

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

NovoConnect Wireless collaboration System Model: NE3000, DS300 Brand: DELTA, VIVITEK <u>Test Report Number:</u> C170503Z01-RP1-1

Issued for

Delta Electronic Incorporated

3, Tungyuan Road Chungli Industrial Zone Taoyuan County 32063, Taiwan

Issued by:

COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC. No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen China TEL: 86-755-28055000 FAX: 86-755-28055221 E-Mail: service@ccssz.com

Issued Date: July 10, 2017

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST, CNAS or any government agencies. The test result of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	July 10, 2017	Initial Issue	ALL	Nancy Fu

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	1
2.	EUT DESCRIPTION	5
3.	TEST METHODOLOGY	5
	3.1 DESCRIPTION OF TEST MODES6	3
4.	FACILITIES AND ACCREDITATIONS	7
	4.1 FACILITIES	7
5.	SETUP OF EQUIPMENT UNDER TEST	3
	5.1 SETUP CONFIGURATION OF EUT	
6.	FCC PART 15.247 REQUIREMENTS)
	6.1 20DB BANDWIDTH	
	6.2 ANTENNA GAIN	-
	6.4 PEAK POWER SPECTRAL DENSITY	
	6.5 BAND EDGES MEASUREMENT17	7
	6.6 FREQUENCY SEPARATION	7
	6.7 NUMBER OF HOPPING FREQUENCY	
	6.9 SPURIOUS EMISSIONS	
	6.10 POWERLINE CONDUCTED EMISSIONS	

1. TEST RESULT CERTIFICATION

Product	NovoConnect Wireless collaboration System	
Model NE3000, DS300		
Brand	DELTA, VIVITEK	
Tested May 3~ July 10, 2017		
Applicant Delta Electronic Incorporated 3, Tungyuan Road Chungli Industrial Zone Taoyuan County 32063, Taiwan		
Manufacturer	Delta Electronic Incorporated 3, Tungyuan Road Chungli Industrial Zone Taoyuan County 32063, Taiwan	

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 15 Subpart C	No non-compliance noted		

We hereby certify that:

The above equipment was tested by Compliance Certification Services (Shenzhen) Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10:2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.207, 15.209 and 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

and

Sunday Hu Supervisor of EMC Dept. Compliance Certification Services (Shenzhen) Inc.

Reviewed by:

Ruby Zhang Supervisor of Report Dept. Compliance Certification Services (Shenzhen) Inc.

2. EUT DESCRIPTION

Product	NovoConnect Wireless collaboration System		
Model Number	NE3000, DS300		
Brand	DELTA, VIVITEK		
Model Discrepancy	All models are identical to each other except their model name and appearance; and the model DS300 ships without remote control.		
Identify Number	C170503Z01-RP1-1		
Received Date	May 3, 2017		
Power Supply	DC5V supplied by the adapter		
Adapter Manufacturer /Model No.	Model: FJ-SW1260502000UU I/P: AC100-240V, 50/60Hz, 0.4A Max O/P: DC5V, 2000mA		
Frequency Range	2402 ~ 2480 MHz		
Transmit Power	GFSK: -3.92dBm π/4-DQPSK: -4.79dBm 8DPSK: -5.04dBm		
Modulation Technique	FHSS (GFSK for 1Mbps, $\pi/4$ -DQPSK for 2Mbps, 8DPSK for 3Mbps)		
Number of Channels	79 Channels		
Antenna Specification	PCB Antenna with 3dBi gain (Max)		
Temperature Range	0°C ~ +40°C		
Hardware Version	RMG0905		
Software Version	Build17		

Note: This submittal(s) (test report) is intended for FCC ID: <u>H79-017CF2</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

3.1 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Use Certification Tool 1.26 to control the EUT for staying in continuous transmitting and receiving mode.

Test Item	Test mode	Worse mode
Conducted	Mode 1: Normal	\boxtimes
Emission		
Radiated Emission	Mode 1: Continuously Transmitting	\square

Note:

- 1. Channel Low (2402MHz), Mid (2441MHz) and High (2480MHz) were chosen for pre-testing for GFSK, π /4-DQPSK and 8DPSK, GFSK and 8DPSK were the worse case and print in the report.
- 2. Radiated band edges were tested with both fixed and hopping mode; the fixed mode was the worse case and recorded in the report.
- 3. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worst case 8-DPSK and GFSK.

4. FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd.,

Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.10:2013, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

4.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI(C-4815, R-4320, T-2317, G-10624)
Canada	INDUSTRY CANADA

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccssz.com

4.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : 966(2)	+/-3.6880dB
Radiated Emission, 200 to 1000 MHz Test Site : 966(2)	+/-3.6695dB
Radiated Emission, 1 to 8 GHz	+/-5.1782dB
Radiated Emission, 8 to 18 GHz	+/-5.2173dB
Conducted Emissions	+/-3.6836dB
Band Width	178kHz
Peak Output Power MU	+/-1.906dB
Band Edge MU	+/-0.182dB
Channel Separation MU	416.178Hz
Duty Cycle MU	0.054ms
Frequency Stability MU	226Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

5. SETUP OF EQUIPMENT UNDER TEST

5.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

5.2 SUPPORT EQUIPMENT

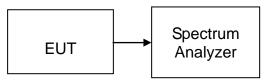
No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	Notebook	Probook 5310M	N/A	DoC	HP	Shielded, 2.30m	Shielded 1.70m (AC Cable) Unshielded 1.80m (DC Cable)
2	PC	N/A	N/A	DoC	LENOVO	Shielded, 1.50m	Unshielded, 1.50m
3	Monitor	U3011T	CNOPH5NY7444 5097425L	DoC	DELL	Shielded, 1.50m	Unshielded, 1.50m
4	Printer	DESKJET D1668	CB767-0008	DoC	HP	Unshielded, 1.40m	N/A
5	Modem	DU-562M	ES1X268007883	DoC	D-LINK	Unshielded, 1.40m	N/A
6	Keyboard	PR1101V	539130-001	DoC	DELL	Unshielded, 1.50m	N/A
7	Mouse 1	KB212-B	CN09RRC447511 680996	DoC	DELL	Unshielded, 1.45m	N/A
8	Mouse 2	N/A	N/A	DoC	LENOVO	Unshielded, 1.45m	N/A
9	Earphone	N/A	N/A	DoC	OPPO	Unshielded, 2.20m	N/A
10	HDD	WDBACY3201AB K-PESN	WX61ABOU8031	DoC	WD	Shielded, 0.50m	N/A
11	TF Card	N/A	N/A	DoC	SAMSUNG	N/A	N/A

Notes:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6. FCC PART 15.247 REQUIREMENTS

6.1 20DB BANDWIDTH


No limits

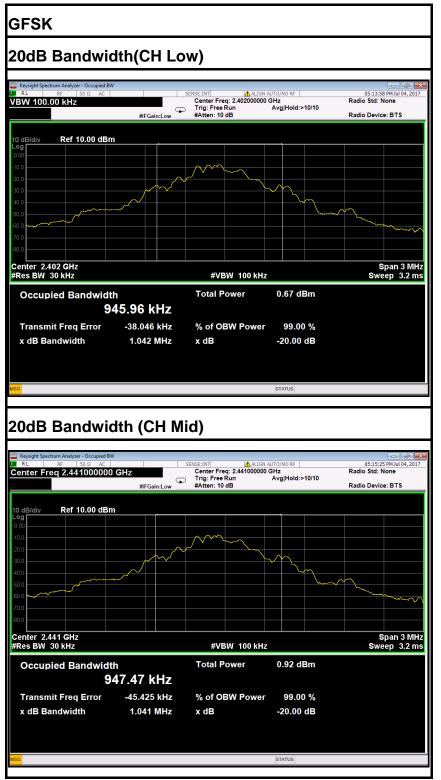
MEASUREMENT EQUIPMENT USED

Name of Equipment	Manutacturer Model		Serial Number	Last Calibration	Due Calibration	
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018	

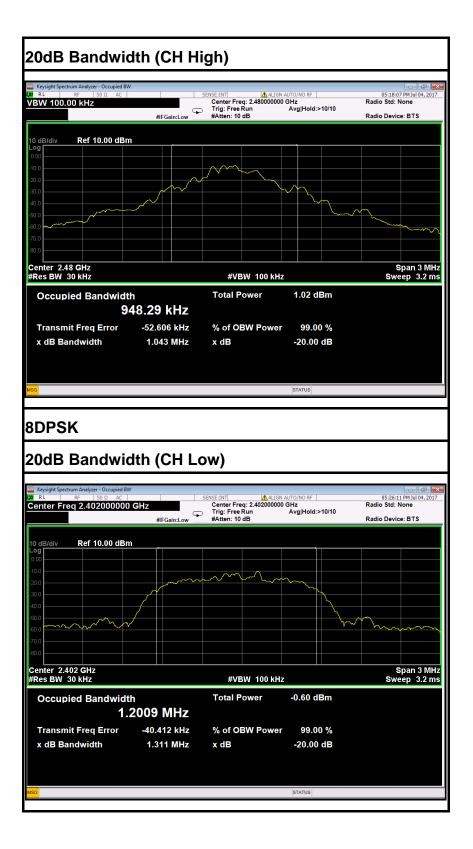
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE


- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=30 kHz, VBW=100 kHz, Span=3MHz, Sweep = auto.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the test channels are investigated.

TEST RESULTS


No non-compliance noted



<u>Test plot</u>

6.2 ANTENNA GAIN

MEASUREMENT

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal BT devices, the GFSK mode is used.

