

C-1376

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com Sep. 24, 2003

FEDERAL COMMUNICATIONS COMMISSION

7435 Oakland Mills Road Columbia, MD 21046 USA

Subject: Type Acceptance Application under FCC CFR 47, Parts 2, 22

(Subpart H), 24 (Subpart E) and 90(Subpart I) - Non-Broadcast Bidirectional Radio Amplifiers Operating in the frequency bands 806-821 MHz (Trunking), 824-849 MHz (Base Cellular), 896-901

MHz (Paging) and 1850-1910 MHz (PCS).

Applicant: Kaval Telecom Inc.

Product: Satelink RF - Fiber Interface Module

Model: LNKFIB-R

FCC ID: H6M-LNKFIB-RA

Dear Sir/Madam,

Please find the attached test reports which cover FCC applicable tests for the uplink bands **806-824**, **824-849**, **896-901** and **1850-1910** MHz of Model LNKFIB per FCC's request.

If you have any queries, please do not hesitate to contact us by our TOLL FREE number:

OUR TELEPHONE NO.: 1-877-747-6381

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

TML/DH

Encl.

FC 31040/SIT

C-1376

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com Sep. 24, 2003

Kaval Telecom Inc.

60 Gough Road Markham, Ontario Canada, L3R 8X7

Attn.: Mr. Alan Aslett

Subject: Certification Testing in accordance with FCC CFR 47, Parts 2, 22

(Subpart H), 24 (Subpart E) and 90(Subpart I) - Non-Broadcast Bidirectional Radio Amplifiers Operating in the frequency bands 806-824 MHz (Trunking), 824-849 MHz (Base Cellular), 896-901 MHz

(Paging) and 1850-1910 MHz (PCS).

Product: Satelink RF - Fiber Interface Module

Model: LNKFIB-R

FCC ID: H6M-LNKFIB-RA

Dear Mr. Aslett,

Please find the attached test reports which cover FCC applicable tests for the uplink bands **806-821**, **824-849**, **896-901** and **1850-1910** MHz of Model LNKFIB per FCC's request.

Enclosed you will find copy of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P.Eng Vice President - Engineering

Encl.

ENGINEERING TEST REPORT

Satelink RF - Fiber Interface Module Model No.: LNKFIB-R FCC ID: H6M-LNKFIB-RA

Applicant:

Kaval Telecom Inc. 60 Gough Road Markham, Ontario

Canada, L3R 8X7

Tested in Accordance With

Federal Communications Commission (FCC)
47 CFR, Parts 2, 22 (Subpart H), 24 (Subpart E) and 90 (Subpart I)

UltraTech's File No.: KTI-035BFCC22-90

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: Sep. 24, 2003

Report Prepared by: Dharmajit Solanki, RFI Engineer

T.M. AUG.

Tested by: Hung Trinh, RFI Technician

Issued Date: Sep. 24, 2003 Test Dates: Sep. 12 - Sep. 19, 2003

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: wic@ultratech-labs.com, wic@ultratech-labs.com

 $ar{L}$

F©	V€I	Canada	илгар	BSMI	<i>i</i> * T	(II)	entela	
31040/SIT	C-1376	46390-2049	200093-0	SL2-IN-E-1119R	00-034			

TABLE OF CONTENTS

EXHIB	III I.	INTRODUCTION	1
1.1.	SCOF	'E	1
1.2.		TED SUBMITAL(S)/GRANT(S)	
1.3.		MATIVE REFERENCES	
EXHIB		PERFORMANCE ASSESSMENT	
LAIID			
2.1.		T INFORMATION	
2.2.	-	PMENT UNDER TEST (EUT) INFORMATION	
2.3.		S TECHNICAL SPECIFICATIONS	
2.4.		OF EUT'S PORTS	
2.5.		LARY EQUIPMENT	
2.6.	1E51	SETUP	
EXHIB	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	6
3.1.	CLIM	ATE TEST CONDITIONS	6
3.2.	OPER.	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	6
EXHIB	SIT 4.	SUMMARY OF TEST RESULTS	7
4.1.		ATION OF TESTSICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 90, SUBPART I	
4.2. 4.3.		ICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 90, SUBPART I	
4.3. 4.4.	APPL	ICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 22, SUBPART H	10
4.4. 4.5.	AFFL	ICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 24, SUBPART E	10
4.6.		FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
4.7.		ATION OF STANDARD TEST PROCEDURES	
EXHIB		MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	
5.1.	TEST	Procedures	11
5.2.		UREMENT UNCERTAINTIES	
5.3.		UREMENT EQUIPMENT USED:	
5.4.		NTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:	
5.5.		WER OUTPUTS & INTERMODULATION @ FCC 2.1046, 22.913, 24.232 & 90.205	
		imits	
		Method of Measurements	
		Test Arrangement	
		Test Data	
5.6. 5.7.		XPOSURE REQUIREMENTS @ 1.1310 & 2.1091 JENCY STABILITY @ FCC 2.1055, 22.101(A), 24.235 & 90.213	
		JENCY STABILITY @ FCC 2.1055, 22.101(A), 24.235 & 90.213	
		Imits	
		Fest Equipment List	
		Est Arrangement	
		Fest Data	
	OCCI	DIED BANDWIDTH & AMDLIEIED GAIN BANDDASS @ ECC 2 1040 & 00 200	56

5.8.1.	Limits	56
5.8.2.	Method of Measurements	
5.8.3.	Test Equipment List	
5.8.4.	Test Arrangement	
5.8.5.	Test Data	
5.9. E	MISSION MASK @ 22.917 & 90.210	119
5.9.1.	Limits	
5.9.2.	Method of Measurements	120
5.9.3.	Test Equipment List	120
5.9.4.	Test Arrangement	120
5.9.5.	Test Data	121
5.10.	TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FCC 2.1049, 2	2.217, 24.238
& 90.210	160	
5.10.1.		
5.10.2.	Method of Measurements	160
5.10.3.	Test Equipment List	160
5.10.4.	Test Arrangement	161
5.10.5.		
5.11.	Transmitter Spurious/Harmonic Radiated Emissions @ $22.917(A)$, (B), (C) & (D), 90.20	8 & 90.210260
5.11.1.	Limits	260
5.11.2.	Method of Measurements	260
5.11.3.	Test Equipment List	260
5.11.4.	· · · · · · · · · · · · · · · · ·	
5.11.5.	Test Data	261
5.11.6.	Test Data	269
EXHIBIT (6. MEASUREMENT UNCERTAINTY	274
6.1. R	ADIATED EMISSION MEASUREMENT UNCERTAINTY	274
EXHIBIT '	7. MEASUREMENT METHODS	275
7.1. C	ONDUCTED POWER MEASUREMENTS	275
7.2. R	ADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD	276
7.2.1.	Maximizing RF Emission Level (E-Field)	
7.2.2.	Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method	
7.3. F	REQUENCY STABILITY	
7.4. EI	MISSION MASK	280
7.5. SI	PURIOUS EMISSIONS (CONDUCTED)	280

