

| Product Name DLP Projector |                                              |
|----------------------------|----------------------------------------------|
| Model No                   | D85yyyyyy ( y can be any character or blank) |
| FCC ID.                    | H79D85YYYYYY                                 |

| Applicant | DELTA ELECTRONICS, INC.                         |  |
|-----------|-------------------------------------------------|--|
| Address   | 3 Tungyuan Road Chungli Industrial Zone Taoyuan |  |
|           | County 32063, Taiwan.                           |  |

| Date of Receipt | Apr. 23, 2012      |
|-----------------|--------------------|
| Issue Date      | May. 23, 2012      |
| Report No.      | 124463R-RFUSP42V01 |
| Report Version  | V1.0               |



The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

# **Test Report Certification**

Issue Date: May. 23, 2012 Report No.: 124463R-RFUSP42V01



# Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

| Product Name        | DLP Projector                                                           |  |
|---------------------|-------------------------------------------------------------------------|--|
| Applicant           | DELTA ELECTRONICS, INC.                                                 |  |
| Address             | 3 Tungyuan Road Chungli Industrial Zone Taoyuan County 32063<br>Taiwan. |  |
| Manufacturer        | DELTA ELECTRONICS, INC.                                                 |  |
| Model No.           | D85yyyyyy ( y can be any character or blank)                            |  |
| EUT Rated Voltage   | AC 100-240V,50-60Hz                                                     |  |
| EUT Test Voltage    | AC 120V/ 60Hz                                                           |  |
| Trade Name          | Vivitek                                                                 |  |
| Applicable Standard | FCC CFR Title 47 Part 15 Subpart C: 2010                                |  |
|                     | ANSI C63.4: 2003                                                        |  |
| Test Result         | Complied                                                                |  |

The test results relate only to the samples tested.

2

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Leven Huang

(Senior Adm. Specialist / Leven Huang )

Tested By

Dan Chen

(Assistant Engineer / Alan Chen )

Approved By

(Manager / Vincent Lin)

# TABLE OF CONTENTS

| Descr | Description                              |    |  |  |
|-------|------------------------------------------|----|--|--|
| 1.    | GENERAL INFORMATION                      | 5  |  |  |
| 1.1.  | EUT Description                          | 5  |  |  |
| 1.2.  | Operational Description                  |    |  |  |
| 1.3.  | Tested System Details                    |    |  |  |
| 1.4.  | Configuration of Tested System           |    |  |  |
| 1.5.  | EUT Exercise Software                    |    |  |  |
| 1.6.  | Test Facility                            |    |  |  |
| 2.    | Conducted Emission                       |    |  |  |
| 2.1.  | Test Equipment                           | 11 |  |  |
| 2.2.  | Test Setup                               | 11 |  |  |
| 2.3.  | Limits                                   |    |  |  |
| 2.4.  | Test Procedure                           |    |  |  |
| 2.5.  | Uncertainty                              |    |  |  |
| 2.6.  | Test Result of Conducted Emission        | 13 |  |  |
| 3.    | Peak Power Output                        | 15 |  |  |
| 3.1.  | Test Equipment                           |    |  |  |
| 3.2.  | Test Setup                               |    |  |  |
| 3.3.  | Limit                                    |    |  |  |
| 3.4.  | Test Procedure                           |    |  |  |
| 3.5.  | Uncertainty                              |    |  |  |
| 3.6.  | Test Result of Peak Power Output         |    |  |  |
| 4.    | Radiated Emission                        | 17 |  |  |
| 4.1.  | Test Equipment                           |    |  |  |
| 4.2.  | Test Setup                               |    |  |  |
| 4.3.  | Limits                                   |    |  |  |
| 4.4.  | Test Procedure                           |    |  |  |
| 4.5.  | Uncertainty                              |    |  |  |
| 4.6.  | Test Result of Radiated Emission         | 20 |  |  |
| 5.    | RF antenna conducted test                | 27 |  |  |
| 5.1.  | Test Equipment                           | 27 |  |  |
| 5.2.  | Test Setup                               |    |  |  |
| 5.3.  | Limits                                   |    |  |  |
| 5.4.  | Test Procedure                           |    |  |  |
| 5.5.  | Uncertainty                              |    |  |  |
| 5.6.  | Test Result of RF antenna conducted test |    |  |  |
| 6.    | Band Edge                                | 34 |  |  |
| 6.1.  | Test Equipment                           |    |  |  |
| 6.2.  | Test Setup                               |    |  |  |
| 6.3.  | Limits                                   |    |  |  |
| 6.4.  | Test Procedure                           |    |  |  |
| 6.5.  | Uncertainty                              |    |  |  |
| 6.6.  | Test Result of Band Edge                 |    |  |  |

| 7.                                           | Occupied Bandwidth                                                       | 45                   |
|----------------------------------------------|--------------------------------------------------------------------------|----------------------|
| 7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.<br>7.6. | Test Equipment<br>Test Setup                                             | 45<br>45<br>45<br>45 |
| 8.                                           | Power Density                                                            | 49                   |
| 8.1.<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6. | Test Equipment                                                           | 49<br>49<br>49<br>49 |
| 9.                                           | Duty Cycle                                                               | 53                   |
| 9.1.<br>9.2.<br>9.3.<br>9.4.                 | Test Equipment<br>Test Setup<br>Uncertainty<br>Test Result of Duty Cycle | 53<br>53             |
| 10.                                          | EMI Reduction Method During Compliance Testing                           | 56                   |
| Attachment 1:                                | EUT Test Photographs                                                     |                      |

Attachment 2: EUT Detailed Photographs

# 1. GENERAL INFORMATION

## 1.1. EUT Description

| Product Name       | DLP Projector                                |  |
|--------------------|----------------------------------------------|--|
| Trade Name         | Vivitek                                      |  |
| Model No.          | D85yyyyyy ( y can be any character or blank) |  |
| FCC ID.            | H79D85YYYYY                                  |  |
| Frequency Range    | 2401~2481MHz                                 |  |
| Number of Channels | 29CH                                         |  |
| Channel Separation | 1MHz                                         |  |
| Type of Modulation | MSK                                          |  |
| Antenna Type       | Chip Antenna                                 |  |
| Antenna Gain       | Refer to the table "Antenna List"            |  |
| Channel Control    | Auto                                         |  |

#### Antenna List

| No. | Manufacturer | Part No.              | Peak Gain           |  |
|-----|--------------|-----------------------|---------------------|--|
| 1   | YAGEO        | CAN4311 895 05 245 2K | 2.85dBi for 2.4 GHz |  |

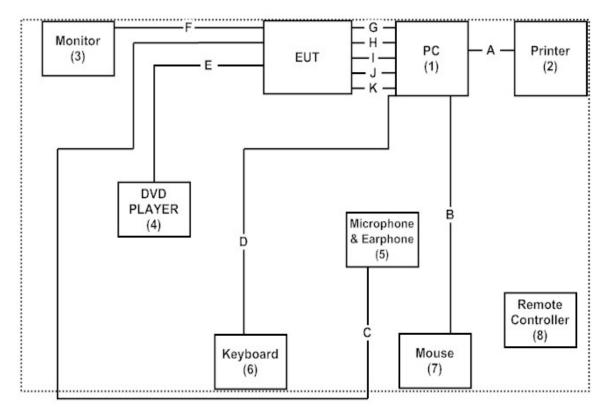
Note: The antenna of EUT is conform to FCC 15.203

Center Frequency of Each Channel:

| Channel     | Frequency | Channel     | Frequency | Channel     | Frequency | Channel     | Frequency |
|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| Channel 01: | 2401 MHz  | Channel 02: | 2402 MHz  | Channel 03: | 2403 MHz  | Channel 04: | 2407 MHz  |
| Channel 05: | 2408 MHz  | Channel 06: | 2417 MHz  | Channel 07: | 2422 MHz  | Channel 08: | 2423 MHz  |
| Channel 09: | 2427 MHz  | Channel 10: | 2428 MHz  | Channel 11: | 2432 MHz  | Channel 12: | 2433 MHz  |
| Channel 13: | 2442 MHz  | Channel 14: | 2443 MHz  | Channel 15: | 2447 MHz  | Channel 16: | 2448 MHz  |
| Channel 17: | 2458 MHz  | Channel 18: | 2462 MHz  | Channel 19: | 2463 MHz  | Channel 20: | 2467 MHz  |
| Channel 21: | 2468 MHz  | Channel 22: | 2472 MHz  | Channel 23: | 2473 MHz  | Channel 24: | 2476 MHz  |
| Channel 25: | 2477 MHz  | Channel 26: | 2478 MHz  | Channel 27: | 2479 MHz  | Channel 28: | 2480 MHz  |
| Channel 29: | 2481 MHz  |             |           |             |           |             |           |