MEASUREMENT PARAMETERS

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	3 MHz	
Trace-Mode	Max hold	

LIMITS

FCC	IC	
Antenna	a Gain	
6 dBi		

TEST RESULTS

<u>GFSK</u>

T _{nom}	V _{nom}	Lowest channel 2402MHz	Middle channel 2441MHz	Highest channel 2480MHz			
Conducted power with GFSK module		-5.47	-4.33	-3.92			
Radiated power [dBm] Measured with GFSK modulation		-2.59	-1.42	-1.03			
Gain [dBi] Calculated		2.88	2.91	2.89			
Measurement und	certainty	± 1.5 dB (cond.) / ± 3 dB (rad.)					

8DPSK

T _{nom}	V _{nom}	Lowest channel 2402MHz	Middle channel 2441MHz	Highest channel 2480MHz			
Conducted power with GFSK module		-6.77	-5.04	-5.09			
Radiated power [dBm] Measured with GFSK modulation		-3.85	-2.09	-2.19			
Gain [dBi] Calculated		2.92	2.95	2.90			
Measurement und	certainty	± 1.5 dB (cond.) / ± 3 dB (rad.)					

FCC ID: H79-017CF2

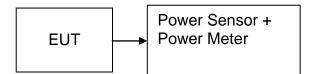
Page 13 / 67

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

6.3 PEAK POWER

<u>LIMIT</u>

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 3. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Power Meter	Anritsu	ML2495A	1204003	02/21/2017	02/20/2018
Power Sensor	Anritsu	MA2411B	1126150	02/21/2017	02/20/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted

Test Data

<u>GFSK</u>

Channel	Frequency (MHz)	Reading Power (dBm)	Cable loss (dB)	Output Power (dBm)	Output Power (W)		Peak /AVG	Result
Low	2402	-8.97	3.50	-5.47	0.00028			PASS
Mid	2441	-7.83	3.50	-4.33	0.00037	0.125	peak	PASS
High	2480	-7.42	3.50	-3.92	0.00041			PASS
Low	2402	-9.92	3.50	-6.42	0.00023			PASS
Mid	2441	-8.53	3.50	-5.03	0.00031	0.125	AVG	PASS
High	2480	-8.21	3.50	-4.71	0.00034			PASS

<u>π/4-DQPSK</u>

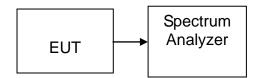
Channel	Frequency (MHz)	Reading Power (dBm)	Cable loss (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Peak /AVG	Result
Low	2402	-9.64	3.50	-6.14	0.00024			PASS
Mid	2441	-8.29	3.50	-4.79	0.00033	0.125	peak	PASS
High	2480	-8.59	3.50	-5.09	0.00031			PASS
Low	2402	-10.46	3.50	-6.96	0.00020			PASS
Mid	2441	-8.81	3.50	-5.31	0.00029	0.125	AVG	PASS
High	2480	-12.41	3.50	-8.91	0.00013			PASS

8DPSK

Channel	Frequency (MHz)	Reading Power (dBm)	Cable loss (dB)	Output Power (dBm)	Output Power (W)		Peak /AVG	Result
Low	2402	-10.27	3.50	-6.77	0.00021			PASS
Mid	2441	-8.54	3.50	-5.04	0.00031	0.125	peak	PASS
High	2480	-8.59	3.50	-5.09	0.00031			PASS
Low	2402	-14.35	3.50	-10.85	0.00008			PASS
Mid	2441	-12.32	3.50	-8.82	0.00013	0.125	AVG	PASS
High	2480	-12.41	3.50	-8.91	0.00013			PASS

6.4 PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

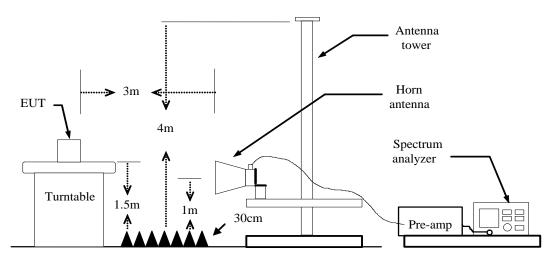
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz ≤RBW ≤100 kHz.
- 4. Set the VBW \geq 3×RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW. 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST RESULTS

Not applicable. Since EUT is the Bluetooth device.

6.5 BAND EDGES MEASUREMENT

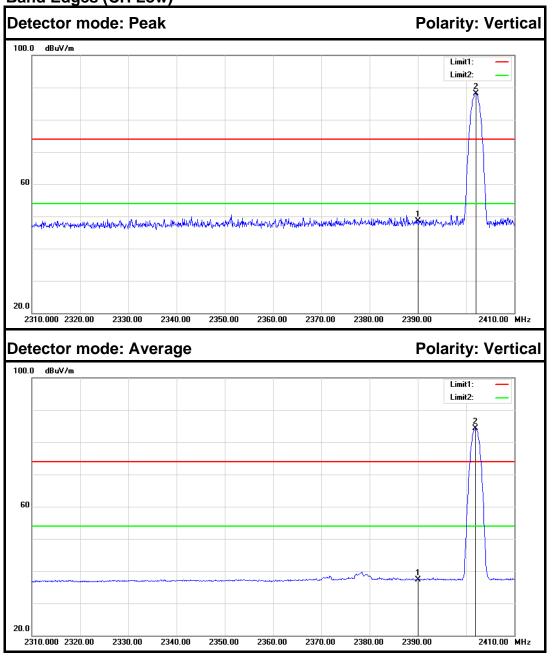

<u>LIMIT</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

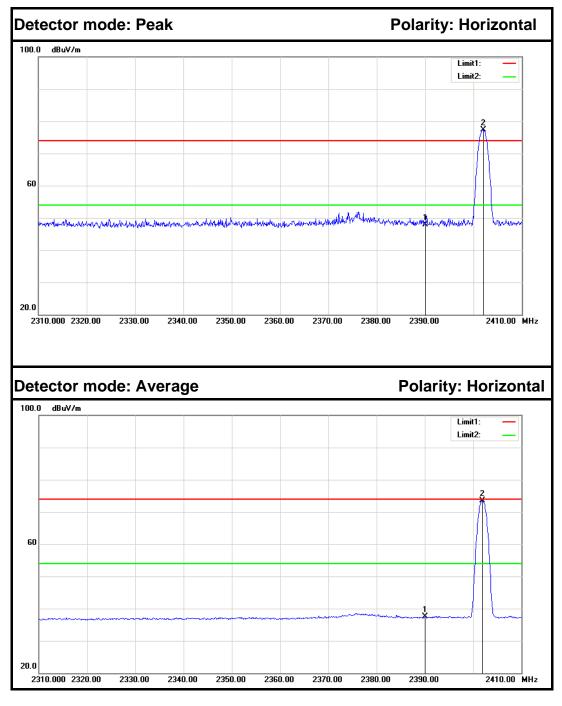
	Radiated I	Emission Test	Site 966(2)		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	N9010A	MY52221469	02/21/2017	02/20/2018
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2017	02/20/2018
Amplifier	EMEC	EM330	060661	03/18/2017	03/17/2018
High Noise Amplifier	Agilent	8449B	3008A01838	02/21/2017	02/20/2018
Loop Antenna	COM-POWER	AL-130	121044	09/25/2016	09/24/2017
Bilog Antenna SCHAFFNE		CBL6143	5082	02/21/2017	02/20/2018
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/27/2017	02/27/2018
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/27/2017	02/27/2018
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R
Controller CT		N/A	N/A	N.C.R	N.C.R
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2017	02/20/2018
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2	

MEASUREMENT EQUIPMENT USED

TEST CONFIGURATION

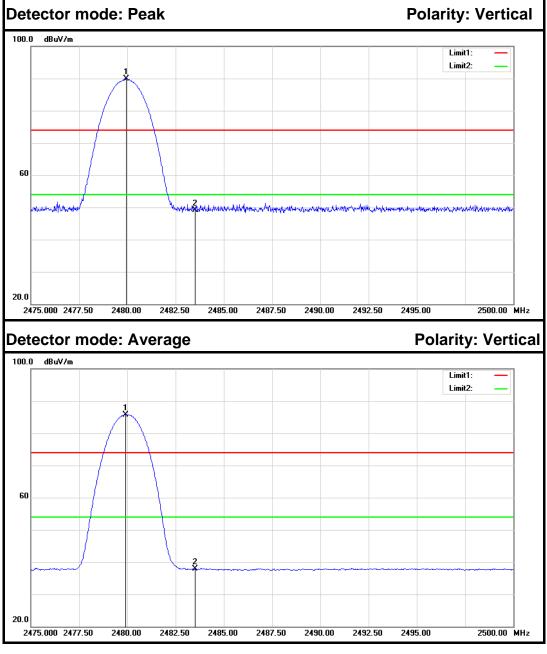

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=330Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

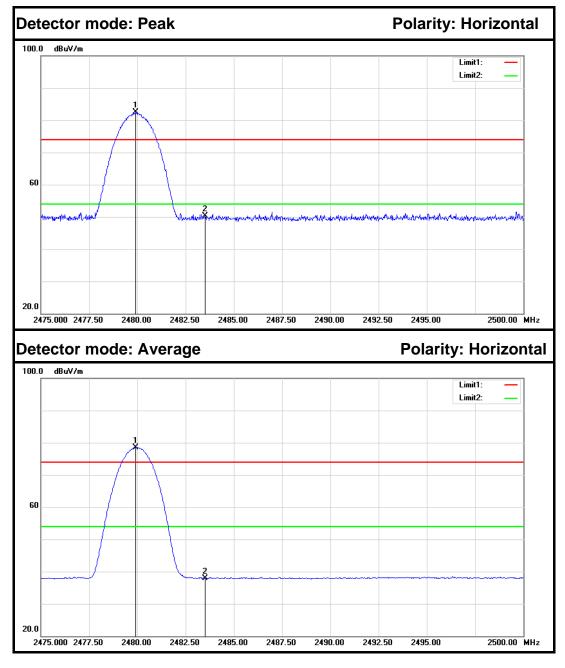

TEST RESULTS

Refer to attach spectrum analyzer data chart.

