KP Electronic Systems, Ltd.

MT2PIT

Tuning Procedure

File: I:\Products\Current\Hardware\MT2PIT\Tuning_Procedure.spec

Revision History:

Rev.	Date	Description	Reason of change	Affect Paragraph/	Initiator
				Documents	
0.1	3/12/2016	Initial release			Efi
1.0	6/2/2017	Remove irrelevant paragraphs			Efi
1.1	22/2/2017	Fix power out			Efi

Name	Title	Date	Signature
Efi Rushinek	R&D Mgr		

T:\Vlad\FCC_6 MT2PIT 151-156MHz Un\Words_DOC\Tuning Procedure MT2P.doc

Leonid Kreimer	Project Mgr.	
Vladimir Dashinsky	RF Senior Engineer	

Contents

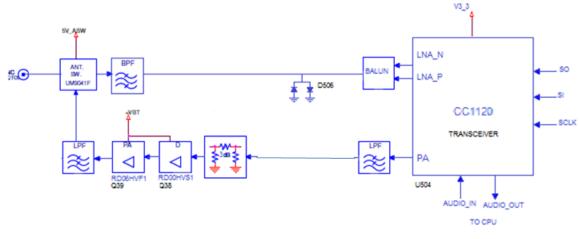
1.	Introduction	.3
	References	
	VHF Radio	
	Transmitter:	
	RF amplifiers:	
	Radio RF calibration	
7.	Warning Statements	.6

1. Introduction.

The MT2P design is based on MT1P logic design and a new RF design that is based on CC1120 – a transceiver chip. The MT2PIT is a 2W output power and -117DBm sensitivity long-range, synthesized radio-metering transceiver for narrowband wireless networks in the VHF 151-156/174 MHz frequency band. The output power is fixed and has a manufacturing tolerance of +/-0.5 Watts.

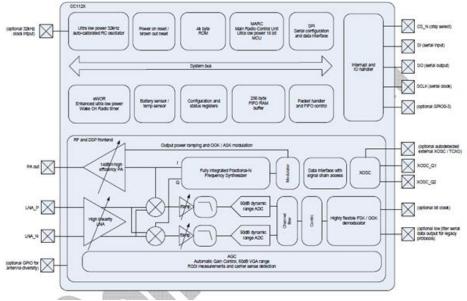
2. References.

Company References


- MT2PIT SOW :
- Meter type table: WaterMeters.xls
- Technical References
- Data sheet: R8C/25 Group Hardware Manual Rev.3.00 2008.02 RENESAS 16-BIT SINGLE-CHIP MCU R8C FAMILY / R8C/2x SERIES.

3. VHF Radio

The MT2PIT transceiver has next chain blocks configuration:


- Single-chip radio transceiver CC1120
- RF amplifiers
- Antenna Switch
- Power supply and voltage switches

MT2PIT RF part block diagram is attached below:

MT2PIT RF part block diagram

KP Proprietary Information

CC1120 System Block Diagram

4. Transmitter:

The CC1120 transmitter is based on direct synthesis of the RF frequency (in-loop modulation). To achieve effective spectrum usage, CC1120 has extensive data filtering and shaping in TX to support high throughput data communication in narrowband channels. The modulator also controls power ramping to remove issues such as spectral splattering when driving external high power RF amplifiers.

5. RF amplifiers:

The RF frequency that was created by the CC1120 will be amplified by three stages before transmitting:

- * First stage is class AB amplifier (Q8) with 15 db gain.
- ★ Second stage is class AB amplifier (Q9) with 12db gain.

At the output of three stages amplification and -6db attenuation, the RF signal power will be +33dbm.

6. Radio RF calibration.

The radio power and radio deviation are fixed and can't be changed. The frequency is based on TCXO 32.000MHz that has maximum 1ppm temperature stability. The procedure of frequency calibration is by try and error loop i.e. measuring the MT2PIT carrier transition frequency error, setting the freq offset and measure the frequency again until the frequency error is less than 0.5ppm.

The CC1120 has 4 register for customer frequency:

	SYNC3 - Sync W	ord Configuration	[31:24]
--	----------------	-------------------	---------

Bit #	Name	Reset	R/W	Description
7:0	SYNC31_24	0x93	R/W	Sync word [31:24]

SYNC2 - Sync Word Configuration [23:16]

Bit #	Name	Reset	R/W	Description
7:0	SYNC23_16	0x0B	R/W	Sync word [23:16]

SYNC1 - Sync Word Configuration [15:8]

Bit #	Name	Reset	R/W	Description
7:0	SYNC15_8	0x51	R/W	Sync word [15:8]

SYNC0 - Sync Word Configuration [7:0]

Bit #	Name	Reset	R/W	Description
7:0	SYNC7_0	0xDE	R/W	Sync word [7:0]

The frequency offset:

FREQOFF1 - Frequency Offset MSB

Bit #	Name	Reset	R/W	Description
7:0	FREQ_OFF_15_8	0x00	R/W	Frequency offset [15:8]. Updated by user or SAFC strobe. The value is in two's complement format

FREQOFF0 - Frequency Offset LSB

Bit #	Name	Reset	R/W	Description
7:0	FREQ_OFF_7_0	0x00	R/W	Frequency offset [7:0]. Updated by user or SAFC strobe. The value is in two's complement format

The frequency calculation based on the offset:

T:\Vlad\FCC_6 MT2PIT 151-156MHz Un\Words_DOC\Tuning Procedure MT2P.doc

FREQ2 - Frequency Configuration [23:16]

]
]
-[Hz] $f_{xxxx} + \frac{FREQOFF}{2^{18}} \cdot f_{xxxx}$ [Hz] er is given by FS_CFG.FSD_BANDSELECT
1

FREQ1 - Frequency Configuration [15:8]

Bit	t #	Name	Reset	R/W	Description
7:0	C	FREQ_15_8	0x00	R/W	Frequency [15:8]. See FREQ2

FREQ0 - Frequency Configuration [7:0]

Bit #	Name	Reset	R/W	Description
7:0	FREQ_7_0	0x00	R/W	Frequency [7:0]. See FREQ2

7. Warning Statements.

- THIS DEVICE COMPLIES WITH PART 15 OF THE FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS:
 - a. THIS DEVICE MAY NOT CAUSE HARMFUL INTERFERENCE.
 - b. THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED, INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION.
- NOTE: THE GRANTEE IS NOT RESPONSIBLE FOR ANY CHANGES OR MODIFICATIONS NOT EXPRESSLY APPROVED BY THE PARTY RESPONSIBLE FOR COMPLIANCE. SUCH MODIFICATIONS COULD VOID THE USER'S AUTHORITY TO OPERATE THE EQUIPMENT.

KP Proprietary Information <u>16.00/6</u>

<u>16.00/6/NEW:</u> טופס מסי