- 1. The EUT is a DLP Projector.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- These tests are conducted on a sample for the purpose of demonstrating compliance of 2.4GHz transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

| : Transmit |
|------------|
|------------|


# 1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

|   | Product               | Manufacturer | Model No.    | Serial No.               | Power Cord         |
|---|-----------------------|--------------|--------------|--------------------------|--------------------|
| 1 | PC                    | DELL         | DCNE         | HTFYR1S                  | Non-Shielded, 1.8m |
| 2 | Printer               | EPSON        | StyLus C63   | FAPY094255               | Non-Shielded, 1.8m |
| 3 | Monitor               | Dell         | 2407WFPb     | CN-0FC255-46633-638-1MDS | Non-Shielded, 1.8m |
| 4 | DVD PLAYER            | Pioneer      | DV-S969Avi   | EAMP004399LW             | Non-Shielded, 1.8m |
| 5 | Microphone & Earphone | PCHOME       | N/A          | N/A                      | N/A                |
| 6 | Keyboard              | Logitech     | Y-SM46       | 867404-0121              | N/A                |
| 7 | Mouse                 | Logitech     | M-SBM96B     | 810-000439               | N/A                |
| 8 | Remote Controller     | DELTA        | RC-3007D-160 | N/A                      | N/A                |

| Sigr | nal Cable Type              | Signal cable Description                       |
|------|-----------------------------|------------------------------------------------|
| А    | Printer Cable               | Non-Shielded, 1.2m                             |
| В    | Mouse Cable                 | Non-Shielded, 1.8m                             |
| С    | Microphone & Earphone Cable | Non-Shielded, 1m                               |
| D    | Keyboard Cable              | Non-Shielded, 1.8m                             |
| Е    | AV Cable                    | Non-Shielded, 1.8m                             |
| F    | VGA Cable                   | Shielded, 1.8m, with two ferrite cores bonded. |
| G    | VGA Cable                   | Shielded, 1.8m, with two ferrite cores bonded. |
| Н    | LAN Cable                   | Non-Shielded, 0.5m                             |
| I    | RS-232 Cable                | Shielded, 1.5m, with two ferrite cores bonded. |
| J    | DVI Cable                   | Shielded, 1.8m, with two ferrite cores bonded. |
| К    | HDMI Cable                  | Shielded, 1.8m                                 |

## 1.4. Configuration of Tested System



## 1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4.
- (2) Provide the AC Power Source.
- (3) Start transmits continually.
- (4) Verify that the EUT works properly.

#### 1.6. Test Facility

#### Ambient conditions in the laboratory:

| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 20-35    |
| Humidity (%RH)             | 25-75               | 50-65    |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/tw/emc/accreditations/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

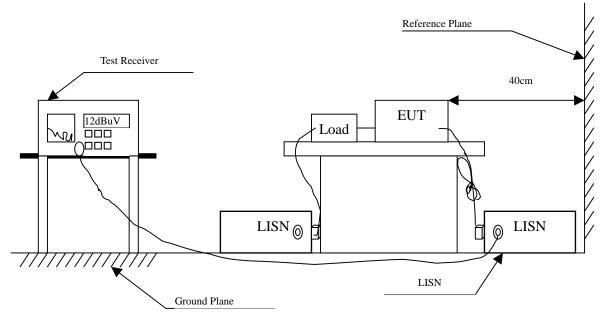
Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name:Quietek CorporationSite Address:No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451,<br/>Taiwan, R.O.C

TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

## 2. Conducted Emission


## 2.1. Test Equipment

The following test equipment are used during the conducted emission test:

| Item | Instrument       | Manufacturer | Type No./Serial No | Last Cal. | Remark      |
|------|------------------|--------------|--------------------|-----------|-------------|
| 1    | Test Receiver    | R & S        | ESCS 30/825442/17  | May, 2012 |             |
| 2    | L.I.S.N.         | R & S        | ESH3-Z5/825016/6   | May, 2012 | EUT         |
| 3    | L.I.S.N.         | Kyoritsu     | KNW-407/8-1420-3   | May, 2012 | Peripherals |
| 4    | Pulse Limiter    | R & S        | ESH3-Z2            | May, 2012 |             |
| 5    | No.1 Shielded Ro | om           |                    | N/A       |             |

Note: All instruments are calibrated every one year.

# 2.2. Test Setup



#### 2.3. Limits

| FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit |        |       |  |
|-----------------------------------------------------|--------|-------|--|
| Frequency                                           | Limits |       |  |
| MHz                                                 | QP     | AVG   |  |
| 0.15 - 0.50                                         | 66-56  | 56-46 |  |
| 0.50-5.0                                            | 56     | 46    |  |
| 5.0 - 30                                            | 60     | 50    |  |

#### 2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.) Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

## 2.5. Uncertainty

± 2.26 dB

## 2.6. Test Result of Conducted Emission

| Product    | : | DLP Projector              |
|------------|---|----------------------------|
| Test Item  | : | Conducted Emission Test    |
| Power Line | : | Line 1                     |
| Test Mode  | : | Mode 1: Transmit (2448MHz) |

| Frequency  | Correct | Reading | Measurement | Margin  | Limit  |
|------------|---------|---------|-------------|---------|--------|
|            | Factor  | Level   | Level       |         |        |
| MHz        | dB      | dBuV    | dBuV        | dB      | dBuV   |
| Line 1     |         |         |             |         |        |
| Quasi-Peak |         |         |             |         |        |
| 0.158      | 9.821   | 25.521  | 35.342      | -30.429 | 65.771 |
| 0.194      | 9.820   | 19.684  | 29.504      | -35.239 | 64.743 |
| 0.266      | 9.820   | 24.178  | 33.998      | -28.688 | 62.686 |
| 0.334      | 9.820   | 24.178  | 33.998      | -26.745 | 60.743 |
| 0.494      | 9.820   | 24.420  | 34.240      | -21.931 | 56.171 |
| 15.814     | 10.120  | 38.887  | 49.007      | -10.993 | 60.000 |
|            |         |         |             |         |        |
| Average    |         |         |             |         |        |
| 0.158      | 9.821   | 22.901  | 32.722      | -23.049 | 55.771 |
| 0.194      | 9.820   | 17.232  | 27.052      | -27.691 | 54.743 |
| 0.266      | 9.820   | 20.737  | 30.557      | -22.129 | 52.686 |
| 0.334      | 9.820   | 19.277  | 29.097      | -21.646 | 50.743 |
| 0.494      | 9.820   | 20.898  | 30.718      | -15.453 | 46.171 |
| 15.814     | 10.120  | 31.244  | 41.364      | -8.636  | 50.000 |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

| Product<br>Test Item<br>Power Line<br>Test Mode | : Line 2 | ector<br>d Emission Te<br>ransmit (2448 |             |         |        |
|-------------------------------------------------|----------|-----------------------------------------|-------------|---------|--------|
| Frequency                                       | Correct  | Reading                                 | Measurement | Margin  | Limit  |
|                                                 | Factor   | Level                                   | Level       |         |        |
| MHz                                             | dB       | dBuV                                    | dBuV        | dB      | dBuV   |
| Line 2                                          |          |                                         |             |         |        |
| Quasi-Peak                                      |          |                                         |             |         |        |
| 0.162                                           | 9.840    | 25.595                                  | 35.435      | -30.222 | 65.657 |
| 0.354                                           | 9.830    | 23.125                                  | 32.955      | -27.216 | 60.171 |
| 0.402                                           | 9.830    | 22.237                                  | 32.067      | -26.733 | 58.800 |
| 0.494                                           | 9.830    | 24.335                                  | 34.165      | -22.006 | 56.171 |
| 1.266                                           | 9.849    | 20.621                                  | 30.469      | -25.531 | 56.000 |
| 15.606                                          | 10.240   | 39.991                                  | 50.231      | -9.769  | 60.000 |
|                                                 |          |                                         |             |         |        |
| Average                                         |          |                                         |             |         |        |
| 0.162                                           | 9.840    | 25.034                                  | 34.874      | -20.783 | 55.657 |
| 0.354                                           | 9.830    | 17.798                                  | 27.628      | -22.543 | 50.171 |
| 0.402                                           | 9.830    | 17.479                                  | 27.309      | -21.491 | 48.800 |
| 0.494                                           | 9.830    | 20.875                                  | 30.705      | -15.466 | 46.171 |
| 1.266                                           | 9.849    | 17.974                                  | 27.823      | -18.177 | 46.000 |
| 15.606                                          | 10.240   | 32.509                                  | 42.749      | -7.251  | 50.000 |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

## **3.** Peak Power Output

#### **3.1.** Test Equipment

|       | Equipment                                        | Manufacturer | Model No./Serial No. | Last Cal. |
|-------|--------------------------------------------------|--------------|----------------------|-----------|
| Х     | Power Meter                                      | Anritsu      | ML2495A/6K00003357   | May, 2012 |
| Х     | Power Sensor                                     | Anritsu      | MA2411B/0738448      | Jun, 2011 |
| Note: | 1. All equipments are calibrated every one year. |              |                      |           |

2. The test instruments marked by "X" are used to measure the final test results.

#### 3.2. Test Setup



#### 3.3. Limit

The maximum peak power shall be less 1Watt.