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Parts 2, 22, 24 and 90
Title:	Telecommunication - Code of Federal Regulations, CFR 47, Parts 2, 22, 24 & 90
Purpose of Test:	To gain FCC Certification Authorization for Radio operating in the frequency bands 806-824 MHz (Trunking), 824-849 MHz (Base Cellular), 896-901 MHz (Paging) and 1850-1910 MHz (PCS).
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

1.2. RELATED SUBMITAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC CFR Parts 2, 22, 24, 90	2002	Code of Federal Regulations – Telecommunication
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 & EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and methods

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	KAVAL WIRELESS TECHNOLOGIES INC.	
Address:	Address: 60 Gough Road	
Markham, Ontario		
Canada, L3R 8X7		
Contact Person:	Mr. Alan Aslett	
Phone #: 905-946-3397		
Fax #: 905-946-3392		
	Email Address: aaslet@kaval.com	

MANUFACTURER		
Name:	Name: KAVAL WIRELESS TECHNOLOGIES INC.	
Address:	60 Gough Road	
	Markham, Ontario	
	Canada, L3R 8X7	
Contact Person:	: Mr. Alan Aslett	
	Phone #: 905-946-3397	
	Fax #: 905-946-3392	
	Email Address: asslet@kaval.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	KAVAL WIRELESS TECHNOLOGIES INC.
Product Name:	SATELINK RF - FIBER INTERFACE MODULE
Model Name or Number:	LNKFIB-R
Serial Number:	Pre-porduction
Type of Equipment:	Non-broadcast Bi-directional Amplifier
External Power Supply:	None
Transmitting/Receiving Antenna Type:	Maximum 8 non-integral antennas can be used with the SatelLink LNKFIB-R bi-directional amplifier.
Primary User Functions of EUT:	Bi-directional amplifier for use with CDMA,GSM and TDMA radio signals.

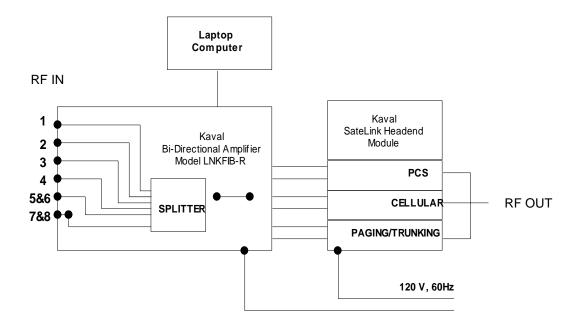
2.3. EUT'S TECHNICAL SPECIFICATIONS

	TRANSMITTER (Uplink)		
Equipment Type:	Base station (fixed use)		
Intended Operating Environment:	[x] Commercial [x] Light Industry & Heavy Industry		
Power Supply Requirement:	120V 60Hz		
Operating Frequency Range & RF Nominal Output Power:	806-824 MHz 1 input/output signal: 0.165 mWatts		
	* 2 input/output signals: 0.035 mWatts * 3 input/output signals: 0.017 mWatts		
	 824-849 MHz 1 input/output signals: 0.025 mWatts 2 input/output signals: 0.006 mWatts 3 input/output signals: 0.010 mWatts 896-901 MHz 1 input/output signals: 0.003 mWatts 2 input/output signals: 0.006 mWatts 3 input/output signals: 0.006 mWatts 1850-1910 MHz 1 input/output signals: 0.003 mWatts 1 input/output signals: 0.021 mWatts 2 input/output signals: 0.004 mWatts 3 input/output signals: 0.002 mWatts 10 0.002 mWatts 		
RF Input Rating:	-40 dBm maximum per Channel as specified by manufacturer.		
Gain	- 4 to +2 dB nominal		
RF Output Impedance:	50 Ohms		
Channel Spacing:	N/A		
Occupied Bandwidth (99%):	N/A		
Emission Designation*:	EXTENDER		
Antenna Connector Type:	SMA		

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	1 RF Input Port (PCS, Cellular & Paging/Trunking)	1	SMA	Shielded
2	6 RF Output Ports	1	SMA	Shielded
3	RS-232 (Note 2)	1	DB	Shielded

NOTES:


- (1) Ports of the EUT which in normal operation were connected to ancillary equipment through interconnecting cables via a representative interconnecting cable to simulate the input/output characteristics. RF input/output was correctly terminated to the 50 Ohm RF Load.
- (2) Ports, which are for factory/technical services uses only

2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	ThinkPad Laptop
Brand name:	IBM
Model Name or Number:	2625
FCC ID:	ANOKAJIPENCP
Serial Number:	78-WWM4A
Connected to EUT's Port:	RS-232
Notes:	This laptop computer is used for technical services only; therefore, and it is
	used for control purpose only but not for testing.

2.6. TEST SETUP

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	120V 60Hz

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.		
Special Test Software:	Utility software provided by Kaval was used for selecting frequency bands of the amplifier.		
Special Hardware Used:	None		
Transmitter Test Antenna:	The EUT is tested with the transmitter antenna port terminated to a 50 Ohms RF Load.		

Transmitter Test Signals		
Frequency Band(s): 806-821, 824-849, 896-901 and 1850-	Near lowest, near middle & near highest frequencies in each frequency bands that the transmitter covers	
1910 MHz		
Transmitter Wanted Output Test		
Signals:		
RF Power Output (measured maximum output power):	The EUT was adjusted for maximum gain output by the manufacturer.	
Normal Test Modulation	 Intended for use with RF input signal sources with CDMA, GSM and TDMA modulation 	
Modulating signal source:	 Internal/external 	

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Aug. 10, 2003.

4.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 90, SUBPART I

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
90.205 & 2.1046	RF Power Output	Yes
1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	N/A for base station and non off-air transmission.
90.213 & 2.1055	Frequency Stability	Not applicable for Amplifier since the output signal tracks input signal exactly. However, tests were performed to confirm.
90.242(b)(8) & 2.1047(a)	Audio Frequency Response	Not applicable for Amplifier since the output signal tracks input signal exactly.
90.210 & 2.1047(b)	Modulation Limiting	Not applicable for Amplifier since the output signal tracks input signal exactly.
90.209 90.210 & 2.1049	Emission Limitation & Emission Mask	The output signal tracks input signal exactly. Therefore, only comparison tests were conducted for proof.
90.210, 2.1057 & 2.1051	Emission Limits - Spurious Emissions at RF Output Port	Yes
90.210, 2.1057 & 2.1053	Emission Limits - Field Strength of Spurious Emissions	Yes

4.3. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 22, SUBPART H

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
22.913 & 2.1046	RF Power Output	Yes
1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	Yes
22.101(a) & 2.1055	Frequency Stability	Not applicable for Amplifier since the output signal tracks input signal exactly. However, tests were performed to confirm.
22.915(d) & 2.1047(a)	Audio Frequency Response	Not applicable for Amplifier since the output signal tracks input signal exactly.
22.915(a), (b) & (c) & 2.1047(b)	Modulation Limiting	Not applicable for Amplifier since the output signal tracks input signal exactly.
22.917(a),(b),(c) & (d) & 2.1049	Emission Limitation & Emission Mask	The output signal tracks input signal exactly. Therefore, only comparison tests were conducted for proof.
22.917(e), (f) & (g), 2.1057 & 2.1051	Emission Limits - Spurious Emissions at RF Output Port	Yes
22.917(e), (f) & (g), 2.1057 & 2.1053	Emission Limits - Field Strength of Spurious Emissions	Yes