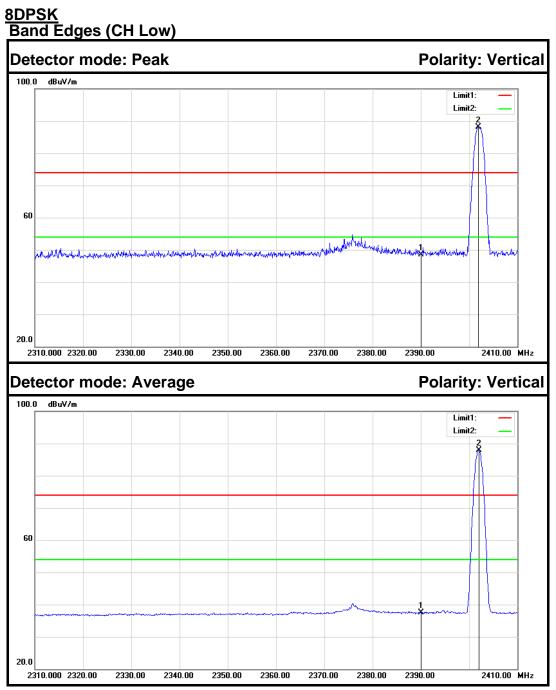
Test Data (GFSK) Band Edges (CH Low)

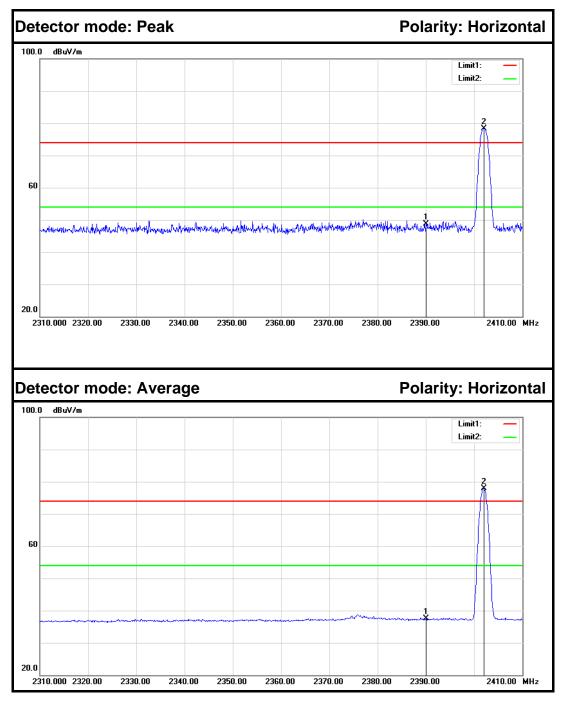

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2390.000	51.31	-2.86	48.45	74.00	-25.55	Peak	Vertical
2	2402.127	90.97	-2.80	88.17			Peak	Vertical
1	2390.000	40.19	-2.86	37.33	54.00	-16.67	Average	Vertical
2	2401.999	87.05	-2.80	84.25			Average	Vertical

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2390.000	50.77	-2.86	47.91	74.00	-26.09	Peak	Horizontal
2	2402.100	80.20	-2.80	77.40			Peak	Horizontal
1	2390.000	40.40	-2.86	37.54	54.00	-16.46	Average	Horizontal
2	2401.972	76.40	-2.80	73.60			Average	Horizontal


Compliance Certification Services (Shenzhen) Inc.

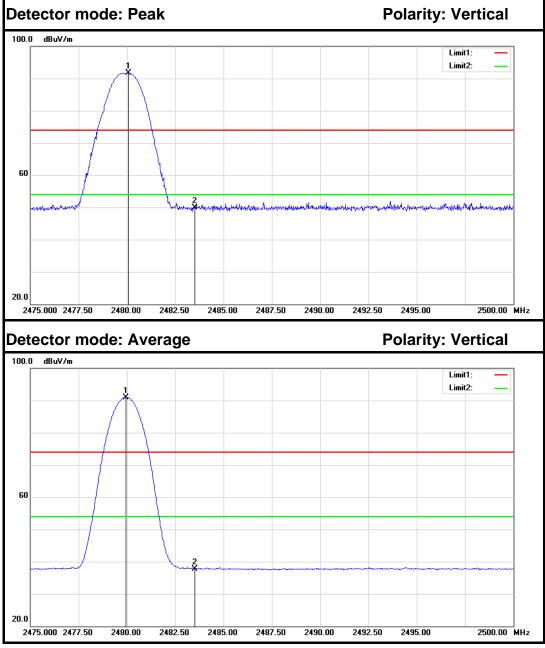
Band Edges (CH-High)

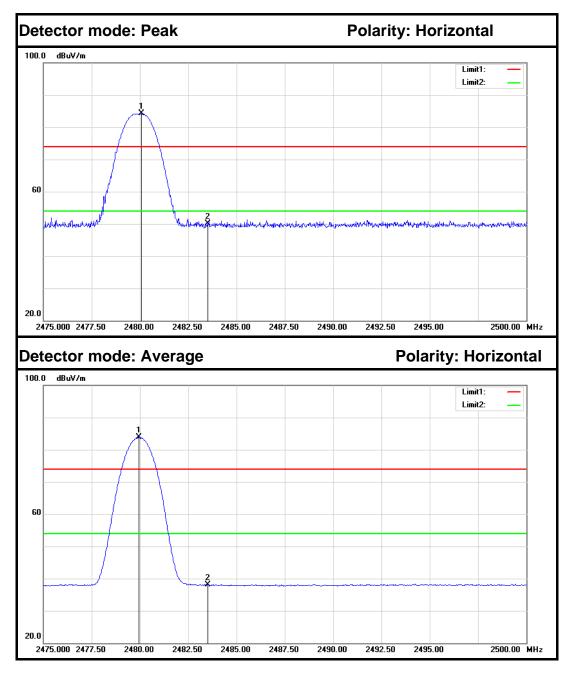

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2479.950	92.20	-2.37	89.83			Peak	Vertical
2	2483.500	51.51	-2.35	49.16	74.00	-24.84	Peak	Vertical
1	2479.925	88.15	-2.37	85.78			Average	Vertical
2	2483.500	40.16	-2.35	37.81	54.00	-16.19	Average	Vertical



No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2479.900	84.80	-2.37	82.43			Peak	Horizontal
2	2483.500	52.66	-2.35	50.31	74.00	-23.69	Peak	Horizontal
1	2479.925	80.87	-2.37	78.50			Average	Horizontal
2	2483.500	40.30	-2.35	37.95	54.00	-16.05	Average	Horizontal

Compliance Certification Services (Shenzhen) Inc.


No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2390.000	51.37	-2.86	48.51	74.00	-25.49	Peak	Vertical
2	2401.900	90.96	-2.80	88.16			Peak	Vertical
1	2390.000	40.30	-2.86	37.44	54.00	-16.56	Average	Vertical
2	2402.000	90.62	-2.80	87.82			Average	Vertical


No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2390.000	51.61	-2.86	48.75	74.00	-25.25	Peak	Horizontal
2	2402.100	81.16	-2.80	78.36			Peak	Horizontal
1	2390.000	40.39	-2.86	37.53	54.00	-16.47	Average	Horizontal
2	2402.000	80.72	-2.80	77.92			Average	Horizontal

Compliance Certification Services (Shenzhen) Inc.

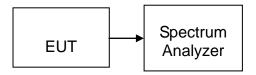
Band Edges (CH-High)

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2480.075	94.03	-2.37	91.66			Peak	Vertical
2	2483.500	52.24	-2.35	49.89	74.00	-24.11	Peak	Vertical
1	2479.950	93.36	-2.37	90.99			Average	Vertical
2	2483.500	40.08	-2.35	37.73	54.00	-16.27	Average	Vertical

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1	2480.075	86.58	-2.37	84.21			Peak	Horizontal
2	2483.500	52.37	-2.35	50.02	74.00	-23.98	Peak	Horizontal
1	2479.950	86.21	-2.37	83.84			Average	Horizontal
2	2483.500	40.41	-2.35	38.06	54.00	-15.94	Average	Horizontal

6.6 FREQUENCY SEPARATION

<u>LIMIT</u>


According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Adjust Span to 4 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

