	2412	16.40	0.5	PASS
6	2437	16.42	0.5	PASS
11	2462	16.41	0.5	PASS



4.4 CONDUCTED OUTPUT POWER

4.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

A peak / average power sensor were used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the peak power level.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

4.4.6 EUT OPERATING CONDITIONS

Same as Item 4.3.6.

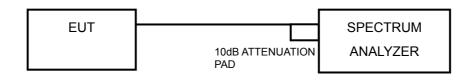
4.4.7 TEST RESULTS

FOR PEAK POWER

CHAN.	CHAN. FREQ. (MHz)	POWER OUTPUT (dBm)	POWER OUTPUT (mW)	POWER LIMIT (dBm)	PASS / FAIL
802.11g					
1	2412	20.08	101.9	30	PASS
6	2437	19.51	89.3	30	PASS
11	2462	19.06	80.5	30	PASS

FOR AVERAGE POWER

CHAN.	CHAN. FREQ. (MHz)	AVERAGE POWER (dBm)	AVERAGE POWER (mW)						
802.11g									
1	2412	12.37	17.3						
6	2437	12.19	16.6						
11	2462	11.76	15.0						



4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

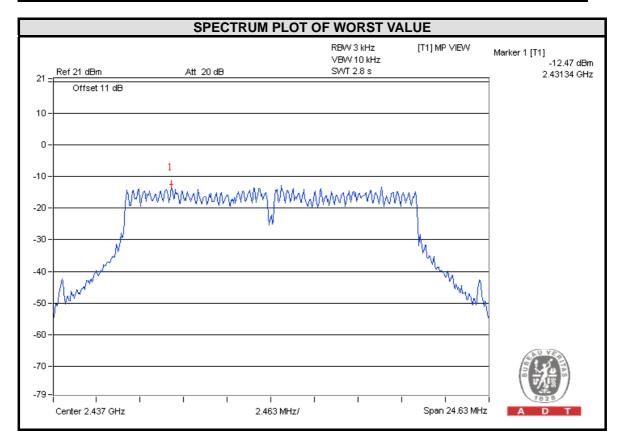
Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.5.5 DEVIATION FROM TEST STANDARD

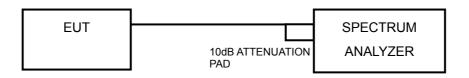
No deviation.


4.5.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.5.7 TEST RESULTS

Channel	FREQ. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
802.11g				
1	2412	-13.56	8	PASS
6	2437	-12.47	8	PASS
11	2462	-13.17	8	PASS



4.6 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

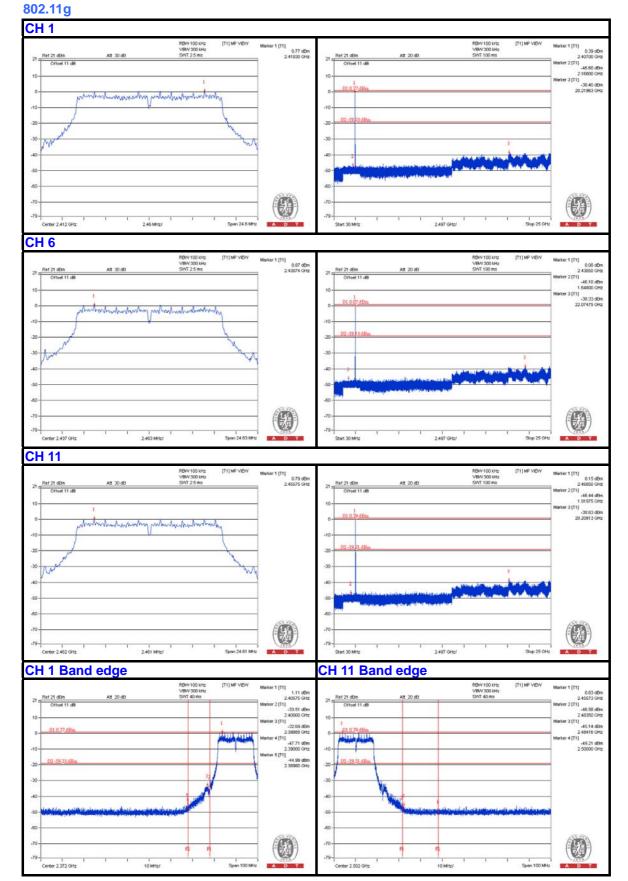
MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Ensure that the number of measurement points ≥ span/RBW
- 4. According to measurement points to set differ measurement span.
- 5. Detector = peak.
- 6. Trace Mode = max hold.
- 7. Sweep = auto couple.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.

4.6.6 EUT OPERATING CONDITION


Same as Item 4.3.6

4.6.7 TEST RESULTS

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

4.6.8 TEST RESULTS

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---END----