#### **3.4.** Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

#### 3.5. Uncertainty

 $\pm$  1.27 dB

# **3.6.** Test Result of Peak Power Output

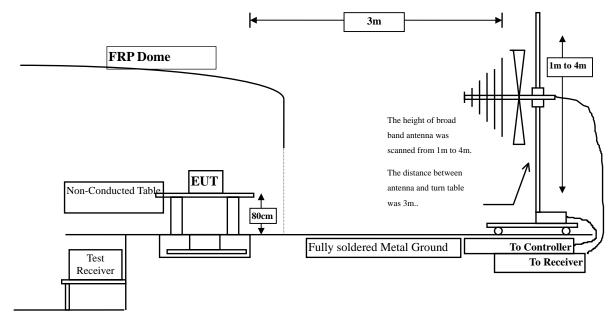
| Product   | : | DLP Projector     |
|-----------|---|-------------------|
| Test Item | : | Peak Power Output |
| Test Site | : | No.3 OATS         |
| Test Mode | : | Mode 1: Transmit  |

| Channel No. | Frequency | Measurement | Required Limit | Result |
|-------------|-----------|-------------|----------------|--------|
|             | (MHz)     | (dBm)       |                |        |
| Channel 01  | 2401      | -5.02       | 1 Watt= 30 dBm | Pass   |
| Channel 16  | 2448      | -4.79       | 1 Watt= 30 dBm | Pass   |
| Channel 29  | 2481      | -4.03       | 1 Watt= 30 dBm | Pass   |

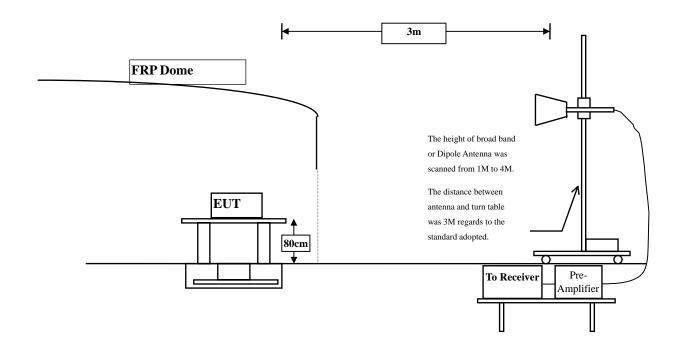
## 4. Radiated Emission

## 4.1. Test Equipment

The following test equipment are used during the radiated emission test:


| Test Site |   | Equipment         | Manufacturer    | Model No./Serial No.           | Last Cal.  |
|-----------|---|-------------------|-----------------|--------------------------------|------------|
| Site # 3  | Х | Bilog Antenna     | Schaffner Chase | CBL6112B/2673                  | Sep., 2011 |
|           | Х | Horn Antenna      | Schwarzbeck     | BBHA9120D/D305                 | Sep., 2011 |
|           | Х | Horn Antenna      | Schwarzbeck     | BBHA9170/208                   | Jul., 2011 |
|           | Х | Pre-Amplifier     | QTK             | QTK-AMP-03 / 0003              | May, 2012  |
|           | Х | Pre-Amplifier     | QTK             | AP-180C / CHM_0906076          | Sep., 2011 |
|           | Х | Pre-Amplifier     | MITEQ           | AMF-4D-180400-45-6P/<br>925975 | Mar, 2012  |
|           | Х | Spectrum Analyzer | Agilent         | E4407B / US39440758            | May, 2012  |
|           | Х | Test Receiver     | R & S           | ESCS 30/ 825442/018            | Sep., 2011 |
|           | Х | Coaxial Cable     | QuieTek         | QTK-CABLE/ CAB5                | Feb., 2012 |
|           | Х | Controller        | QuieTek         | QTK-CONTROLLER/ CTRL3          | N/A        |
|           | Х | Coaxial Switch    | Anritsu         | MP59B/6200265729               | N/A        |

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

## 4.2. Test Setup

Radiated Emission Below 1GHz



Radiated Emission Above 1GHz





#### 4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

| FCC Part 15 Subpart C Paragraph 15.209(a) Limits |          |           |  |  |
|--------------------------------------------------|----------|-----------|--|--|
| Frequency<br>MHz                                 | uV/m @3m | dBuV/m@3m |  |  |
| 30-88                                            | 100      | 40        |  |  |
| 88-216                                           | 150      | 43.5      |  |  |
| 216-960                                          | 200      | 46        |  |  |
| Above 960                                        | 500      | 54        |  |  |

Remarks: E field strength (dBuV/m) = 20 log E field strength (uV/m)

#### 4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

#### 4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

## 4.6. Test Result of Radiated Emission

| Product   | : | DLP Projector                   |
|-----------|---|---------------------------------|
| Test Item | : | Harmonic Radiated Emission Data |
| Test Site | : | No.3 OATS                       |
| Test Mode | : | Mode 1: Transmit (2401MHz)      |

| Frequency      | Correct<br>Factor | Reading<br>Level | Measurement<br>Level | Margin  | Limit  |
|----------------|-------------------|------------------|----------------------|---------|--------|
| MHz            | dB                | dBuV             | dBuV/m               | dB      | dBuV/m |
| Horizontal     |                   |                  |                      |         |        |
| Peak Detector: |                   |                  |                      |         |        |
| 4802.000       | 0.492             | 47.700           | 48.192               | -25.808 | 74.000 |
| 7203.000       | 7.534             | 51.020           | 58.554               | -15.446 | 74.000 |
| 9604.000       | 8.874             | 45.460           | 54.334               | -19.666 | 74.000 |
| Vertical       |                   |                  |                      |         |        |
| Peak Detector: |                   |                  |                      |         |        |
| 4802.000       | 0.913             | 46.540           | 47.453               | -26.547 | 74.000 |
| 7203.000       | 8.012             | 47.570           | 55.583               | -18.417 | 74.000 |
| 9604.000       | 8.874             | 46.400           | 55.274               | -18.726 | 74.000 |

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

| niterage Detector |                     |                              |                      |         |        |
|-------------------|---------------------|------------------------------|----------------------|---------|--------|
| Frequency         | Peak<br>Measurement | Duty Cycle<br>Correct Factor | Measurement<br>Level | Margin  | Limit  |
| MHz               | dBuV/m              | dB                           | dBuV/m               | dB      | dBuV/m |
| Horizontal        |                     |                              |                      |         |        |
| 7203              | 57.347              | -13.398                      | 43.949               | -10.051 | 54.000 |
| 9604              | 55.614              | -13.398                      | 42.216               | -11.784 | 54.000 |
| Vertical          |                     |                              |                      |         |        |
| 7203              | 55.583              | -13.398                      | 42.185               | -11.815 | 54.000 |
| 9604              | 55.274              | -13.398                      | 41.876               | -12.124 | 54.000 |

#### Average Detector:

- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

| Product        | : DLP Pro | ojector          |             |         |        |
|----------------|-----------|------------------|-------------|---------|--------|
| Test Item      | : Harmon  | nic Radiated Em  | ission Data |         |        |
| Test Site      | : No.3 O/ | ATS              |             |         |        |
| Test Mode      | : Mode 1  | : Transmit (2448 | 3MHz)       |         |        |
| Frequency      | Correct   | Reading          | Measurement | Margin  | Limit  |
| . ,            | Factor    | Level            | Level       | C C     |        |
| MHz            | dB        | dBuV             | dBuV/m      | dB      | dBuV/m |
| Horizontal     |           |                  |             |         |        |
| Peak Detector: |           |                  |             |         |        |
| 4896.000       | -0.034    | 48.140           | 48.107      | -25.893 | 74.000 |
| 7344.000       | 8.167     | 49.180           | 57.347      | -16.653 | 74.000 |
| 9792.000       | 7.794     | 47.820           | 55.614      | -18.386 | 74.000 |
| Vertical       |           |                  |             |         |        |
| Peak Detector: |           |                  |             |         |        |
| 4896.000       | 0.450     | 47.910           | 48.361      | -25.639 | 74.000 |
| 7344.000       | 8.845     | 48.520           | 57.365      | -16.635 | 74.000 |
| 9792.000       | 8.428     | 47.060           | 55.487      | -18.513 | 74.000 |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

| Average Detector. |             |                |             |         |        |
|-------------------|-------------|----------------|-------------|---------|--------|
| Frequency         | Peak        | Duty Cycle     | Measurement | Margin  | Limit  |
|                   | Measurement | Correct Factor | Level       |         |        |
| MHz               | dBuV/m      | dB             | dBuV/m      | dB      | dBuV/m |
| Horizontal        |             |                |             |         |        |
| 7344              | 57.347      | -13.398        | 43.949      | -10.051 | 54.000 |
| 9792              | 55.614      | -13.398        | 42.216      | -11.784 | 54.000 |
|                   |             |                |             |         |        |
| Vertical          |             |                |             |         |        |
| 7344              | 57.365      | -13.398        | 43.967      | -10.033 | 54.000 |
| 9792              | 55.487      | -13.398        | 42.089      | -11.911 | 54.000 |
|                   |             |                |             |         |        |

#### Average Detector:

- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

| Product        | : DLP Pro         | jector         |             |         |        |
|----------------|-------------------|----------------|-------------|---------|--------|
| Test Item      | : Harmoni         | c Radiated Em  | ission Data |         |        |
| Test Site      | : No.3 OA         | TS             |             |         |        |
| Test Mode      | : Mode 1:         | Transmit (2487 | 1MHz)       |         |        |
| _              | <b>a</b> <i>i</i> | <b>–</b> "     |             |         |        |
| Frequency      | Correct           | Reading        | Measurement | Margin  | Limit  |
|                | Factor            | Level          | Level       |         |        |
| MHz            | dB                | dBuV           | dBuV/m      | dB      | dBuV/m |
| Horizontal     |                   |                |             |         |        |
| Peak Detector: |                   |                |             |         |        |
| 4962.000       | 0.602             | 47.580         | 48.182      | -25.818 | 74.000 |
| 7443.000       | 8.567             | 49.270         | 57.837      | -16.163 | 74.000 |
| 9924.000       | 8.213             | 47.220         | 55.433      | -18.567 | 74.000 |
| Vertical       |                   |                |             |         |        |
| Peak Detector: |                   |                |             |         |        |
| 4962.000       | 1.429             | 47.910         | 49.339      | -24.661 | 74.000 |
| 7443.000       | 9.212             | 48.810         | 58.022      | -15.978 | 74.000 |
| 9924.000       | 9.247             | 47.170         | 56.417      | -17.583 | 74.000 |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

| Average Delector. |             |                |             |         |        |
|-------------------|-------------|----------------|-------------|---------|--------|
| Frequency         | Peak        | Duty Cycle     | Measurement | Margin  | Limit  |
|                   | Measurement | Correct Factor | Level       |         |        |
| MHz               | dBuV/m      | dB             | dBuV/m      | dB      | dBuV/m |
| Horizontal        |             |                |             |         |        |
| 7443              | 57.837      | -13.398        | 44.439      | -9.561  | 54.000 |
| 9924              | 55.433      | -13.398        | 42.035      | -11.965 | 54.000 |
| Vertical          |             |                |             |         |        |
| 7443              | 58.022      | -13.398        | 44.624      | -9.376  | 54.000 |
| 9924              | 56.417      | -13.398        | 43.019      | -10.981 | 54.000 |
|                   |             |                |             |         |        |