4.4. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 24, SUBPART E

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
24.229	Frequencies	N/A for the amplifier
24.232 & 2.1046	Effective Radiated Power (ERP) Limits	Yes
24.235 & 2.1055	Frequency Stability	Not applicable for Amplifier since the output signal tracks input signal exactly. However, tests were performed to confirm.
24.238 & 2.1051	Emission Limits (Conducted)	Yes
24.236 & 24.238, 2.1057 & 2.1053	Emission Limits (Radiated)	Yes

4.5. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS @ FCC PART 15, SUBPART B

Satelink RF - Fiber Interface Module, Model No.: LNKFIB-R, by Kaval Telecom Inc. has also been tested and found to comply with FCC Part 15, Subpart B - Radio Receivers and Class A Digital Devices. The engineering test report has been documented and kept in file and it is available anytime upon FCC request.

4.6. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

4.7. DEVIATION OF STANDARD TEST PROCEDURES

None

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 7 of this report

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED:

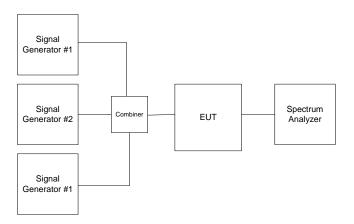
The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:1992 and CISPR 16-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

5.5. RF POWER OUTPUTS & INTERMODULATION @ FCC 2.1046, 22.913, 24.232 & 90.205

5.5.1. Limits


Please refer to FCC CFR 47, Paragraphs 22.913, 24.232 and 90.205 for power limits in different frequency bands:

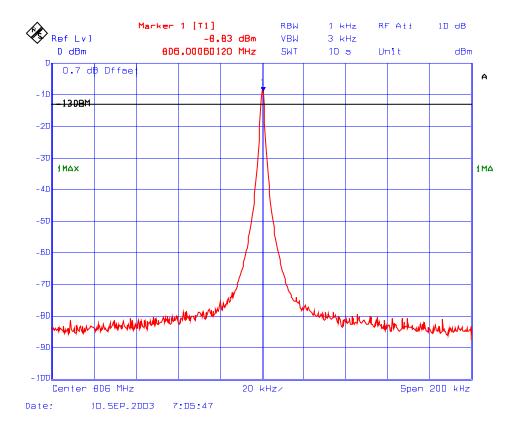
EUT's Operating Frequency Band (MHz)	FCC Allowable Frequency band (MHz)	FCC Rules	FCC Maximum ERP Limits (Watts)
806-821 MHz	806-821	90.635	100 Watts peak ERP
(Trunking)			
824-849 MHz	824-849	22.913	7 Watts ERP
(Cellular Base)			
896-901 MHz	896-901	90.635	100 Watts peak ERP
(Paging Base)			
1850-1910 MHz	1850-1910	24.232	2 Watts peak ERP
(PCS Base)			

5.5.2. Method of Measurements

Refer to Exhibit 7, § 7.1 (Conducted) and 7.2 (Radiated) of this report for measurement details

5.5.3. Test Arrangement

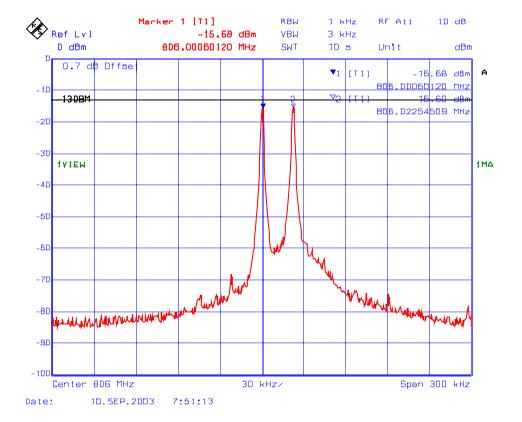
5.5.4. Test Data

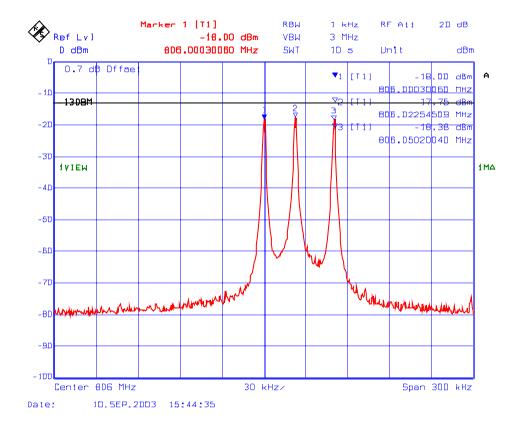

5.5.4.1. INTERMODULATION IN & PEAK POWERS IN 806-824 MHz Band

Frequency	Number of In/Out Channels	Modulation	Maximum RF Input (conducted)	Maximum RF Output (conducted)
(MHz)			(dBm)	(dBm)
806	1	unmodulated	-40.0	-8.8
806,806.025	2	unmodulated	-46.5	-15.7
806,806.025, 806.05	3	unmodulated	-49.5	-17.8
815	1	unmodulated	-40.0	-7.8
815,815.025	2	unmodulated	-46.5	-14.5
814.075,815, 815.025	3	unmodulated	-49.5	-17.6
824	1	unmodulated	-40.0	-8.4
823.075,824,	2	unmodulated	-46.5	-14.9
823.05, 823.075, 824	3	unmodulated	-49.5	-18.3

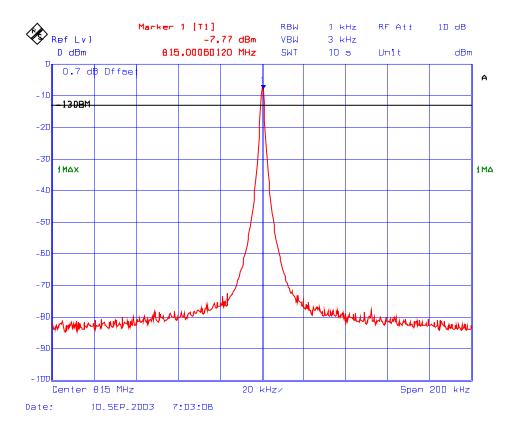
Note:

- (1) Refer to Plots # 1 to 9 for detailed measurements of RF Output power and Intermodulation.
- (2) The RF Output form the EUT will be connected to the RF input port of the any FCC Certified head end unit. Therefore, the EIRP or ERP can not be evaluated in this report for FCC RF Exposure Compliance. The Head End Unit shall comply with FCC RF Exposure and Power Limit requirements under its own FCC Grant Notes.