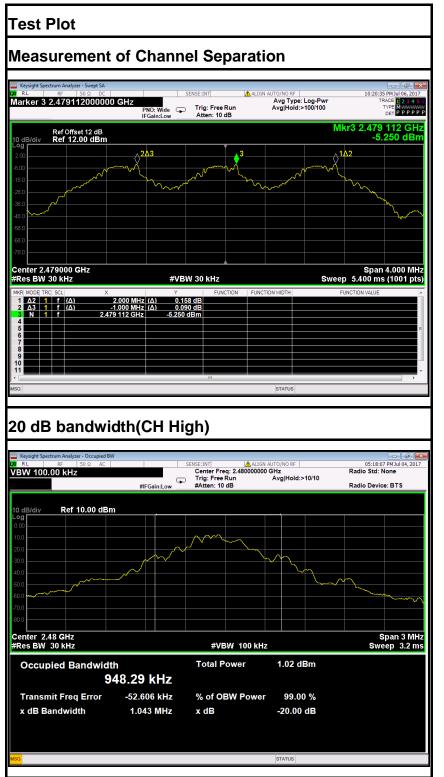
TEST RESULTS

No non-compliance noted

Test Data

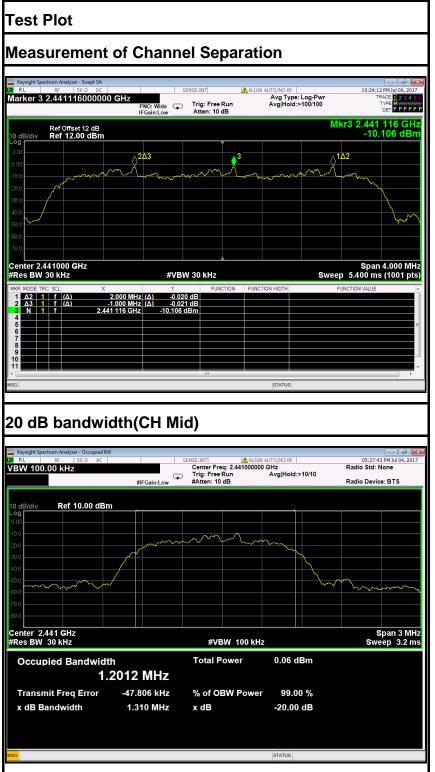
<u>GFSK</u>

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	632.193	> Two-thirds of the 20 dB Bandwidth	Pass


8DPSK

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	800.800	> Two-thirds of the 20 dB Bandwidth	Pass

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

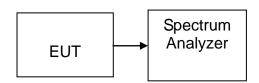


<u>GFSK</u>

8DPSK

6.7 NUMBER OF HOPPING FREQUENCY

<u>LIMIT</u>


According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = 1ms.
- 4. Set the spectrum analyzer as RBW, VBW=300kHz,
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

Test Data

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

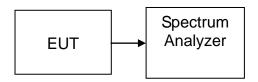
Test Plot

Channel Number

FSK				
_				
.400 GH	z – 2.483	5 GHz		
RL RF RL RF	50 Ω DC	SENSE:INT	ALIGN AUTO/NO RF	09:59:33 PM Jul 06, 2017 TRACE 1 2 3 4 5
	P IF	NO: Fast Trig: Free Run Gain:Low Atten: 10 dB	Avg Hold: 100/100	
Ref Offs O dB/div Ref 12 2.00 2	eet 12 dB .00 dBm			-4.413 dBm
			WWWWWWWWWWWW	
8.0				
8.0				
8.0				
tart 2.40000 GHz Res BW 100 kHz		#VBW 300 kHz	#Sweep 2	Stop 2.48350 GH 2.000 ms (1001 pts
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.479 909 5 GHz 2.402 004 0 GHz	Y FUNCTION -2.870 dBm -4.413 dBm	FUNCTION WIDTH FUNC	TION VALUE
3 4 5 6				
7 8 9 11 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
0				
		m		4
DPSK		11	STATUS	•
DPSK .400 GH	50 Ω DC 87500000 GHz	5 GHz	ALIGN AUTO/NO RF	09:57:23 PM Jul 06, 2017 TRACE 1 2 3 4 5 TYPE M MAAAAAAA
G DPSK .400 GH Keysight Spectrum Analyzy RL RF arkeer 2 2.40201	er - Swept SA 50 Ω DC 87500000 GHz IF set 12 dB	5 GHz	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100	09:57:23 PMJul 06, 2017 TRACE 1 2 3 4 5 TYPE MWWWW DET P P P P 2.402 087 5 GH2
G DPSK .400 GH. RL SF arker 2 2.40201 Brdiv Ref 0ff Ref 12	er - Swept SA 50 Ω DC 87500000 GHz F	5 GHz sense:int NO: Fast → Trig: Free Run	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100	09:57:23 PMJul 06, 2017 TRACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
G DPSK .400 GH Keysight Spectrum Analyzz RL RF arker 2 2.40201 0 dB/div Ref 12	er - Swept SA 50 Ω OC 87500000 GHz 87500000 GHz P F 9 9 9 9 9 9 9 9 9	5 GHz NO: Fast ↔ Trig: Free Run Gain:Low ↔ Atten: 10 dB	ALIGN ALITO/NO RF. Avg Type: Log-Pwr Avg Hold: 100/100 Mkr2 2	09:57:23 PMJul 06, 2017 TRACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
G DPSK .400 GH. Keytight Spectrum Analyze Rt. 96 arker 2 2.40200 g Bl/div Ref 0ffs Ref 12	er - Swept SA 50 Ω OC 87500000 GHz 87500000 GHz P F 9 9 9 9 9 9 9 9 9	5 GHz NO: Fast ↔ Trig: Free Run Gain:Low ↔ Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100	09:57:23 PMJul 06, 2017 TRACE 12 3 4 5 TYPE MUSE DET P P P P P 2.402 087 5 GH2 -9.561 dBm
G DPSK .400 GH Keyight Spectrum Analyz artker 2 2.40201 0 dB/div Ref 12	er - Swept SA 50 Ω OC 87500000 GHz 87500000 GHz P F 9 9 9 9 9 9 9 9 9	5 GHz NO: Fast ↔ Trig: Free Run Gain:Low ↔ Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100	09:57:23 PMJul 06, 2017 TRACE 12 3 4 5 TYPE MUSE DET P P P P P 2.402 087 5 GH2 -9.561 dBm
G DPSK .400 GH. Keysight Spectrum Analyzz artker 2 2.40201 GB/div Ref Offs Ref 0 Ref 12	er - Swept SA 50 Ω OC 87500000 GHz 87500000 GHz P F 9 9 9 9 9 9 9 9 9	5 GHz NO: Fast ↔ Trig: Free Run Gain:Low ↔ Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100	09:57:23 PMJulo6, 2017 TRACE 2 3 4 5 TYPE WWWW DET PPPPP 2.402 087 5 GH2 -9.561 dBm
G DPSK .400 GH. Ref Offe arker 2 2.40201 0 dB/div Ref 12 0 dB/div Ref 12 0 d 2 0 d 2	er - Swept SA 50 2 DC 87500000 GHz P F set 12 dB .00 dBm ///.w/\/*/\/*/\/*/\/*/ ///.w/\/*/\/*/	5 GHz NO: Fast → Trig: Free Run Gain:Low → Trig: Free Run Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100 Mikr2 2	TAGE 12345 TYPE 1 .9.561 dBm
G DPSK .400 GH Keysight Spectrum Analyz RL 8F arkter 2 2.40201 C 65/div Ref 0ffs Ref 0ffs Ref 0ffs C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	er - Swept SA 50 2 DC 87500000 GHz P F set 12 dB .00 dBm ///.w/\/*/\/*/\/*/\/*/ ///.w/\/*/\/*/	5 GHz NO: Fast Gain:Low ← Trig: Free Run Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100 Mikr2 2	0:9:7:23 PMJ 06, 2017 TRACE [2 3 4 5 TYPE MUSTIC [2 3 4 5 TYPE MUSTIC [2 3 4 5 DET PPPP 0 2.402 087 5 GHz -9.561 dBm
G DPSK .400 GH .400 GH .40	er - Swept SA 50 Ω DC 87500000 GHz P 19 19 19 10 10 10 10 10 10 10 10 10 10	5 GHz SENSE:INT NO: Fast → Trig: Free Run Atten: 10 dB Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100 Mikr2 2	0:57:23 PMJ 06, 2017 TRACE [2 3 4 5 DET PPPP] 2.402 087 5 GHz -9.561 dBm -9.561 dBm -9.
Additional and the second seco	er - Swept SA 50 Ω DC 87500000 GHz P 19 19 19 10 10 10 10 10 10 10 10 10 10	5 GHz SENSE:INT NO: Fast → Trig: Free Run Atten: 10 dB Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100 Mikr2 2	0:57:23 PMJ 06, 2017 TRACE [2:34 DET PPPP 2.402 087 5 GH; -9.561 dBn -4.100 087 5 GH; -9.575 5 GH; -9.57
G DPSK .400 GH .400 GH Result Spectrum Analyz RE 2.40201 .4000 GH .4000 GH .40	er - Swept SA 50 Ω DC 87500000 GHz P 19 19 19 10 10 10 10 10 10 10 10 10 10	5 GHz SENSE:INT NO: Fast → Trig: Free Run Atten: 10 dB Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 100/100 Mikr2 2	0:57:23 PMJ 06, 2017 TRACE [2 3 4 5 DET PPPP] 2.402 087 5 GHz -9.561 dBm -9.561 dBm -9.