#### Average Detector:

- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

| Product    | : DLP Pr | ojector          |             |         |        |
|------------|----------|------------------|-------------|---------|--------|
| Test Item  | : Genera | I Radiated Emis  | sion Data   |         |        |
| Test Site  | : No.3 O | ATS              |             |         |        |
| Test Mode  | : Mode 1 | : Transmit (2448 | 3MHz)       |         |        |
|            |          |                  |             |         |        |
| Frequency  | Correct  | Reading          | Measurement | Margin  | Limit  |
|            | Factor   | Level            | Level       |         |        |
| MHz        | dB       | dBuV             | dBuV/m      | dB      | dBuV/m |
| Horizontal |          |                  |             |         |        |
| 336.520    | -3.399   | 41.819           | 38.420      | -7.580  | 46.000 |
| 400.540    | 0.942    | 34.241           | 35.183      | -10.817 | 46.000 |
| 540.220    | 3.499    | 35.009           | 38.508      | -7.492  | 46.000 |
| 757.500    | 5.107    | 34.240           | 39.347      | -6.653  | 46.000 |
| 864.200    | 6.329    | 32.045           | 38.374      | -7.626  | 46.000 |
| 972.840    | 7.189    | 31.565           | 38.754      | -15.246 | 54.000 |
|            |          |                  |             |         |        |
| Vertical   |          |                  |             |         |        |
| 336.520    | -1.999   | 39.350           | 37.351      | -8.649  | 46.000 |
| 431.580    | -7.703   | 36.316           | 28.613      | -17.387 | 46.000 |
| 540.220    | 2.169    | 36.772           | 38.941      | -7.059  | 46.000 |
| 757.500    | 2.487    | 37.651           | 40.138      | -5.862  | 46.000 |
| 864.200    | -0.291   | 37.493           | 37.202      | -8.798  | 46.000 |
| 972.840    | 0.179    | 34.742           | 34.921      | -19.079 | 54.000 |

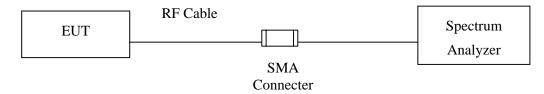
Note:

=

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

## 5. RF antenna conducted test

#### 5.1. Test Equipment


|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |
|---|-------------------|--------------|----------------------|-----------|
|   | Spectrum Analyzer | R&S          | FSP40 / 100170       | Jun, 2011 |
|   | Spectrum Analyzer | Agilent      | E4407B / US39440758  | Jun, 2011 |
| Х | Spectrum Analyzer | Agilent      | N9010A / MY48030495  | Apr.,2012 |

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

#### 5.2. Test Setup

#### **RF** antenna Conducted Measurement:



#### 5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

## 5.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

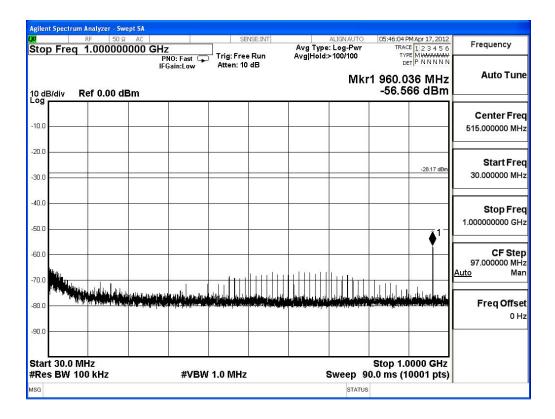
## 5.5. Uncertainty

The measurement uncertainty Conducted is defined as  $\pm$  1.27dB

# 5.6. Test Result of RF antenna conducted test

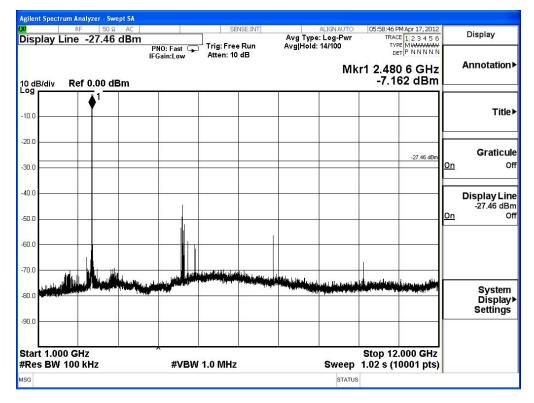
| Product   | : | DLP Projector             |
|-----------|---|---------------------------|
| Test Item | : | RF antenna conducted test |
| Test Site | : | No.3 OATS                 |
| Test Mode | : | Mode 1: Transmit          |

## Channel 01 (2401MHz) 30M-25GHz


| RF 50 Ω AC             |                                                                                                                | SENSE:INT                      | ALIGN AUTO                            | 05:42:20 PM Apr 17, 2012                             |                                                |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------|--|
| isplay Line -26.46 dBn | NO: Fast 😱                                                                                                     | Trig: Free Run<br>Atten: 10 dB | Avg Type: Log-Pwr<br>Avg Hold: 56/100 | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW<br>DET P N N N N N | Display                                        |  |
| dB/div Ref 0.00 dBm    | n Gam.Low                                                                                                      |                                | Mł                                    | r1 2.401 4 GHz<br>-6.463 dBm                         | Annotation                                     |  |
|                        |                                                                                                                |                                |                                       |                                                      | Title                                          |  |
| 0.0                    |                                                                                                                |                                |                                       | -26.46 dBm                                           | Graticu<br><u>On</u> C                         |  |
| 0.0                    |                                                                                                                |                                |                                       |                                                      | On Off<br>Display Line<br>-26.46 dBm<br>On Off |  |
| 0.0                    |                                                                                                                |                                |                                       |                                                      |                                                |  |
|                        | ware and the second |                                |                                       |                                                      | Systen<br>Display<br>Setting                   |  |
| tart 1.000 GHz         |                                                                                                                |                                |                                       | Stop 12.000 GHz                                      |                                                |  |
| Res BW 100 kHz         | #VBW 1                                                                                                         | 1.0 MHz                        | Sweep                                 | 1.02 s (10001 pts)                                   |                                                |  |

| SG                          |                    |                                   |                                                 |                         |         |                       | STATUS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                 |
|-----------------------------|--------------------|-----------------------------------|-------------------------------------------------|-------------------------|---------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| tart 30.0 M<br>Res BW 10    |                    |                                   | #VBW                                            | 1.0 MHz                 |         | 5                     | Sweep 9               | Stop 1.0<br>0.0 ms (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000 GHz<br>0001 pts)                                                                                                                                                                                                              |                                 |
|                             |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                 |
| 90.0                        |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 01                              |
| 30.0                        |                    | lahan biri bili<br>Manggiri ang a | ilala, <sub>fin</sub> tesin, trudi<br>Nationali |                         |         |                       |                       | litely and a state of the state | مروا فرود وار مراجع المروم (المروم المروم المروم<br>المروم المروم | Freq Offs                       |
| 70.0 197                    | Name of the second |                                   | ]                                               | alli                    |         |                       |                       | luda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | <u>Auto</u> M                   |
| 60.0<br>L                   |                    |                                   |                                                 |                         | a       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | CF Sto<br>97.000000 M<br>Auto M |
|                             |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 05.04                           |
| 50.0                        |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 1.000000000 G                   |
| 10.0                        | -                  |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | Stop Fr                         |
| 30.0                        |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 30.000000 M                     |
| 20.0                        |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -26.46 dBm                                                                                                                                                                                                                         | Start Fr                        |
|                             |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 010.000000 M                    |
| 10.0                        |                    |                                   |                                                 |                         |         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | Center Fr<br>515.000000 M       |
| 0 dB/div F<br><sup>og</sup> | Ref 0.00 dBr       | n                                 |                                                 |                         |         | 1                     |                       | -57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 dBm                                                                                                                                                                                                                             |                                 |
|                             |                    |                                   | 3011.204                                        |                         |         |                       | Mki                   | 1 960.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 MHz                                                                                                                                                                                                                             | Auto Tu                         |
| top Freq                    | 1.0000000          | P                                 | ′<br>NO: Fast ♀<br>Gain:Low                     | Trig: Free<br>Atten: 10 |         | Avg Type<br>Avg Hold: | : Log-Pwr<br>>100/100 | TYI<br>Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E 1 2 3 4 5 6<br>E M WWWWW<br>T P N N N N N                                                                                                                                                                                        | riequoney                       |
|                             | RF 50 Ω            |                                   |                                                 | SEI                     | VSE:INT |                       | ALIGN AUTO            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MApr 17, 2012                                                                                                                                                                                                                      | Frequency                       |