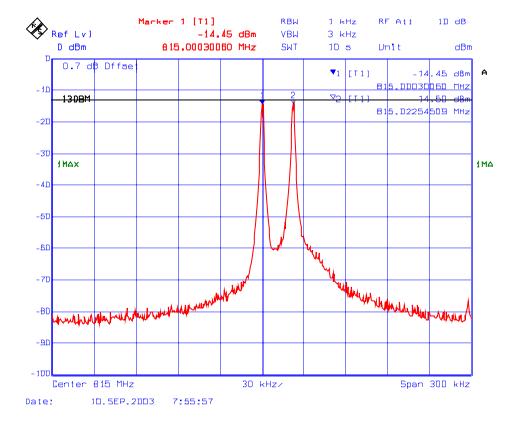

Plot # 1 RF Output Power with 1 RF signal input/output in 806 – 824 MHz Fc: 806 MHz, RF Input: -40 dBm

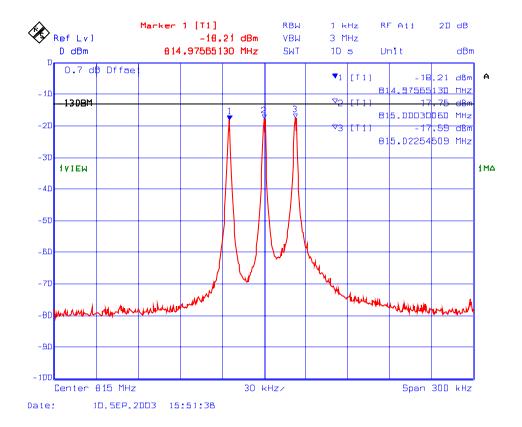

Plot # 2 RF Output Power with 2 RF signal input/output in 806 – 824 MHz

Fc: 806 MHz, Fc + 25 kHz

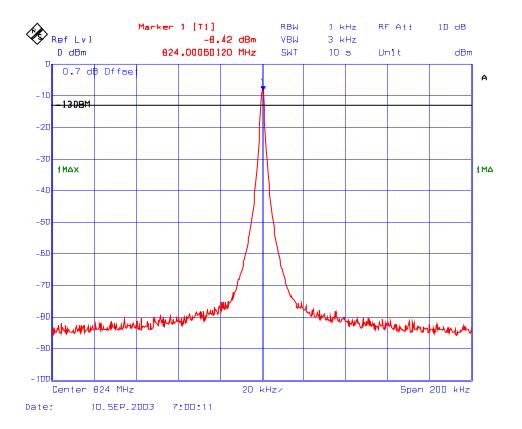

RF Input 1: -46.50 dBm, RF Input 2: -46.50 dBm

Plot # 3 RF Output Power with 3 RF signal input/output in 806 – 824 MHz Fc: 806 MHz, Fc + 25 kHz, Fc + 50 kHz RF Input 1: -49.50 dBm, RF Input 2: -49.50 dBm, RF Input 3: -49.50 dBm

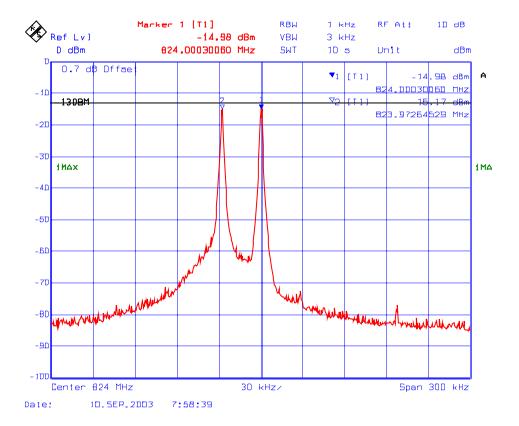

Plot # 4 RF Output Power with 1 RF signal input/output in 806 – 824 MHz Fc: 815 MHz, RF Input: -40 dBm

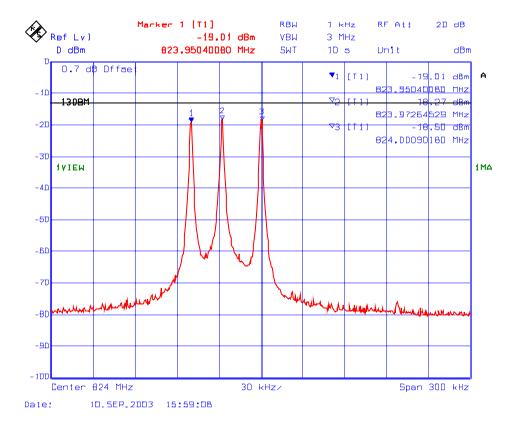

Plot # 5 RF Output Power with 2 RF signal input/output in 806 – 824 MHz

Fc: 815 MHz, Fc + 25 kHz


RF Input 1: -46.50 dBm, RF Input 2: -46.50 dBm

Plot # 6 RF Output Power with 3 RF signal input/output in 806 – 824 MHz Fc: 815 MHz, Fc + 25 kHz, Fc - 25 kHz RF Input 1: -49.50 dBm, RF Input 2: -49.50 dBm, RF Input 3: -49.50 dBm

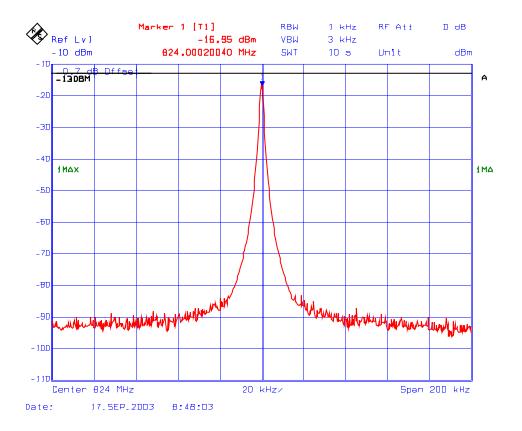

Plot # 7 RF Output Power with 1 RF signal input/output in 806 – 824 MHz Fc: 824 MHz ,RF Input: -40 dBm


Plot # 8 RF Output Power with 2 RF signal input/output in 806 – 824 MHz

Fc: 824 MHz, Fc - 25 kHz

RF Input 1: -46.50 dBm, RF Input 2: -46.50 dBm

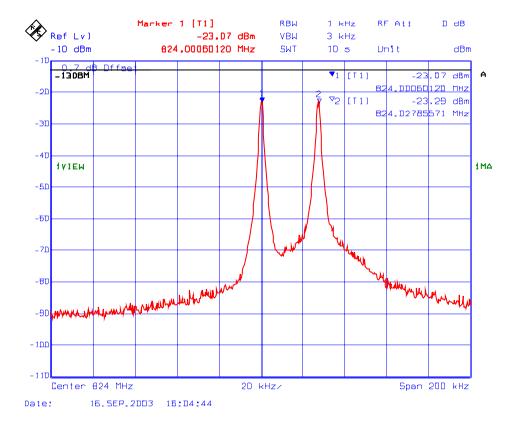
Plot # 9 RF Output Power with 3 RF signal input/output in 806 – 824 MHz Fc: 824 MHz, Fc - 25 kHz, Fc - 50 kHz RF Input 1: -49.50 dBm, RF Input 2: -49.50 dBm, RF Input 3: -49.50 dBm