6.8 TIME OF OCCUPANCY (DWELL TIME)

<u>LIMIT</u>


According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4s multiplied by the number of hopping channels employed.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

Test Data

<u>GFSK</u>

<u>DH 1</u>

CH Mid: 0.390* (1600/2)/79 * 31.6 = 124.800(ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.390	124.800	31.60	400.00	PASS

<u>DH 3</u>

CH Mid: 1.653* (1600/4)/79 * 31.6 = 264.480 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	1.653	264.480	31.60	400.00	PASS

<u>DH 5</u>

CH Mid: 2.896* (1600/6)/79 * 31.6 = 308.907(ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	2.896	308.907	31.60	400.00	PASS

8DPSK

<u>3DH 1</u>

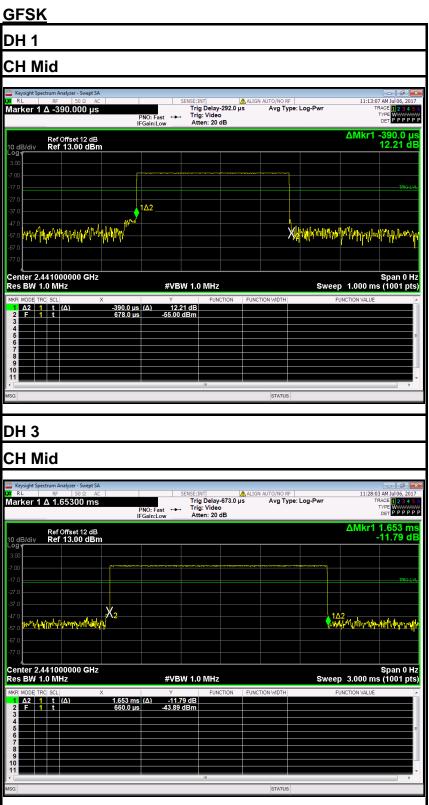
CH Mid: 0.396* (1600/2)/79 * 31.6 = 126.720 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.396	126.720	31.60	400.00	PASS

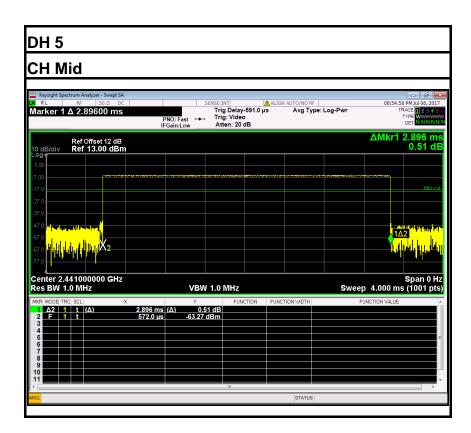
<u>3DH 3</u>

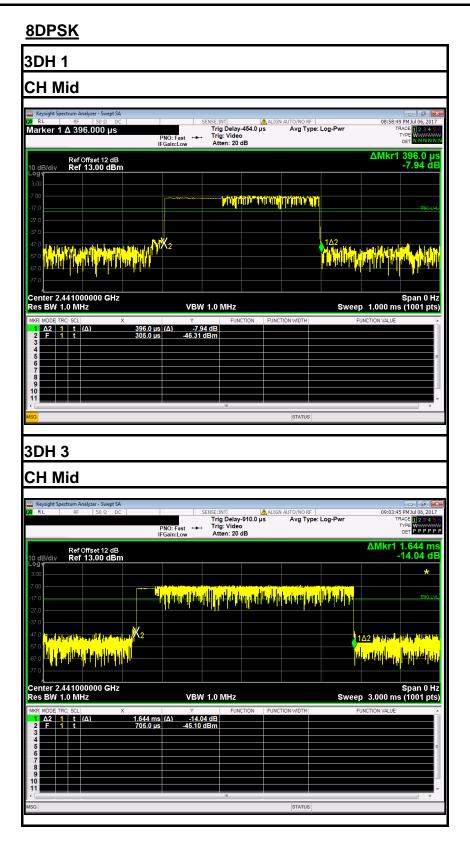
CH Mid: 1.644* (1600/4)/79 * 31.6 = 263.040 (ms)

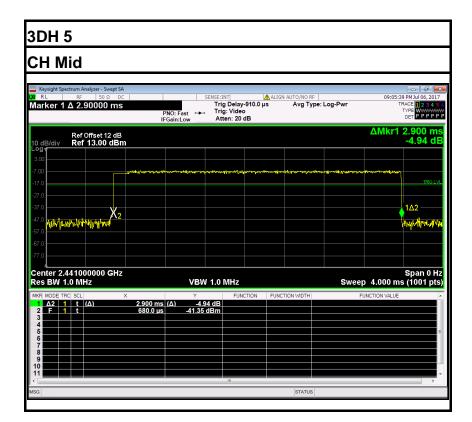
СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	1.644	263.040	31.60	400.00	PASS


<u>3DH 5</u>

CH Mid: 2.900* (1600/6)/79 * 31.6 = 309.330(ms)


СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	2.900	309.330	31.60	400.00	PASS

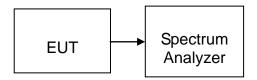

Test Plot



6.9 SPURIOUS EMISSIONS

6.9.1. CONDUCTED MEASUREMENT

<u>LIMIT</u>


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

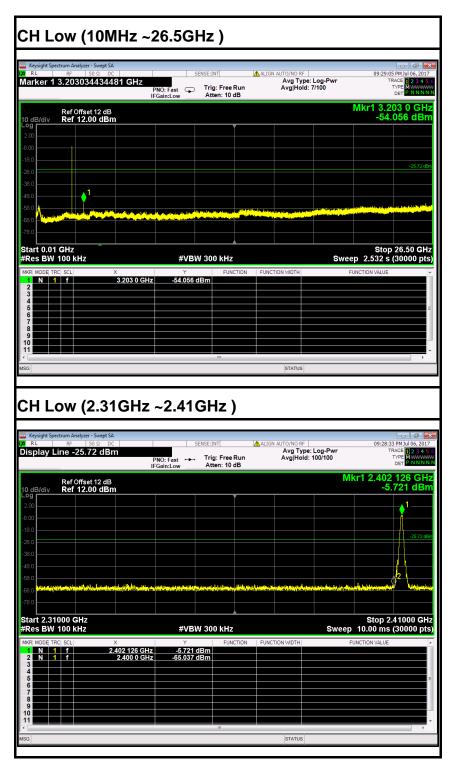
TEST CONFIGURATION

TEST PROCEDURE

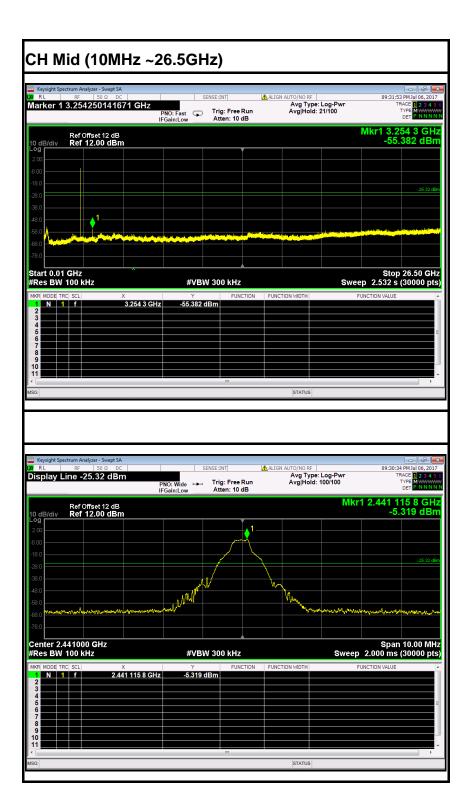
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

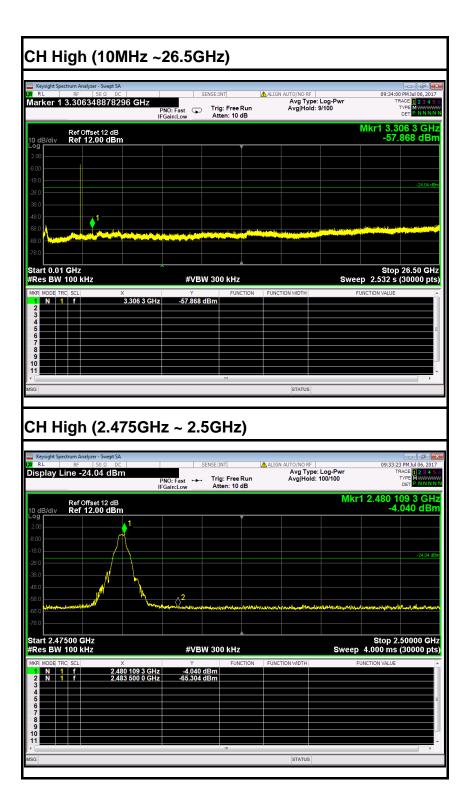
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

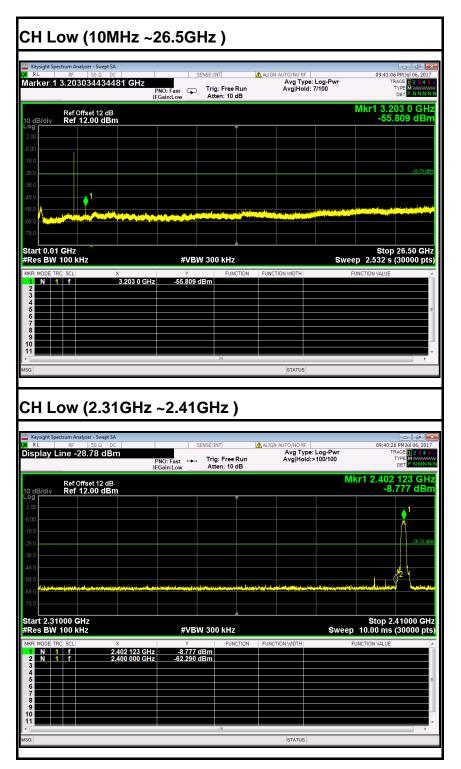
Measurements are made over the 9 kHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels, and highest channels. No emission found between lowest internal used/generated frequency to 10MHz, it is only recorded 10MHz to 26GHz.