| Frequency                                               | 12 PM Apr 17, 2012<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWWW<br>DET P N N N N N | TRA<br>TY            | ALIGN AUTO<br>: Log-Pwr<br>10/100 | Avg Typ<br>Avg Hold                          |                                                                                                                | 1                                                                   | <b>−IZ</b><br>NO: Fast ⊊<br>Gain:Low | Ω AC<br>000000 GI<br>F |                   | top Fre             |
|---------------------------------------------------------|----------------------------------------------------------------------------|----------------------|-----------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|------------------------|-------------------|---------------------|
|                                                         | 571 3 GHz<br>.744 dBm                                                      |                      | Mkr                               |                                              |                                                                                                                |                                                                     |                                      | dBm                    | Ref 0.00          | ) dB/div            |
| Center Fr<br>18.50000000 G                              |                                                                            |                      |                                   |                                              |                                                                                                                | ×                                                                   |                                      |                        |                   | 0.0                 |
| <b>Start Fr</b><br>12.000000000 G                       | -26.46 dBm                                                                 |                      |                                   |                                              |                                                                                                                |                                                                     |                                      |                        |                   | D.0<br>D.0          |
| Stop Fr<br>25.000000000 G                               |                                                                            |                      |                                   |                                              |                                                                                                                |                                                                     |                                      |                        |                   |                     |
|                                                         | 1<br>1                                                                     |                      |                                   |                                              |                                                                                                                |                                                                     |                                      |                        |                   | 0.0                 |
|                                                         |                                                                            |                      |                                   | الألفان وعلى والعلمي<br>الملفان وعلى والعلمي | in distance (in the second | las a land so thain<br>International States<br>International States |                                      |                        |                   |                     |
| CF Str<br>1.30000000 G<br><u>Auto</u><br>Freq Offs<br>0 |                                                                            |                      |                                   |                                              |                                                                                                                |                                                                     |                                      |                        |                   | 0.0                 |
|                                                         | 25.000 GHz<br>(10001 pts)                                                  | Stop 25<br>1.20 s (1 | Sweep                             |                                              |                                                                                                                | 1.0 MHz                                                             | #VBW                                 |                        | 00 GHz<br>100 kHz | tart 12.0<br>Res BW |


|           | RF 50 Ω AC     |             | SENSE:INT                      | ALIGN AUTO                            | 05:45:40 PM Apr 17, 2012                                               |                  |
|-----------|----------------|-------------|--------------------------------|---------------------------------------|------------------------------------------------------------------------|------------------|
| larker 1  |                | PNO: Fast 😱 | Trig: Free Run<br>Atten: 10 dB | Avg Type: Log-Pwr<br>Avg Hold: 22/100 | TRACE 1 2 3 4 5 6<br>TYPE MWWWWWW<br>DET P N N N N N                   | Peak Search      |
| ) dB/div  | Ref 0.00 dBm   | IFGain:Low  | Allen. 10 db                   | Mł                                    | r1 2.447 6 GHz<br>-7.206 dBm                                           | Next Pea         |
| og<br>0.0 | • <sup>1</sup> |             |                                |                                       |                                                                        | Next Pk Rig      |
| 0.0       |                |             |                                |                                       |                                                                        |                  |
| 0.0       |                |             |                                |                                       | -28.17 dBm                                                             | Next Pk Lo       |
| 0.0       |                | I           |                                |                                       |                                                                        | Marker De        |
| 0.0       |                |             |                                |                                       |                                                                        |                  |
| D.0       |                |             |                                |                                       |                                                                        | Mkr→0            |
|           |                |             |                                |                                       | ber a bien with the deserve in the starting for a real strategy of the | Mkr→RefL         |
| 0.0       |                |             |                                |                                       |                                                                        |                  |
| tart 1.00 |                |             |                                |                                       | Stop 12.000 GHz                                                        | <b>Mo</b><br>1 o |
| Res BW    | 100 KHZ        | #VBW        | 1.0 MHz                        | Sweep                                 | 1.02 s (10001 pts)                                                     |                  |

#### Channel 16 (2448MHz) 30M-25GHz



| gilent Spectrum Analyzer - Swept         |                        | SENSE:INT                                   | ALIGN AUTO                                                                                                      | 05:46:31 PM Apr 17, 2012                            |                                    |
|------------------------------------------|------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|
| top Freq 25.00000                        | 000 GHz<br>PNO: Fast 😱 | Trig: Free Run<br>Atten: 10 dB              | Avg Type: Log-Pwr<br>Avg Hold: 10/100                                                                           | TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P N N N N N | Frequency                          |
| 0 dB/div Ref 0.00 dBr                    | IFGain:Low             | Allen. 10 db                                | Mkr                                                                                                             | 1 23.640 2 GHz<br>-61.428 dBm                       | Auto Tun                           |
| 10.0                                     |                        |                                             |                                                                                                                 |                                                     | Center Fre<br>18.500000000 GH      |
| 30.0                                     |                        |                                             |                                                                                                                 | -28.17 dBm                                          | <b>Start Fr</b><br>12.000000000 GI |
| 10.0                                     |                        |                                             |                                                                                                                 |                                                     | <b>Stop Fr</b><br>25.00000000 G    |
| 0.0                                      |                        | يرم وألحقول والملح ويرو والمتحفظ ومعر الأقر | ور بر المالية ا | 1                                                   | CF St<br>1.30000000 G<br>Auto M    |
|                                          |                        |                                             |                                                                                                                 |                                                     | Freq Offs<br>0                     |
| 0.0<br>tart 12.000 GHz<br>Res BW 100 kHz | #VBW                   | 1.0 MHz                                     | Sween                                                                                                           | Stop 25.000 GHz                                     |                                    |
| Res BW 100 kHz                           | #VBW                   | 1.0 MHz                                     | Sweep                                                                                                           | 1.20 s (10001 pts)                                  |                                    |

#### Channel 29 (2481MHz) 30M-25GHz





| Agilent Spectrum Ar          |            |                           |                         |         |                 |           |                        |                             |                            |
|------------------------------|------------|---------------------------|-------------------------|---------|-----------------|-----------|------------------------|-----------------------------|----------------------------|
| RI RI                        |            |                           | SEI                     | NSE:INT | Aug Type        | ALIGNAUTC | 05:59:22 P             | M Apr 17, 2012              | Sweep/Control              |
| Sweep Time                   | 90.0 ms    | PNO: Fast 😱<br>IFGain:Low | Trig: Free<br>Atten: 10 |         | Avg Hold:       |           | TYI                    | ETPNNNNN                    | Sweep Time                 |
|                              | f 0.00 dBm |                           |                         |         |                 | M         | 1 kr1 30.1<br>-63.5    | 94 MHz<br>72 dBm            | 90.0 ms<br><u>Auto</u> Man |
| -10.0                        |            |                           |                         |         |                 |           |                        |                             | Sweep Setup►               |
|                              |            |                           |                         |         |                 |           |                        |                             |                            |
| -20.0                        |            |                           |                         |         |                 |           |                        | -27.46 dBm                  |                            |
| -30.0                        |            |                           |                         |         |                 |           |                        |                             |                            |
| -40.0                        |            |                           |                         |         |                 |           |                        |                             |                            |
| -50.0                        |            |                           |                         |         |                 |           |                        |                             |                            |
| -60.0 1                      |            |                           |                         |         |                 |           |                        |                             |                            |
| -70.0                        |            |                           |                         | hilin   |                 |           |                        |                             |                            |
| -70.0                        |            | الألوجيك وملازه والزادية  |                         |         | ال مانيان الإسر |           |                        | الديم الرواير المانية الروا | Gate                       |
|                              |            |                           |                         |         |                 |           |                        |                             | [Off,LO]                   |
| -90.0                        |            |                           |                         |         |                 |           |                        |                             | Points                     |
| Start 30.0 MH<br>#Res BW 100 |            | #VBW                      | 1.0 MHz                 | 1       |                 | Sween     | Stop 1.0<br>90.0 ms (1 | 0000 GHz                    | 10001                      |
| MSG                          | NIE        | #* <b>D</b> VV            | 1.0 10112               |         |                 | STATU     |                        | pro)                        |                            |

| top Freg 25.0000                          | AC 0000 GHz                                                                                                    | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIGNAUTO<br>Avg Type: Log-Pwr | 05:59:53 PM Apr 17, 2012<br>TRACE 1 2 3 4 5 6 | Frequency                                 |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------|
| 20.0000                                   | PNO: Fast G<br>IFGain:Low                                                                                      | ┘ Trig: Free Run<br>Atten: 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Avg Hold: 13/100               | TYPE MWWWW<br>DET P NNNNN<br>1 23.427 0 GHz   | Auto Tune                                 |
| 0 dB/div Ref 0.00 dl                      | Bm                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | -61.526 dBm                                   |                                           |
| 10.0                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                               | Center Fre<br>18.50000000 GH              |
| 30.0                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | -27.46 dBm                                    | <b>Start Fre</b><br>12.00000000 GF        |
| 40.0                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                               | <b>Stop Fre</b><br>25.00000000 GH         |
| 70.0                                      | dates of states and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                               | CF Ste<br>1.30000000 GF<br><u>Auto</u> Ma |
|                                           | y mil Sovens live of Barnel In Film Parameter of Science Parameters                                            | REFERENCE OF A CONTRACT OF A C |                                |                                               | Freq Offs                                 |
| ann<br>Start 12.000 GHz<br>Res BW 100 kHz |                                                                                                                | 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | Stop 25.000 GHz<br>1.20 s (10001 pts)         |                                           |

## 6. Band Edge

#### 6.1. Test Equipment

#### **RF Conducted Measurement**

The following test equipments are used during the band edge tests:

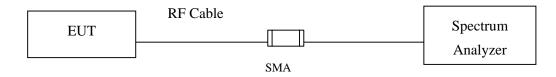
|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |
|---|-------------------|--------------|----------------------|-----------|
|   | Spectrum Analyzer | R&S          | FSP40 / 100170       | Jun, 2011 |
|   | Spectrum Analyzer | Agilent      | E4407B / US39440758  | Jun, 2011 |
| Х | Spectrum Analyzer | Agilent      | N9010A / MY48030495  | Apr.,2012 |