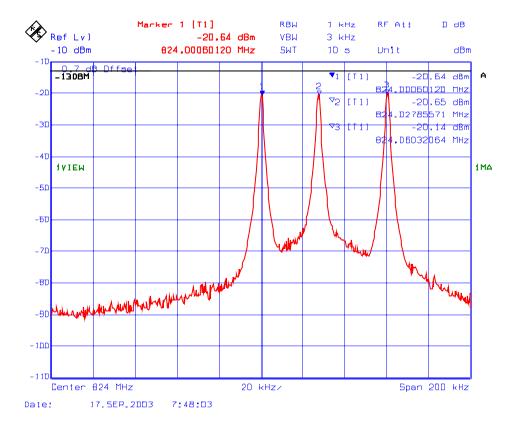

5.5.4.2. INTERMODULATION IN & PEAK POWERS IN 824-849 MHz Band

Frequency	Number of In/Out Channels	Modulation	Maximum RF Input (conducted)	Maximum RF Output (conducted)
(MHz)			(dBm)	(dBm)
824	1	unmodulated	-40.0	-16.9
824,824.03	2	unmodulated	-46.3	-23.1
824,824.03, 824.06	3	unmodulated	-42.7	-20.1
836.5	1	unmodulated	-40.0	-15.9
836.5,836.53	2	unmodulated	-46.3	-22.3
836.47, 836.5,836.53	3	unmodulated	-42.7	-26.2
849	1	unmodulated	-40.0	-20.1
848.97,849	2	unmodulated	-46.3	-26.3
824	1	unmodulated	-40.0	-16.9

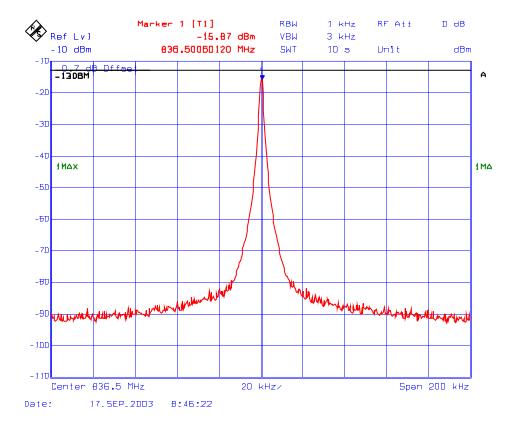
Note:

- (1) Refer to Plots # 10 to 18 for detailed measurements of RF Output power and Intermodulation.
- (2) The RF Output form the EUT will be connected to the RF input port of the any FCC Certified head end unit. Therefore, the EIRP or ERP can not be evaluated in this report for FCC RF Exposure Compliance. The Head End Unit shall comply with FCC RF Exposure and Power Limit requirements under its own FCC Grant Notes.

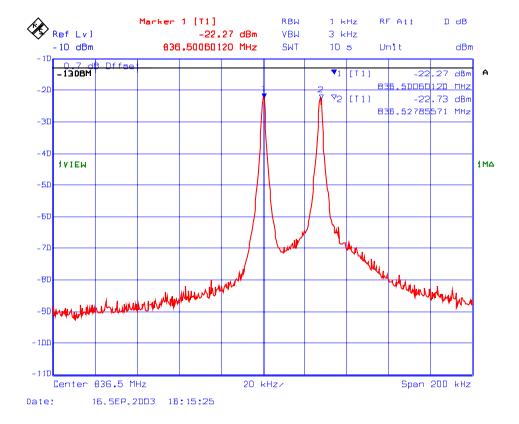

Plot #10 RF Output Power with 1 RF signal input/output in 824 – 849 MHz Fc: 824 MHz, RF Input: -40 dBm


Plot #11 RF Output Power with 2 RF signal input/output in 824 – 849 MHz

Fc: 824 MHz, Fc + 30 kHz

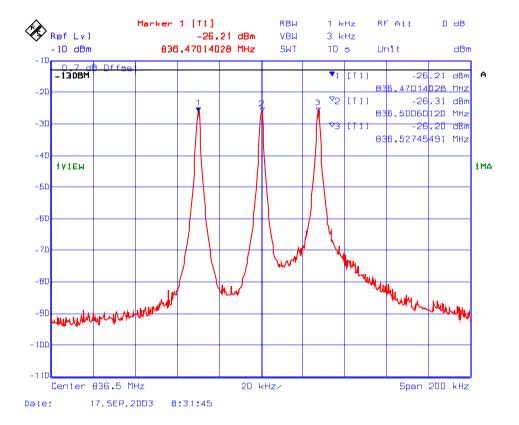

RF Input 1: -46.27 dBm, RF Input 2: -46.27 dBm

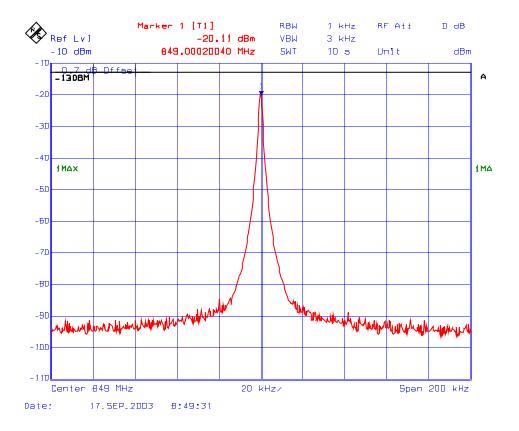
Plot #12 RF Output Power with 3 RF signal input/output in 824 – 849 MHz Fc: 824 MHz, Fc + 30 kHz, Fc + 60 kHz RF Input 1: -42.68 dBm, RF Input 2: -42.68 dBm, RF Input 3: -42.68 dBm


Plot #13 RF Output Power with 1 RF signal input/output in 824 – 849 MHz Fc: 836.5 MHz, RF Input: -40 dBm

Plot #14 RF Output Power with 2 RF signal input/output in 824 – 849 MHz

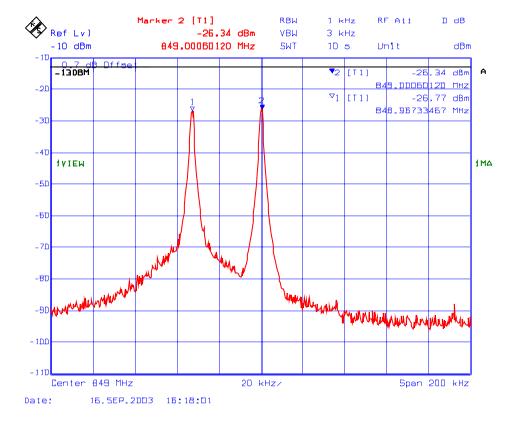
Fc: 836.5 MHz, Fc + 30 kHz

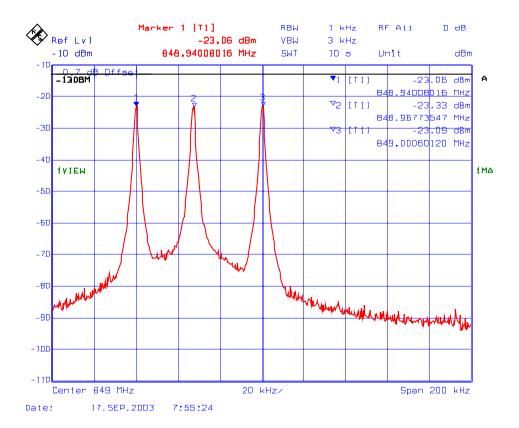

RF Input 1: -46.27 dBm, RF Input 2: -46.27 dBm


Plot #15 RF Output Power with 3 RF signal input/output in 824 – 849 MHz

Fc: 836.5 MHz, Fc + 30 kHz, Fc - 30 kHz

RF Input 1: -42.68 dBm, RF Input 2: -42.68 dBm, RF Input 3: -42.68 dBm


Plot #16 RF Output Power with 1 RF signal input/output in 824 – 849 MHz Fc: 849 MHz , RF Input: -40 dBm