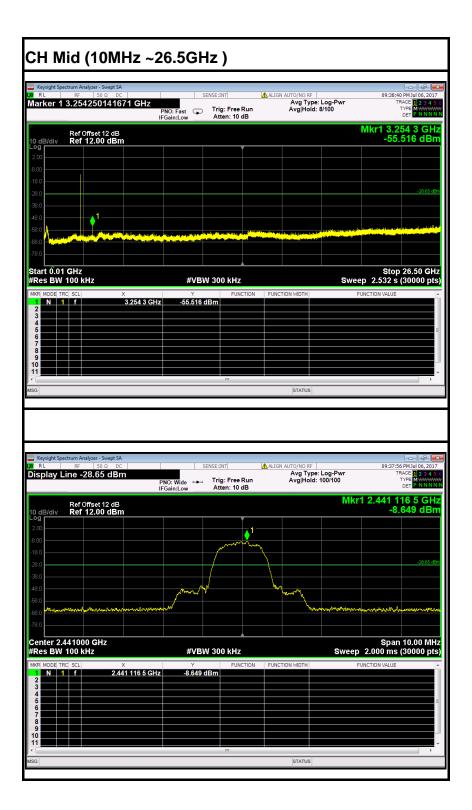

TEST RESULTS

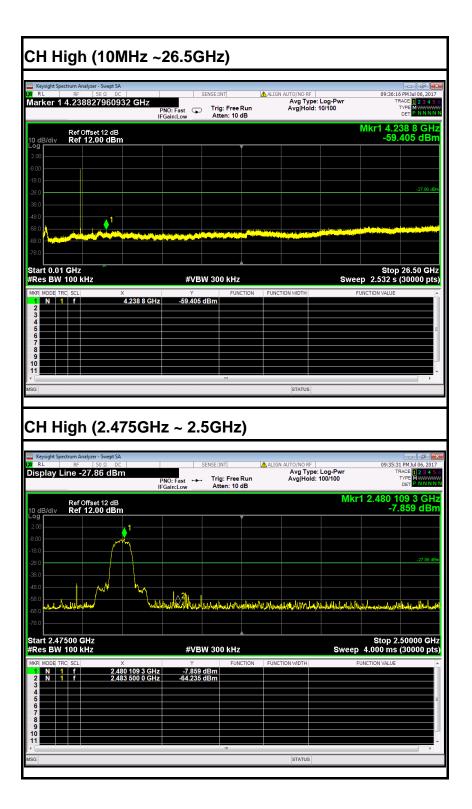
No non-compliance noted

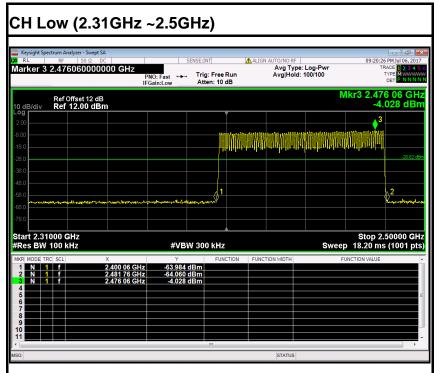

Remark: The hopping on mode and hopping off mode were chosen for pre-test and the hopping off mode was the worse case and print in the report.


<u>Hopping Off</u> Test Plot (GFSK)






Test Plot (8DPSK)



Hopping On

Test Data (GFSK)

Test Data (8DPSK)

sight Spectrum Analyzer - Swep						
RF 50 Ω May Line -28.82 d	PN		rig: Free Run Atten: 10 dB	ALIGN AUTO/NO RF Avg Type: Avg Hold:>		09:19:20 PM Jul 06 TRACE 1 2 TYPE MW DET PN
Ref Offset 12 c 3/div Ref 12.00 dl	iB 3m				N	1kr3 2.436 16 (-8.816 c
				→ ³		
			hbhuthn	Mundurundage	hwww.	anter adian
						-28
		Calcard and an and a second	1			2 •
and and the many of a second		a fa dharan dharan an a				
t 2.31000 GHz s BW 100 kHz		#VBW 3			0	Stop 2.50000 18.20 ms (1001
	X	#VBW 3	FUNCTION	FUNCTION WIDTH		UNGTION VALUE
N 1 f	2.400 06 GHz	-64.146 dBn	n	FUNCTION WIDTH	F	UNCTION VALUE
N 1 f	2.481 76 GHz 2.436 16 GHz	-63.200 dBn -8.816 dBn				

Compliance Certification Services (Shenzhen) Inc.

6.9.2. Radiated Emissions

<u>LIMIT</u>

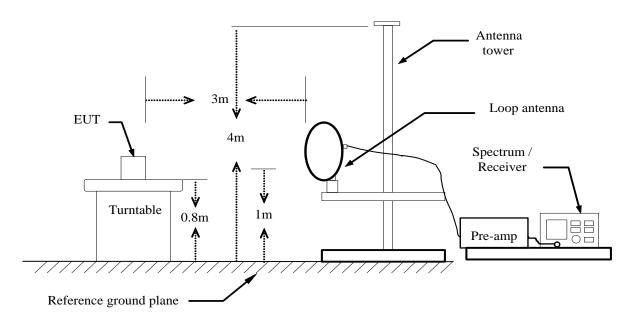
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

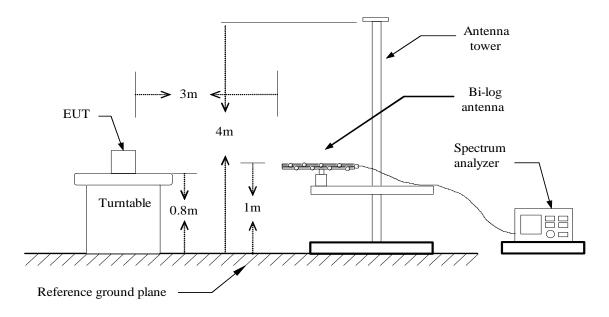
Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

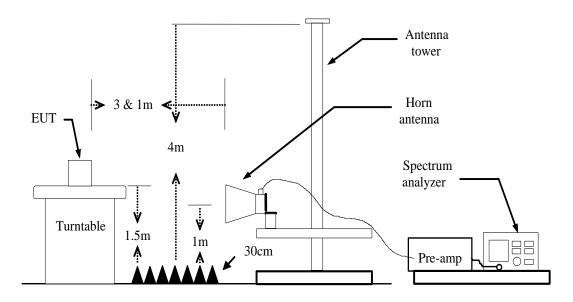
Frequency (Hz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54



MEASUREMENT EQUIPMENT USED


	Radiated Emission Test Site 966(2)								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration				
PSA Series Spectrum Analyzer	Agilent	N9010A	MY52221469	02/21/2017	02/20/2018				
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2017	02/20/2018				
Amplifier	EMEC	EM330	060661	03/18/2017	03/17/2018				
High Noise Amplifier	Agilent	8449B	3008A01838	02/21/2017	02/20/2018				
Loop Antenna	COM-POWER	AL-130	121044	09/25/2016	09/24/2017				
Bilog Antenna	SCHAFFNER	CBL6143	5082	02/21/2017	02/20/2018				
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/27/2017	02/27/2018				
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/27/2017	02/27/2018				
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R				
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R				
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R				
Controller	СТ	N/A	N/A	N.C.R	N.C.R				
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2017	02/20/2018				
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2	•				

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration Below 30MHz

Below 1 GHz

Above 1 GHz

MEASURING SETTING

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 330Hz for Average
RB / VB (Emission in non-restricted	1MHz / 1MHz for Peak, 1 MHz / 330Hz for
band)	Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

TEST PROCEDURE

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 1 meter.

--- The EUT was set into operation.

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Compliance Certification Services (Shenzhen) Inc.

TEST RESULTS

Below 1 GHz

Test Mode: <u>TX / GFSK(CH Low)</u>

Tested by: Saber Huang

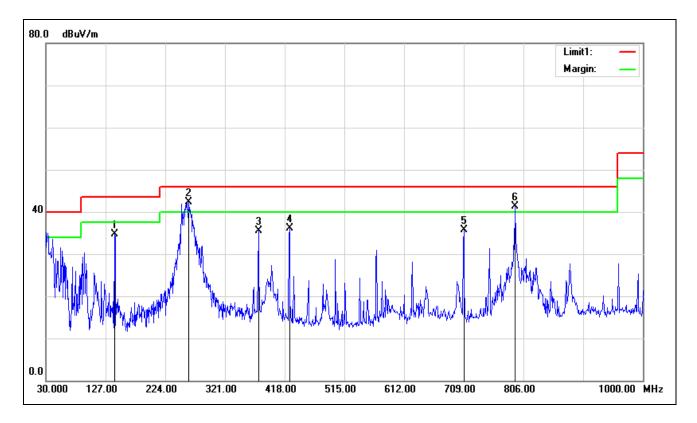
Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Date: June 6, 2017

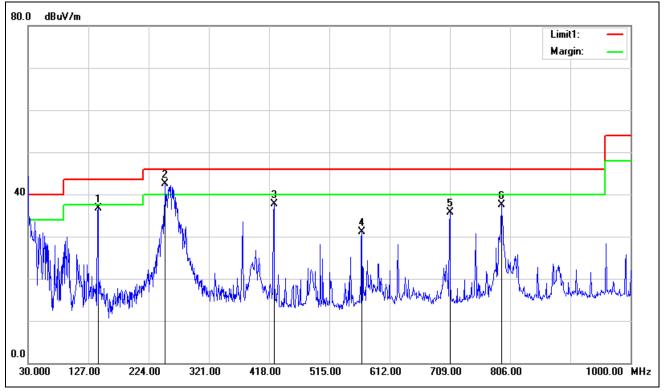
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
141.5500	56.12	-21.33	34.79	43.50	-8.71	V	QP
261.8300	62.25	-20.02	42.23	46.00	-3.77	V	QP
375.3200	52.29	-16.82	35.47	46.00	-10.53	V	QP
425.7600	51.69	-15.52	36.17	46.00	-9.83	V	QP
709.0000	47.53	-11.90	35.63	46.00	-10.37	V	QP
792.4200	52.38	-11.16	41.22	46.00	-4.78	V	QP
		•		•			
142.5200	58.07	-21.38	36.69	43.50	-6.81	Н	QP
250.1900	63.54	-21.06	42.48	46.00	-3.52	Н	QP
425.7600	53.13	-15.52	37.61	46.00	-8.39	Н	QP
567.3800	44.18	-13.08	31.10	46.00	-14.90	Н	QP
709.0000	47.52	-11.90	35.62	46.00	-10.38	Н	QP
792.4200	48.73	-11.16	37.57	46.00	-8.43	Н	QP

**Remark: 1. No emission found between lowest internal used/generated frequency to 30MHz.

2. Pre-scan all mode and recorded the worst case results in this report (TX-Low Channel(1Mbps). Notes:


1. Measuring frequencies from 9kHz to the 1GHz.

- 2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 120kHz.