Note:

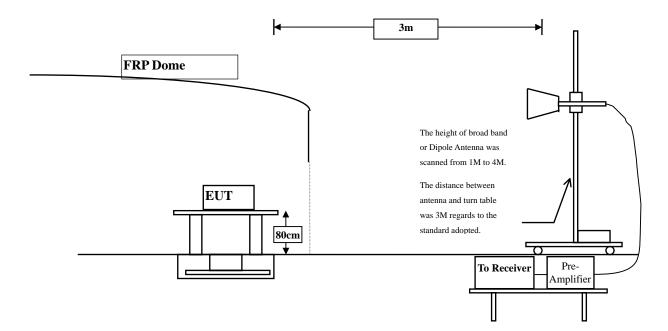
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

#### **RF Radiated Measurement:**

The following test equipments are used during the band edge tests:


| Test Site |                                       | Equipment         | Manufacturer    | Model No./Serial No.           | Last Cal.  |
|-----------|---------------------------------------|-------------------|-----------------|--------------------------------|------------|
| Site # 3  |                                       | Bilog Antenna     | Schaffner Chase | CBL6112B/2673                  | Sep., 2011 |
|           | X Horn Antenna                        |                   | Schwarzbeck     | BBHA9120D/D305                 | Sep., 2011 |
|           | Horn Antenna Schwarzbeck BBHA9170/208 |                   | BBHA9170/208    | Jul., 2011                     |            |
|           | Pre-Amplifier                         |                   | QTK             | QTK-AMP-03 / 0003              | May, 2012  |
|           | Х                                     | Pre-Amplifier     | QTK             | AP-180C / CHM_0906076          | Sep., 2011 |
|           | Pre-Amplifier                         |                   | MITEQ           | AMF-4D-180400-45-6P/<br>925975 | Mar, 2012  |
|           | Х                                     | Spectrum Analyzer | Agilent         | E4407B / US39440758            | May, 2012  |
|           |                                       | Test Receiver     | R & S           | ESCS 30/ 825442/018            | Sep., 2011 |
|           | Х                                     | Coaxial Cable     | QuieTek         | QTK-CABLE/ CAB5                | Feb., 2012 |
|           | Х                                     | Controller        | QuieTek         | QTK-CONTROLLER/ CTRL3          | N/A        |
|           | Х                                     | Coaxial Switch    | Anritsu         | MP59B/6200265729               | N/A        |

Note: 1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

## 6.2. Test Setup

#### **RF Conducted Measurement**



#### **RF Radiated Measurement:**



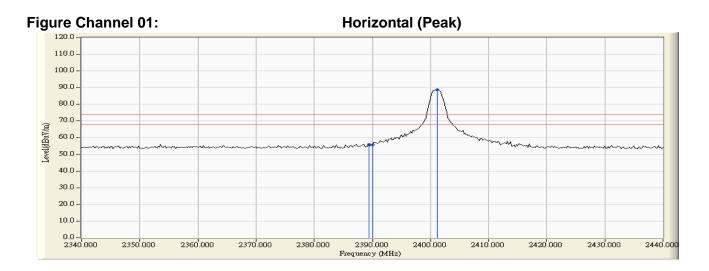
#### 6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

#### 6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

#### 6.5. Uncertainty


- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

#### 6.6. Test Result of Band Edge

| Product   | : | DLP Projector    |
|-----------|---|------------------|
| Test Item | : | Band Edge Data   |
| Test Site | : | No.3 OATS        |
| Test Mode | : | Mode 1: Transmit |

#### **RF** Radiated Measurement (Horizontal):

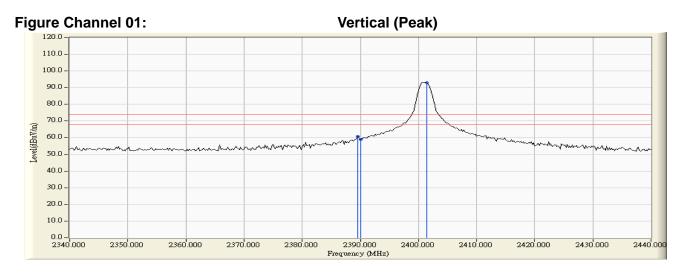
| Channel No. | Frequency<br>(MHz) | Correct<br>Factor<br>(dB) | Reading<br>Level<br>(dBuV) | Emission<br>Level<br>(dBuV/m) | Peak Limit<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Result |
|-------------|--------------------|---------------------------|----------------------------|-------------------------------|------------------------|---------------------------|--------|
| 01 (Peak)   | 2389.400           | 31.738                    | 24.155                     | 55.893                        | 74.00                  | 54.00                     | Pass   |
| 01 (Peak)   | 2390.000           | 31.739                    | 23.791                     | 55.530                        | 74.00                  | 54.00                     | Pass   |
| 01 (Peak)   | 2401.200           | 31.754                    | 56.896                     | 88.649                        |                        |                           | Pass   |



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "\*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

| Frequency  | Peak        | Duty Cycle     | Measurement | Margin  | Limit  |
|------------|-------------|----------------|-------------|---------|--------|
|            | Measurement | Correct Factor | Level       |         |        |
| MHz        | dBuV/m      | dB             | dBuV/m      | dB      | dBuV/m |
| Horizontal |             |                |             |         |        |
| 2389.400   | 55.893      | -13.398        | 42.495      | -11.505 | 54.000 |
| 2390.000   | 55.530      | -13.398        | 42.132      | -11.868 | 54.000 |

### Average Detector:


- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.



| Product   | : | DLP Projector    |
|-----------|---|------------------|
| Test Item | : | Band Edge Data   |
| Test Site | : | No.3 OATS        |
| Test Mode | : | Mode 1: Transmit |

#### **RF Radiated Measurement (Vertical):**

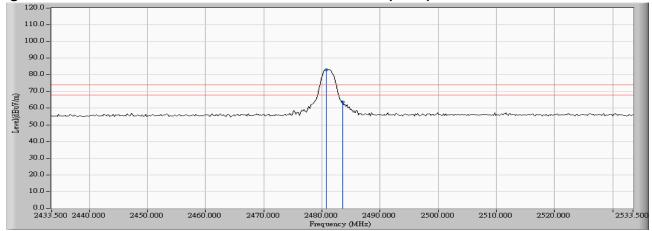
| Channel No. | Frequency<br>(MHz) | Correct<br>Factor<br>(dB) | Reading<br>Level<br>(dBuV) | Emission<br>Level<br>(dBuV/m) | Peak Limit<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Result |
|-------------|--------------------|---------------------------|----------------------------|-------------------------------|------------------------|---------------------------|--------|
| 01 (Peak)   | 2389.600           | 30.270                    | 30.453                     | 60.723                        | 74.00                  | 54.00                     | Pass   |
| 01 (Peak)   | 2390.000           | 30.267                    | 28.706                     | 58.973                        | 74.00                  | 54.00                     | Pass   |
| 01 (Peak)   | 2401.400           | 30.241                    | 62.871                     | 93.112                        |                        |                           | Pass   |



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "\*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

| Average Det | ector:      |                       |             |        |        |
|-------------|-------------|-----------------------|-------------|--------|--------|
| Frequency   | Peak        | Duty Cycle            | Measurement | Margin | Limit  |
|             | Measurement | <b>Correct Factor</b> | Level       |        |        |
| MHz         | dBuV/m      | dB                    | dBuV/m      | dB     | dBuV/m |
| Vertical    |             |                       |             |        |        |
| 2389.600    | 60.723      | -13.398               | 47.325      | -6.675 | 54.000 |
| 2390.000    | 58.973      | -13.398               | 45.575      | -8.425 | 54.000 |

- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.


| Product   | : | DLP Projector    |
|-----------|---|------------------|
| Test Item | : | Band Edge Data   |
| Test Site | : | No.3 OATS        |
| Test Mode | : | Mode 1: Transmit |

### **RF Radiated Measurement (Horizontal):**

| Channel No. | Frequency<br>(MHz) | Correct<br>Factor<br>(dB) | Reading<br>Level<br>(dBuV) | Emission<br>Level<br>(dBuV/m) | Peak Limit<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Result |
|-------------|--------------------|---------------------------|----------------------------|-------------------------------|------------------------|---------------------------|--------|
| 29 (Peak)   | 2480.7             | 32.161                    | 50.957                     | 83.118                        |                        |                           | Pass   |
| 29 (Peak)   | 2483.5             | 32.182                    | 31.466                     | 63.648                        | 74.00                  | 54.00                     | Pass   |

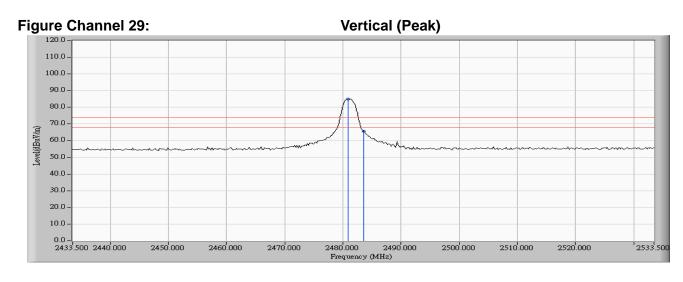
## Figure Channel 29:

### Horizontal (Peak)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "\*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

| J          |             |                |             |        |        |
|------------|-------------|----------------|-------------|--------|--------|
| Frequency  | Peak        | Duty Cycle     | Measurement | Margin | Limit  |
|            | Measurement | Correct Factor | Level       |        |        |
| MHz        | dBuV/m      | dB             | dBuV/m      | dB     | dBuV/m |
| Horizontal |             |                |             |        |        |
| 2483.500   | 63.648      | -13.398        | 50.250      | -3.750 | 54.000 |


### Average Detector:

- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

| Product   | : | DLP Projector    |
|-----------|---|------------------|
| Test Item | : | Band Edge Data   |
| Test Site | : | No.3 OATS        |
| Test Mode | : | Mode 1: Transmit |

### **RF Radiated Measurement (Vertical):**

| Channel No. | Frequency<br>(MHz) | Correct<br>Factor<br>(dB) | Reading<br>Level<br>(dBuV) | Emission<br>Level<br>(dBuV/m) | Peak Limit<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Result |
|-------------|--------------------|---------------------------|----------------------------|-------------------------------|------------------------|---------------------------|--------|
| 29 (Peak)   | 2481.0             | 31.418                    | 53.518                     | 84.936                        |                        |                           | Pass   |
| 29 (Peak)   | 2483.5             | 31.435                    | 34.094                     | 65.529                        | 74.00                  | 54.00                     | Pass   |



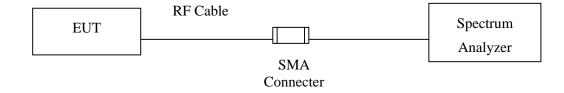
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "\*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

| Frequency | Peak   | Duty Cycle           | Measurement     | Margin | Limit  |
|-----------|--------|----------------------|-----------------|--------|--------|
| MHz       | dBuV/m | Correct Factor<br>dB | Level<br>dBuV/m | dB     | dBuV/m |
| Vertical  |        |                      |                 |        |        |
| 2483.500  | 65.529 | -13.398              | 52.131          | -1.869 | 54.000 |

### Average Detector:

- 1. AVG Measurement=Peak Measurement Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 9.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

# 7. Occupied Bandwidth


## 7.1. Test Equipment

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |
|---|-------------------|--------------|----------------------|-----------|
|   | Spectrum Analyzer | R&S          | FSP40 / 100170       | Jun, 2011 |
|   | Spectrum Analyzer | Agilent      | E4407B / US39440758  | Jun, 2011 |
| Х | Spectrum Analyzer | Agilent      | N9010A / MY48030495  | Apr.,2012 |

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

## 7.2. Test Setup



## 7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

# 7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW≥3\*RBW

# 7.5. Uncertainty

 $\pm$  150Hz

# 7.6. Test Result of Occupied Bandwidth

| Product   | : | DLP Projector              |
|-----------|---|----------------------------|
| Test Item | : | Occupied Bandwidth Data    |
| Test Site | : | No.3 OATS                  |
| Test Mode | : | Mode 1: Transmit (2401MHz) |

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 01          | 2401.00            | 550                        | >500                    | Pass   |

# Figure Channel 01:

| RF 50 :                 | Ω AC                                         | SENSE:INT                                | ALIGN AUTO                             | 05:35:38 PM Apr 17, 2012                             | Mandana                 |
|-------------------------|----------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------|
| rker 3 2.401280         | 000000 GHz<br>PNO: Far G<br>IFGain:Low       | Trig: Free Run<br>Atten: 20 dB           | Avg Type: Log-Pwr<br>Avg Hold:>100/100 | TRACE 1 2 3 4 5 6<br>TYPE MWWWWWW<br>DET P N N N N N | Marker<br>Select Marker |
| dB/div Ref 10.00        | dBm                                          |                                          | Mkr                                    | 3 2.401 28 GHz<br>-11.892 dBm                        | 3                       |
| 0                       |                                              |                                          |                                        | 12.28 dBm                                            | Norm                    |
| 0                       |                                              | for the second                           | 4                                      |                                                      |                         |
| 0                       |                                              |                                          | Marchann man an and an area            | annaghan ann an        | De                      |
| 0                       |                                              |                                          |                                        |                                                      | Fixe                    |
| nter 2.401000 GHz       | z                                            |                                          |                                        | Span 10.00 MHz                                       |                         |
| es BW 100 kHz           | ×                                            |                                          | #Sweep                                 | 500 ms (1001 pts)                                    | G                       |
| N 1 f<br>N 1 f<br>N 1 f | 2.401 12 GHz<br>2.400 73 GHz<br>2.401 28 GHz | -6.242 dBm<br>-11.356 dBm<br>-11.892 dBm |                                        |                                                      | Propertie               |
|                         |                                              |                                          |                                        |                                                      | <b>M</b> c<br>1 c       |

| Product   | : | DLP Projector              |
|-----------|---|----------------------------|
| Test Item | : | Occupied Bandwidth Data    |
| Test Site | : | No.3 OATS                  |
| Test Mode | : | Mode 1: Transmit (2448MHz) |

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 16          | 2448.00            | 560                        | >500                    | Pass   |

# Figure Channel 16:

| Marker    | 2 PM Apr 17, 2012<br>RACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P N N N N N | TRA<br>TY | ALIGN AUTO<br>e: Log-Pwr<br>:>100/100 |        |             | Trig: Free              |                              | 50 Ω A<br>8130000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r <b>1 2.44</b>     | arke          |
|-----------|-------------------------------------------------------------------------|-----------|---------------------------------------|--------|-------------|-------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
|           | 8 13 GHz<br>290 dBm                                                     |           | Mkr1                                  |        |             |                         |                              | 0.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v Ref (             | dB/d          |
| Norm      | -12.39 dBm                                                              |           |                                       |        | ע1 <u>3</u> | $2^{2}$                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |
|           |                                                                         |           |                                       | W ment | h           |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | ).0<br>).0    |
| De        | and the second second                                                   | -n        | manne                                 | ~      |             |                         | maran Marando                | al an and a start of the start | **********          |               |
|           |                                                                         |           |                                       |        |             |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | .0            |
| Fixe      |                                                                         |           |                                       |        |             |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 0.0           |
|           | 10.00 MHz<br>(1001 pts)                                                 |           | Sweep 1                               |        |             | BW 100 kHz              | #V                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.44800<br>W 100 ki |               |
|           | CTION VALUE                                                             | FUNCT     | NCTION WIDTH                          | NCTION | 3m          | -6.290 dB<br>-11.925 dB | 2.448 13 GHz<br>2.447 72 GHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRC SCL             | R MOD         |
| Propertie |                                                                         |           |                                       |        |             | -11.610 dB              | 2.448 28 GHz                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 f                 | 8 N<br>1<br>5 |
| Mo<br>1 o |                                                                         |           |                                       |        |             |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |
|           |                                                                         |           | STATUS                                |        |             |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 2             |

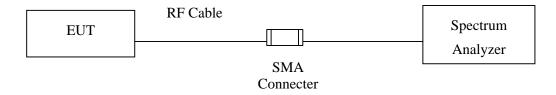
| Product   | : | DLP Projector              |
|-----------|---|----------------------------|
| Test Item | : | Occupied Bandwidth Data    |
| Test Site | : | No.3 OATS                  |
| Test Mode | : | Mode 1: Transmit (2481MHz) |

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 29          | 2481.00            | 550                        | >500                    | Pass   |

# Figure Channel 29:

| ker 1 2.48113000                              |                                   | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALIGNAUTO<br>Avg Type: Log-Pwr<br>Avg Hold:>100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06:01:53 PM Apr 17, 2012<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | Marker       |
|-----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|
|                                               | PNO: Far C<br>IFGain:Low          | Atten: 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DET P N N N N N                                              | Select Marke |
| B/div Ref 0.00 dBn                            | n                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mkr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2.481 13 GHz<br>-6.558 dBm                                 |              |
|                                               |                                   | $\langle 2 \sqrt{13} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -12.56 dBm                                                   | 100          |
|                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Norn         |
|                                               |                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |              |
|                                               | and the second second             | we have a second s | They are and the second |                                                              |              |
| man and a second                              |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second from the start                                | De           |
|                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |              |
|                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Fixe         |
|                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | T IAC        |
|                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |              |
| ter 2.481000 GHz                              |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 10.00 MHz                                               |              |
| ter 2.481000 GHz<br>s BW 100 kHz              | #VB                               | W 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Span 10.00 MHz<br>1.27 ms (1001 pts)                         |              |
| s BW 100 kHz                                  | X                                 | Y F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.27 ms (1001 pts)                                           |              |
| SBW 100 KHZ<br>MODE TRE SCL<br>N 1 f<br>N 1 f | ×<br>2.481 13 GHz<br>2.480 73 GHz | -6.558 dBm<br>-11.696 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27 ms (1001 pts)                                           |              |
| S BW 100 KHz<br>MODE TRC SCL                  | ×<br>2.481 13 GHz                 | Y -6.558 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27 ms (1001 pts)                                           |              |
| SBW 100 KHZ<br>MODE TRE SCL<br>N 1 f<br>N 1 f | ×<br>2.481 13 GHz<br>2.480 73 GHz | -6.558 dBm<br>-11.696 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27 ms (1001 pts)                                           |              |
| SBW 100 KHZ<br>MODE TRE SCL<br>N 1 f<br>N 1 f | ×<br>2.481 13 GHz<br>2.480 73 GHz | -6.558 dBm<br>-11.696 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27 ms (1001 pts)                                           | Propertie    |
| SBW 100 KHZ<br>MODE TRE SCL<br>N 1 f<br>N 1 f | ×<br>2.481 13 GHz<br>2.480 73 GHz | -6.558 dBm<br>-11.696 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27 ms (1001 pts)                                           |              |