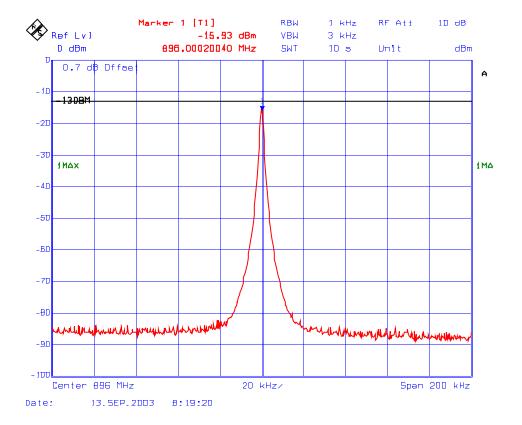

Plot #17 RF Output Power with 2 RF signal input/output in 824 – 849 MHz

Fc: 849 MHz, Fc - 30 kHz

RF Input 1: -46.27 dBm, RF Input 2: -46.27 dBm

Plot #18 RF Output Power with 3 RF signal input/output in 824 – 849 MHz Fc: 849 MHz, Fc - 30 kHz, Fc - 60 kHz RF Input 1: -42.68 dBm, RF Input 2: -42.68 dBm, RF Input 3: -42.68 dBm

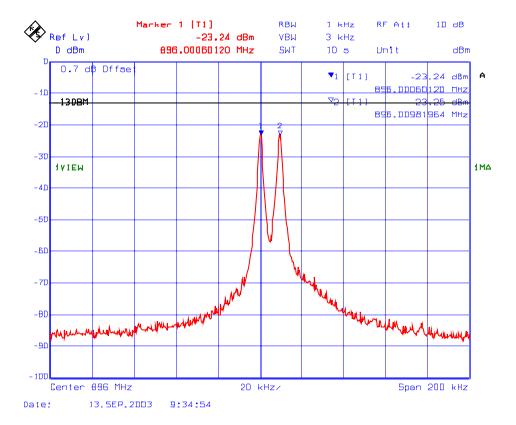
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


5.5.4.3. INTERMODULATION IN & PEAK POWERS IN 896-901 MHz Band

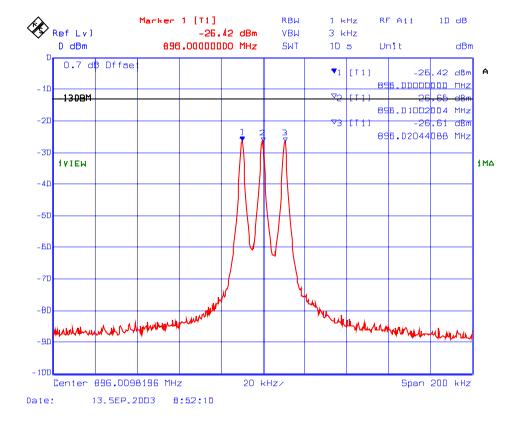
Frequency	Number of In/Out Channels	Modulation	Maximum RF Input (conducted)	Maximum RF Output (conducted)
(MHz)			(dBm)	(dBm)
896	1	unmodulated	-40.0	-15.9
896,896.0125	2	unmodulated	-46.3	-23.2
896,896.0125,896.02 5	3	unmodulated	-49.6	-26.4
901	1	unmodulated	-40.0	-14.8
900.9875,901	2	unmodulated	-46.3	-21.9
900.975, 900.9875,901	3	unmodulated	-49.6	-25.1

Note:

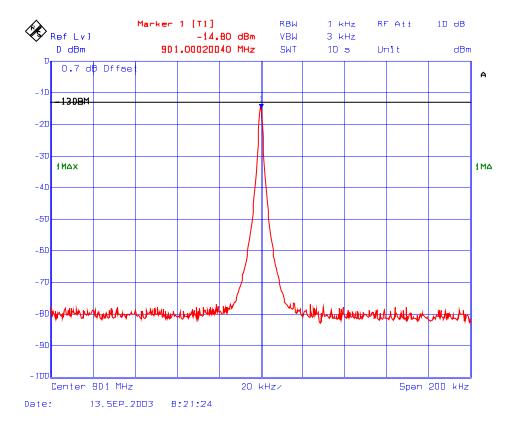
- (1) Refer to Plots # 19 to 24 for detailed measurements of RF Output power and Intermodulation.
- (2) The RF Output form the EUT will be connected to the RF input port of the any FCC Certified head end unit. Therefore, the EIRP or ERP can not be evaluated in this report for FCC RF Exposure Compliance. The Head End Unit shall comply with FCC RF Exposure and Power Limit requirements under its own FCC Grant Notes.


Plot #19 RF Output Power with 1 RF signal input/output in 896 – 901 MHz Fc: 896 MHz, RF Input: -40 dBm

Plot # 20 RF Output Power with 2 RF signal input/output in 896 – 901 MHz

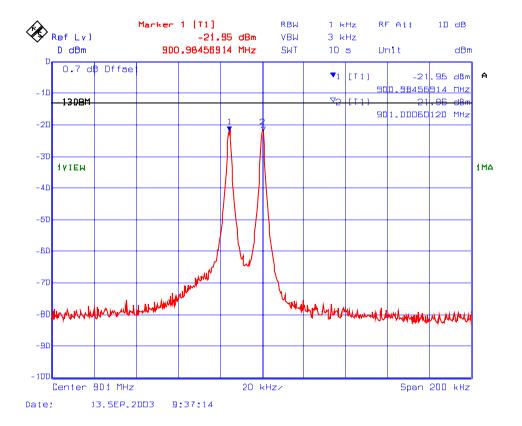

Fc: 896 MHz, Fc + 12.5 kHz

RF Input 1: -46.32 dBm, RF Input 2: -46.32 dBm

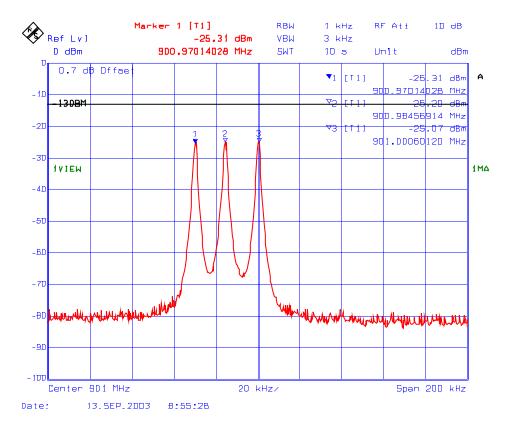


Plot #21 RF Output Power with 3 RF signal input/output in 896 – 901 MHz Fc: 896 MHz, Fc + 12.5 kHz, Fc + 25 kHz