5.	Frequency (MHz). Reading (dBuV) Correction Factor(dB/m) Actual FS (dBuV/m) Limit (dBuV/m) Margin(dB) Antenna Pole(V/H)	 = Emission frequency in MHz = Receiver reading = Antenna factor + Cable loss – Amplifier gain = Reading (dBuV) + Corr. Factor (dB/m) = Limit stated in standard = Measured (dBuV/m) – Limits (dBuV/m) = Current carrying line of reading

Vertical

Horizontal

Compliance Certification Services (Shenzhen) Inc.

Above 1 GHz GFSK

Test Mode: <u>TX(CH Low)</u>

Tested by: Saber Huang

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Date: June 5, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1189.000	55.36	-7.83	47.53	74.00	-26.47	V	peak
1486.000	53.71	-6.91	46.80	74.00	-27.20	V	peak
1981.000	54.24	-5.12	49.12	74.00	-24.88	V	peak
2971.000	46.95	-1.41	45.54	74.00	-28.46	V	peak
3565.000	49.15	-0.25	48.90	74.00	-25.10	V	peak
3961.000	45.69	1.43	47.12	74.00	-26.88	V	peak
	•	•		•		•	
1486.000	51.63	-6.91	44.72	74.00	-29.28	н	Peak
1981.000	54.39	-5.12	49.27	74.00	-24.73	Н	Peak
2971.000	46.69	-1.41	45.28	74.00	-28.72	Н	Peak
3565.000	48.17	-0.25	47.92	74.00	-26.08	Н	peak
3961.000	46.28	1.43	47.71	74.00	-26.29	н	peak
4807.000	40.16	4.35	44.51	74.00	-29.49	н	peak

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 3MHz, Sweep time = auto. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = auto.

5. Frequency (MHz) = Emission frequency in MHz

Reading (dBµV/m)	=Uncorrected Analyzer / Receiver Reading
Correction Factor (dB)	= Antenna factor + Cable loss – Amplifier gain
Limit (dBµV/m)	= Limit stated in standard
Margin (dB)	= Result (dBμV/m)- Limit (dBμV/m)
Pk	= Peak Reading
AV.	= Average Reading
Remark	= Mark Peak Reading or Average Reading

Test Mode: TX(CH Mid)

Tested by: Saber Huang

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Date: June 5, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1198.000	52.68	-7.80	44.88	74.00	-29.12	V	peak
1486.000	54.23	-6.91	47.32	74.00	-26.68	V	peak
1981.000	53.92	-5.12	48.80	74.00	-25.20	V	peak
2971.000	49.60	-1.41	48.19	74.00	-25.81	V	peak
3574.000	46.72	-0.21	46.51	74.00	-27.49	V	peak
3961.000	45.05	1.43	46.48	74.00	-27.52	V	peak
						•	
1189.000	53.97	-7.83	46.14	74.00	-27.86	н	Peak
1486.000	52.65	-6.91	45.74	74.00	-28.26	Н	Peak
1981.000	52.38	-5.12	47.26	74.00	-26.74	Н	Peak
2971.000	49.68	-1.41	48.27	74.00	-25.73	н	peak
3565.000	47.88	-0.25	47.63	74.00	-26.37	н	peak
3961.000	44.09	1.43	45.52	74.00	-28.48	Н	peak

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 3MHz, Sweep time = auto.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = auto.

```
5. Frequency (MHz)
                      = Emission frequency in MHz
```

```
Reading (dBµV/m)
                        =Uncorrected Analyzer / Receiver Reading
Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain
                       = Limit stated in standard
Limit (dBµV/m)
Margin (dB)
                       = Result (dB\mu V/m)- Limit (dB\mu V/m)
Pk
                       = Peak Reading
AV.
                       = Average Reading
Remark
                      = Mark Peak Reading or Average Reading
```

Test Mode: TX(CH High)

Tested by: Saber Huang

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Date: June 5, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1189.000	56.14	-7.83	48.31	74.00	-25.69	V	peak
1486.000	53.86	-6.91	46.95	74.00	-27.05	V	peak
1981.000	55.06	-5.12	49.94	74.00	-24.06	V	peak
2971.000	46.71	-1.41	45.30	74.00	-28.70	V	peak
3565.000	47.17	-0.25	46.92	74.00	-27.08	V	peak
3961.000	44.22	1.43	45.65	74.00	-28.35	V	peak
1189.000	57.14	-7.83	49.31	74.00	-24.69	Н	Peak
1981.000	54.01	-5.12	48.89	74.00	-25.11	Н	Peak
1486.000	53.36	-6.91	46.45	74.00	-27.55	Н	Peak
3565.000	47.64	-0.25	47.39	74.00	-26.61	Н	peak
2971.000	45.95	-1.41	44.54	74.00	-29.46	н	peak
3961.000	44.66	1.43	46.09	74.00	-27.91	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 3MHz, Sweep time = auto.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = auto.

	0	
5.	Frequency (MHz)	= Emission frequency in MHz
	Reading (dBµV/m)	=Uncorrected Analyzer / Receiver Reading
	Correction Factor (dB)	= Antenna factor + Cable loss – Amplifier gain
	Limit (dBµV/m)	= Limit stated in standard
	Margin (dB)	= Result (dBμV/m)- Limit (dBμV/m)
	Pk	= Peak Reading
	AV.	= Average Reading
	Remark	= Mark Peak Reading or Average Reading

8DPSK

Test Mode: <u>TX(CH Low)</u>

Tested by: Saber Huang

		0 0, 2011					
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1189.000	53.06	-7.83	45.23	74.00	-28.77	V	peak
1558.000	50.98	-6.78	44.20	74.00	-29.80	V	peak
1990.000	51.80	-5.06	46.74	74.00	-27.26	V	peak
2971.000	46.74	-1.41	45.33	74.00	-28.67	V	peak
3574.000	45.91	-0.21	45.70	74.00	-28.30	V	peak
3961.000	45.11	1.43	46.54	74.00	-27.46	V	peak
1180.000	55.75	-7.87	47.88	74.00	-26.12	н	Peak
1486.000	54.75	-6.91	47.84	74.00	-26.16	н	Peak
1981.000	53.43	-5.12	48.31	74.00	-25.69	Н	Peak
2971.000	46.55	-1.41	45.14	74.00	-28.86	Н	peak
3565.000	47.52	-0.25	47.27	74.00	-26.73	Н	peak
3961.000	45.72	1.43	47.15	74.00	-26.85	н	peak

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Date: June 5, 2017

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 3MHz, Sweep time = auto.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = auto.

5.	Frequency (MHz)	= Emission frequency in MHz
	Reading (dBµV/m)	=Uncorrected Analyzer / Receiver Reading
(Correction Factor (dB)	= Antenna factor + Cable loss – Amplifier gain
l	Limit (dBµV/m)	= Limit stated in standard
I	Margin (dB)	= Result (dBμV/m)- Limit (dBμV/m)
ŀ	Pk	= Peak Reading
A	IV.	= Average Reading
F	Remark	= Mark Peak Reading or Average Reading

Test Mode: TX(CH Mid)

Tested by: Saber Huang

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Date: June 5, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1981.000	52.46	-5.12	47.34	74.00	-26.66	V	peak
2971.000	48.67	-1.41	47.26	74.00	-26.74	V	peak
3565.000	45.83	-0.25	45.58	74.00	-28.42	V	peak
4456.000	40.17	3.20	43.37	74.00	-30.63	V	peak
6058.000	39.70	6.17	45.87	74.00	-28.13	V	peak
6850.000	40.81	7.46	48.27	74.00	-25.73	V	peak
						•	
1486.000	53.46	-6.91	46.55	74.00	-27.45	н	Peak
1981.000	52.46	-5.12	47.34	74.00	-26.66	Н	Peak
2971.000	49.47	-1.41	48.06	74.00	-25.94	Н	Peak
3565.000	47.56	-0.25	47.31	74.00	-26.69	н	peak
3961.000	45.41	1.43	46.84	74.00	-27.16	н	peak
4780.000	39.81	4.26	44.07	74.00	-29.93	Н	peak

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 3MHz, Sweep time = auto.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = auto.

```
5. Frequency (MHz)
                         = Emission frequency in MHz
  Reading (dBµV/m)
                         =Uncorrected Analyzer / Receiver Reading
  Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain
                        = Limit stated in standard
  Limit (dBµV/m)
  Margin (dB)
                        = Result (dB\mu V/m)- Limit (dB\mu V/m)
  Pk
                        = Peak Reading
 AV.
                        = Average Reading
 Remark
                        = Mark Peak Reading or Average Reading
```