# 8. Power Density


## 8.1. Test Equipment

|   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal. |
|---|-------------------|--------------|----------------------|-----------|
|   | Spectrum Analyzer | R&S          | FSP40 / 100170       | Jun, 2011 |
|   | Spectrum Analyzer | Agilent      | E4407B / US39440758  | Jun, 2011 |
| Х | Spectrum Analyzer | Agilent      | N9010A / MY48030495  | Apr.,2012 |

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

## 8.2. Test Setup



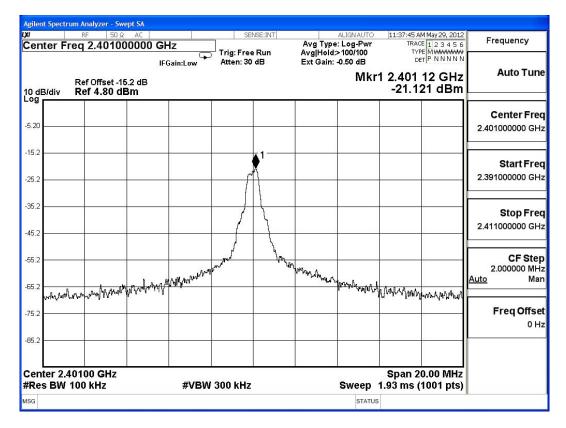
### 8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

# 8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, VBW≥300KHz, SPAN to 5-30 % greater than the EBW, Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).

# 8.5. Uncertainty


 $\pm$  1.27 dB

# 8.6. Test Result of Power Density

| Product   | : | DLP Projector              |
|-----------|---|----------------------------|
| Test Item | : | Power Density Data         |
| Test Site | : | No.3 OATS                  |
| Test Mode | : | Mode 1: Transmit (2401MHz) |

| Channel No. | Frequency<br>(MHz) | Measure Level<br>(dBm) | Limit<br>(dBm) | Result |
|-------------|--------------------|------------------------|----------------|--------|
| 01          | 2401.00            | -21.121                | < 8dBm         | Pass   |

### Figure Channel 01:



| Product   | : | DLP Projector              |
|-----------|---|----------------------------|
| Test Item | : | Power Density Data         |
| Test Site | : | No.3OATS                   |
| Test Mode | : | Mode 1: Transmit (2448MHz) |

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(dBm) | Required Limit<br>(dBm) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 16          | 2448               | -20.333                    | < 8dBm                  | Pass   |

# Figure Channel 16:

| KU RF 50Ω AC                                 |                       | SENSE:INT                             | ALIGN AUTO                                       | 11:39:47 AM May 29, 2012                           | Frequency                |
|----------------------------------------------|-----------------------|---------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------|
| Center Freq 2.4480000                        | Trig: F               | ree Run Avg                           | Type: Log-Pwr<br>Hold:>100/100<br>Gain: -0.50 dB | TRACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P N N N N N |                          |
| Ref Offset -15.2 d<br>10 dB/div Ref 4.80 dBm | В                     |                                       | Mkr                                              | 1 2.448 12 GHz<br>-20.333 dBm                      | Auto Tun                 |
| - og                                         |                       |                                       |                                                  |                                                    | Center Fre               |
| 5.20                                         |                       |                                       |                                                  |                                                    | 2.448000000 GH           |
| 15.2                                         |                       | 1                                     |                                                  |                                                    | Start Fre                |
| 25.2                                         |                       | <u></u>                               |                                                  |                                                    | 2.438000000 GH           |
| 35.2                                         |                       | ДЦ —                                  |                                                  |                                                    | Stop Er                  |
| 45.2                                         |                       |                                       |                                                  |                                                    | Stop Fr<br>2.458000000 G |
| 55.2                                         | - A                   | n n n n n n n n n n n n n n n n n n n |                                                  |                                                    | CF Sto                   |
| 55.2                                         | hand all and a second | "FUL Vh min                           | WINNER IN L.                                     | the source of the second                           | 2.000000 M<br>Auto M     |
| 55.2                                         | Produce to            |                                       | · · · · · · · · · · · · · · · · · · ·            | and the second with the second                     |                          |
| /5.2                                         |                       |                                       |                                                  |                                                    | Freq Offs<br>0           |
| 35.2                                         |                       |                                       |                                                  |                                                    |                          |
| Center 2.44800 GHz                           |                       |                                       |                                                  | Span 20.00 MHz                                     |                          |
| Res BW 100 kHz                               | #VBW 300 kl           | Hz                                    | Sweep                                            | 1.93 ms (1001 pts)                                 |                          |

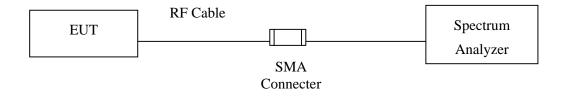
| Product   | : | DLP Projector              |
|-----------|---|----------------------------|
| Test Item | : | Power Density Data         |
| Test Site | : | No.3 OATS                  |
| Test Mode | : | Mode 1: Transmit (2481MHz) |

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(dBm) | Required Limit<br>(dBm) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 29          | 2481.00            | -20.886                    | < 8dBm                  | Pass   |

# Figure Channel 29:

|                             |                                                          | AC                           | SEI                     | VSE:INT |                                    |           |                          | May 29, 2012                          | Frequency                     |
|-----------------------------|----------------------------------------------------------|------------------------------|-------------------------|---------|------------------------------------|-----------|--------------------------|---------------------------------------|-------------------------------|
|                             | Ref Offset -15.2                                         | IFGain:Low                   | Trig: Free<br>Atten: 30 |         | Avg Type<br>Avg Hold:<br>Ext Gain: | -0.50 dB  | TYPE<br>DET<br>1 2.481 1 | 123456<br>PNNNNN<br>16 GHz<br>6 dBm   | Auto Tur                      |
| 0 dB/div<br>og              | Ref 4.80 dBr                                             | n                            |                         |         |                                    |           | -20.88                   |                                       | Center Fr<br>2.481000000 G    |
| 5.2                         |                                                          |                              | f                       | 1       |                                    |           |                          |                                       | Start Fr<br>2.471000000 G     |
| 5.2                         |                                                          |                              |                         | 1       |                                    |           |                          |                                       | Stop Fr<br>2.491000000 G      |
| 5.2                         | - B II. Manual Mark                                      | hangeter terror with program | and award               | - Why.  | Mr. Wyward                         | Waywayaya | Mr.M.M.                  | 1                                     | CF St<br>2.000000 M<br>Auto M |
| <sup></sup> տախլուտ/<br>5.2 | לומלימי איז ועיד איז |                              |                         |         |                                    |           | n ny ny                  | <sup>ใ</sup> ม่แหงไก <sub>า</sub> รไป | Freq Off:<br>0                |
| enter 2.4                   | 18100 GHz                                                |                              |                         |         |                                    |           | Span 20                  | 0.00 MHz                              |                               |
| Res BW                      | 100 kHz                                                  | #VB                          | W 300 kHz               |         |                                    | Sweep '   | 1.93 ms (1               |                                       |                               |

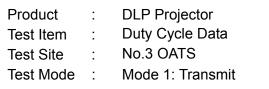
# 9. Duty Cycle

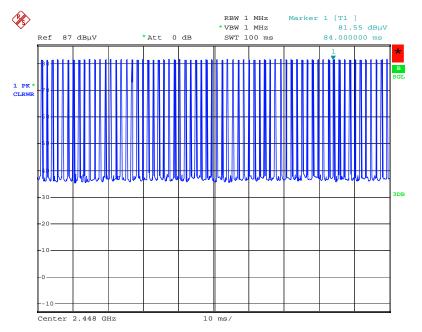

# 9.1. Test Equipment

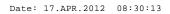
|      | Equipment                                    | Manufacturer | Model No./Serial No. | Last Cal.  |  |
|------|----------------------------------------------|--------------|----------------------|------------|--|
| Х    | Spectrum Analyzer                            | R&S          | FSP40 / 100170       | Jun, 2011  |  |
|      | Spectrum Analyzer                            | Agilent      | E4407B / US39440758  | Jun, 2011  |  |
|      | Spectrum Analyzer                            | Agilent      | N9010A / MY48030495  | Apr., 2012 |  |
| Noto | 1 All aquinmente are colibrated even and ver |              |                      |            |  |

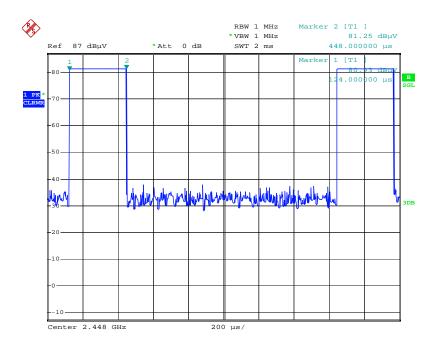
Note: 1. All equipments are calibrated every one year.

2. The test equipments marked by "X" are used to measure the final test results.


# 9.2. Test Setup





# 9.3. Uncertainty


± 150Hz

# 9.4. Test Result of Duty Cycle









Date: 17.APR.2012 08:32:23

Time on of 100ms= (0.324ms\*66) = 21.384 ms Duty Cycle= 21.384ms / 100ms= 0.21384 Duty Cycle correction factor= 20 LOG 0.21384= -13.398 dB

| Duty Cycle correction factor | -13.398 | dB |
|------------------------------|---------|----|
|------------------------------|---------|----|

# **10. EMI Reduction Method During Compliance Testing**

No modification was made during testing.