RF Input 1: -49.60 dBm, RF Input 2: -49.60 dBm, RF Input 3: -49.60 dBm


Plot #22 RF Output Power with 1 RF signal input/output in 896 – 901 MHz Fc: 901 MHz, RF Input: -40 dBm

Plot #23 RF Output Power with 2 RF signal input/output in 896 – 901 MHz

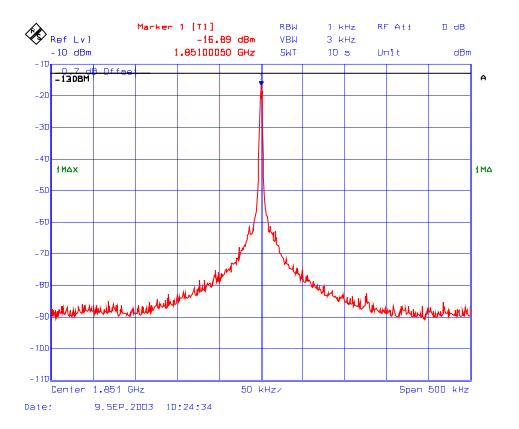

Fc: 901 MHz, Fc - 12.5 kHz

RF Input 1: -46.32 dBm, RF Input 2: -46.32 dBm

Fc: 901 MHz, Fc - 12.5 kHz, Fc - 25 kHz

RF Input 1: -49.60 dBm, RF Input 2: -49.60 dBm, RF Input 3: -49.60 dBm

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


5.5.4.4. INTERMODULATION IN & PEAK ERP POWERS IN 1850 - 1910 MHz Band (PCS)

Frequency	Number of In/Out Channels	Modulation	Maximum RF Input (conducted)	Maximum RF Output (conducted)
(MHz)			(dBm)	(dBm)
1851	1	No modulation	-40.0	-16.9
1851 & 1851.2	2	No modulation	-46.4	-23.7
1851, 1851.2 1851.4	3	No modulation	-49.5	-27.4
1880	1	No modulation	-40.0	-18.2
1880 & 1880.2	2	No modulation	-46.4	-25.0
1879.8, 1880 & 1880.2	3	No modulation	-49.5	-28.6
1909	1	No modulation	-40.0	-18.2
1908.8 & 1909	2	No modulation	-46.4	-24.5
1908.6, 1908.8 & 1909	3	No modulation	-49.5	-28.6

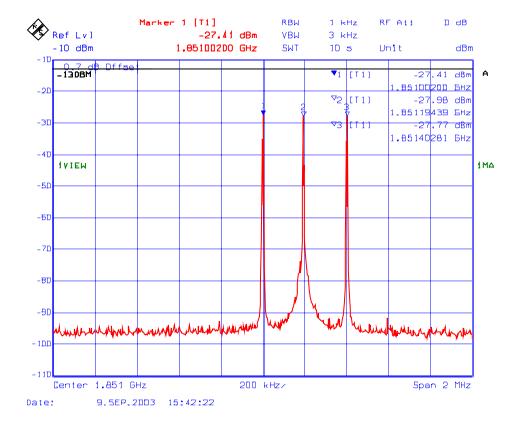
Note:

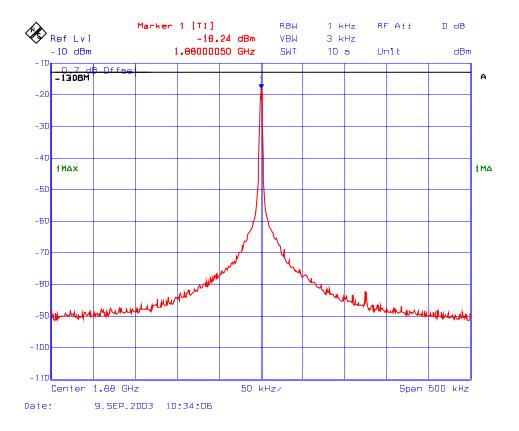
- (1) Refer to Plots # 25 to 33 for detailed measurements of RF Output power and Intermodulation.
- (2) The RF Output form the EUT will be connected to the RF input port of the any FCC Certified head end unit. Therefore, the EIRP or ERP can not be evaluated in this report for FCC RF Exposure Compliance. The Head End Unit shall comply with FCC RF Exposure and Power Limit requirements under its own FCC Grant Notes.

Plot #25 RF Output Power with 1 RF signal input/output in 1850 – 1910 MHz Fc: 1851 MHz, RF Input: -40 dBm

Plot #26 RF Output Power with 2 RF signal input/output in 1850 – 1910 MHz

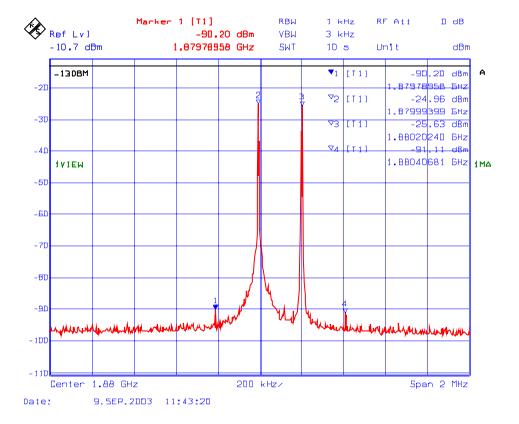
Fc: 1851 MHz, Fc + 200 kHz


RF Input 1: -46.40 dBm, RF Input 2: -46.40 dBm


Plot #27 RF Output Power with 3 RF signal input/output in 1850 - 1910 MHz

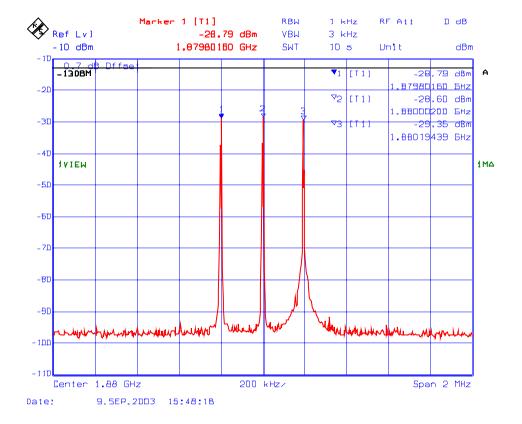
Fc: 1851 MHz, Fc + 200 kHz, Fc + 400 kHz