Test Mode: <u>TX(CH High)</u>

Tested by: Saber Huang

Ambient temperature: <u>24°C</u>

Relative humidity: 52% RH

Date: June 5, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1486.000	54.49	-6.91	47.58	74.00	-26.42	V	peak
1981.000	52.36	-5.12	47.24	74.00	-26.76	V	peak
2971.000	46.33	-1.41	44.92	74.00	-29.08	V	peak
3565.000	47.83	-0.25	47.58	74.00	-26.42	V	peak
3961.000	45.10	1.43	46.53	74.00	-27.47	V	peak
4978.000	40.51	4.91	45.42	74.00	-28.58	V	peak
1189.000	57.14	-7.83	49.31	74.00	-24.69	Н	Peak
1486.000	53.36	-6.91	46.45	74.00	-27.55	Н	Peak
1981.000	54.01	-5.12	48.89	74.00	-25.11	Н	Peak
2971.000	45.95	-1.41	44.54	74.00	-29.46	н	peak
3565.000	47.64	-0.25	47.39	74.00	-26.61	Н	peak
3961.000	44.66	1.43	46.09	74.00	-27.91	н	peak

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 3MHz, Sweep time = auto.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = auto.

```
5. Frequency (MHz) = Emission frequency in MHz

Reading (dB\mu V/m) =Uncorrected Analyzer / Receiver Reading

Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Limit (dB\mu V/m) = Limit stated in standard

Margin (dB) = Result (dB\mu V/m)- Limit (dB\mu V/m)

Pk = Peak Reading

AV. = Average Reading

Remark = Mark Peak Reading or Average Reading
```

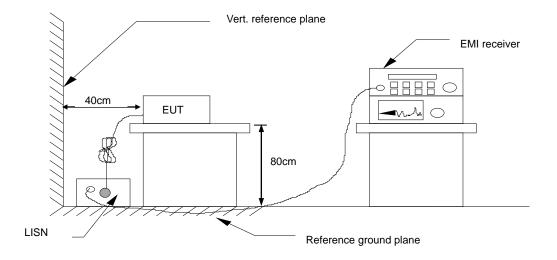

6.10 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)					
Frequency Range (MITZ)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


MEASUREMENT EQUIPMENT USED

	Conducted Emission Test Site										
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration						
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2017	02/20/2018						
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	02/21/2017	02/20/2018						
LISN	EMCO	3825/2	8901-1459	02/21/2017	02/20/2018						
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	02/21/2017	02/20/2018						
Test S/W FARAD EZ-EMC/ CCS-3A1-CE											

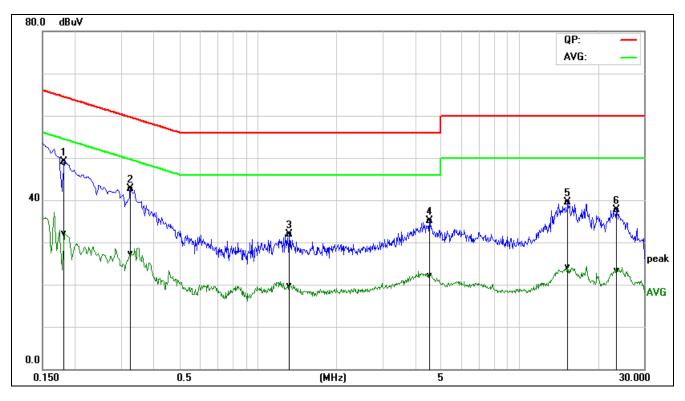
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

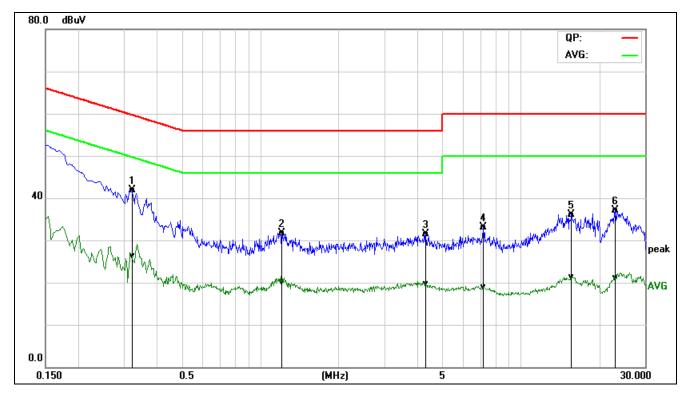
- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.


TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

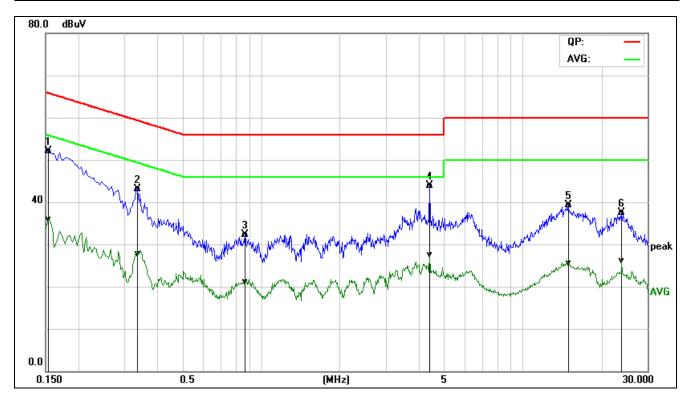
		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Saber Huang	Line	L1
Test Date	May 19, 2017	Test Voltage	AC120V/60Hz



Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1820	29.37	12.47	19.63	49.00	32.10	64.39	54.39	-15.39	-22.29	Pass
0.3260	23.01	7.76	19.60	42.61	27.36	59.55	49.55	-16.94	-22.19	Pass
1.3180	12.33	0.18	19.60	31.93	19.78	56.00	46.00	-24.07	-26.22	Pass
4.5420	15.42	2.42	19.73	35.15	22.15	56.00	46.00	-20.85	-23.85	Pass
15.3460	19.39	4.14	20.03	39.42	24.17	60.00	50.00	-20.58	-25.83	Pass
23.6220	17.37	2.89	20.40	37.77	23.29	60.00	50.00	-22.23	-26.71	Pass

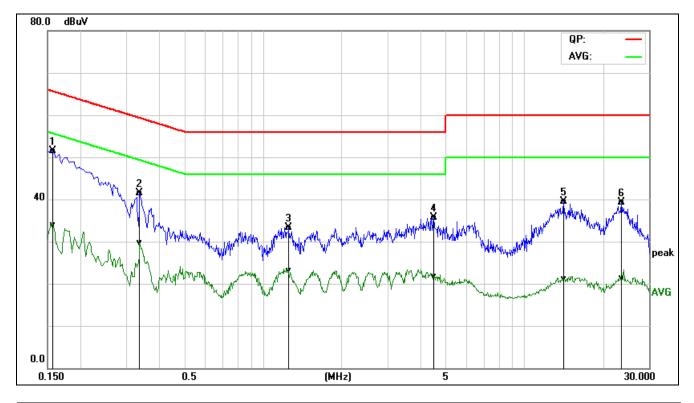
REMARKS: L1 = Line One (Live Line)

		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Saber Huang	Line	L2
Test Date	May 19, 2017	Test Voltage	AC120V/60Hz



Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.3220	22.45	6.73	19.54	41.99	26.27	59.65	49.66	-17.66	-23.39	Pass
1.2140	12.18	0.59	19.58	31.76	20.17	56.00	46.00	-24.24	-25.83	Pass
4.3300	11.76	-0.14	19.81	31.57	19.67	56.00	46.00	-24.43	-26.33	Pass
7.2020	13.34	-1.03	19.85	33.19	18.82	60.00	50.00	-26.81	-31.18	Pass
15.6700	16.02	1.19	20.03	36.05	21.22	60.00	50.00	-23.95	-28.78	Pass
23.0380	16.63	0.60	20.47	37.10	21.07	60.00	50.00	-22.90	-28.93	Pass

REMARKS: L2 = Line Two (Neutral Line)


		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Saber Huang	Line	L1
Test Date	May 19, 2017	Test Voltage	AC240V/50Hz

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1539	32.43	16.38	19.62	52.05	36.00	65.78	55.79	-13.73	-19.79	Pass
0.3379	23.47	8.17	19.59	43.06	27.76	59.25	49.25	-16.19	-21.49	Pass
0.8700	12.70	1.50	19.58	32.28	21.08	56.00	46.00	-23.72	-24.92	Pass
4.4220	24.12	7.69	19.73	43.85	27.42	56.00	46.00	-12.15	-18.58	Pass
14.9180	19.37	5.49	20.01	39.38	25.50	60.00	50.00	-20.62	-24.50	Pass
24.0020	17.16	5.67	20.42	37.58	26.09	60.00	50.00	-22.42	-23.91	Pass

REMARKS: L1 = Line One (Live Line)

		RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Saber Huang	Line	L2
Test Date	May 19, 2017	Test Voltage	AC240V/50Hz

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1580	31.95	14.40	19.52	51.47	33.92	65.56	55.57	-14.09	-21.65	Pass
0.3379	22.01	10.11	19.54	41.55	29.65	59.25	49.25	-17.70	-19.60	Pass
1.2620	13.71	3.42	19.60	33.31	23.02	56.00	46.00	-22.69	-22.98	Pass
4.5220	15.92	1.98	19.81	35.73	21.79	56.00	46.00	-20.27	-24.21	Pass
14.1820	19.47	0.99	20.03	39.50	21.02	60.00	50.00	-20.50	-28.98	Pass
23.6060	18.83	0.87	20.52	39.35	21.39	60.00	50.00	-20.65	-28.61	Pass

REMARKS: L2 = Line Two (Neutral Line)