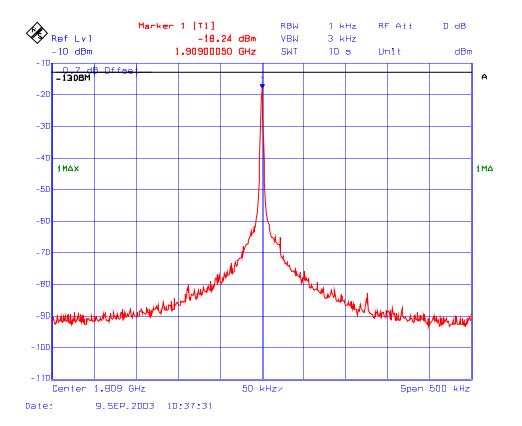
RF Input 1: -49.50 dBm, RF Input 2: -49.50 dBm, RF Input 3: -49.50 dBm


Plot #28 RF Output Power with 1 RF signal input/output in 1850 – 1910 MHz Fc: 1880 MHz, RF Input: -40 dBm

Plot #29 RF Output Power with 2 RF signal input/output in 1850 – 1910 MHz

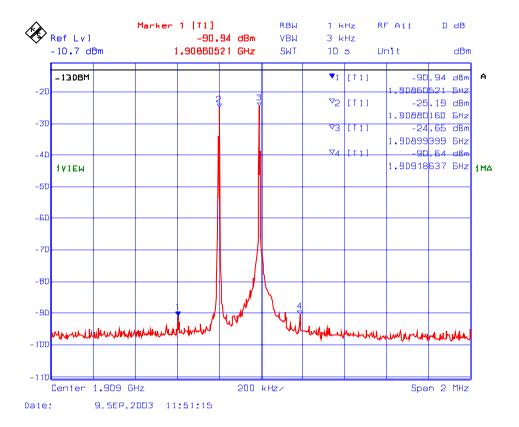
Fc: 1880 MHz, Fc + 200 kHz


RF Input 1: -46.40 dBm, RF Input 2: -46.40 dBm

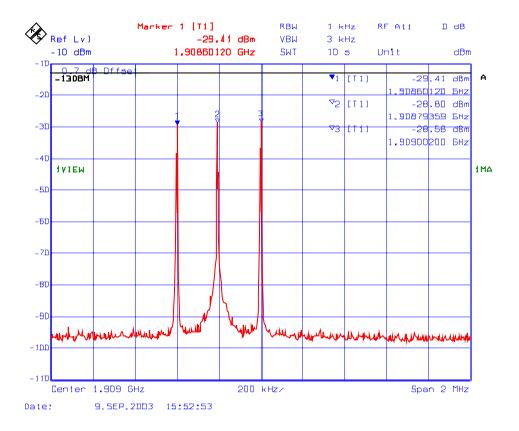

Plot #30 RF Output Power with 3 RF signal input/output in 1850 – 1910 MHz

Fc: 1880 MHz, Fc + 200 kHz, Fc - 200 kHz

RF Input 1: -49.50 dBm, RF Input 2: -49.50 dBm, RF Input 3: -49.50 dBm


Plot #31 RF Output Power with 1 RF signal input/output in 1850 – 1910 MHz Fc: 1909 MHz, RF Input: -40 dBm

Plot #32 RF Output Power with 2 RF signal input/output in 1850 – 1910 MHz


Fc: 1909 MHz, Fc - 200 kHz

RF Input 1: -46.40 dBm, RF Input 2: -46.40 dBm

Plot #33 RF Output Power with 3 RF signal input/output in 1850 – 1910 MHz Fc: 1909 MHz, Fc - 200 kHz, Fc - 400 kHz

RF Input 1: -49.50 dBm, RF Input 2: -49.50 dBm, RF Input 3: -49.50 dBm

5.6. RF EXPOSURE REQUIREMENTS @ 1.1310 & 2.1091

The RF Output form the EUT will be connected to the RF input port of the any FCC Certified head end unit. Therefore, the EIRP or ERP can not be evaluated in this report for FCC RF Exposure Compliance. The Head End Unit shall comply with FCC RF Exposure and Power Limit requirements under its own FCC Grant Notes

5.7. FREQUENCY STABILITY @ FCC 2.1055, 22.101(A), 24.235 & 90.213

5.7.1. Limits

* Please refer to FCC CFR 47, Part 22, Subpart H, Sec. 22.101(a)

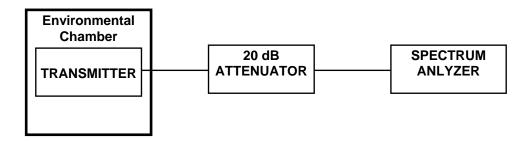
FREQUENCY	
RANGE	FREQUENCY TOLERANCE
(MHz)	(ppm)
824-849 (Mobile)	<u>+</u> 1.5

* Please refer to FCC CFR 47, Part 24, Subpart E, Sec. 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

* Please refer to FCC CFR 47, Part 90, Subpart I, Para. 90.213

FREQUENCY RANGE (MHz)	MOBILE STATIONS (ppm)
806-821	2.5
821-824	1.5
896-901	1.5


5.7.2. Method of Measurements

Refer to Exhibit 7, § 7.3 of this report for measurement details

5.7.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird			DC – 22 GHz
Temperature & Humidity Chamber	Tenney	T5	9723B	-40° to +60° C range

5.7.4. Test Arrangement

5.7.5. Test Data

5.7.5.1. Frequency Stability in 806-824 MHz Band

Center Frequer	enter Frequency: 806 MHz			
Full Power Level: -7.7 dBm				
Frequency Tole	Frequency Tolerance Limit: ±2.5 ppm			
Max. Frequency Tolerance Measured: <u>+</u> 0 ppm				
Input Voltage I	Rating:	120VAC, 60Hz		
	CENTER FREQUENCY &	& RF POWER OUTPUT VAR	IATION	
Ambient Temperature	Supply Voltage (Nominal) 120 Volts	nal) Supply Voltage Supply Voltage (85% of Nominal) (115% of Nominal) 102 Volts 138 Volts		
(°C)	Hz	Hz	Hz	
-30	0	0	0	
-20	0	0	0	
-10	0	0	0	
0	0	0	0	
+10	0	0	0	
+20	0	0	0	
+30	0	0	0	
+40	0	0	0	
+50	0	0	0	

FCC ID: H6M-LNKFIB-RA

5.7.5.2. Frequency Stability in 824-849 MHz Band

Center Frequency:	824 MHz
Full Power Level:	-10.2 dBm
Frequency Tolerance Limit:	<u>+</u> 1.5 ppm
Max. Frequency Tolerance Measured:	<u>±</u> 0 ppm
Input Voltage Rating:	120VAC, 60Hz

CENTER FREQUENCY & RF POWER OUTPUT VARIATION

Ambient Temperature	Supply Voltage (Nominal) 120 Volts	Supply Voltage (85% of Nominal) 102 Volts	Supply Voltage (115% of Nominal) 138 Volts
(°C)	Hz	Hz	Hz
-30	0	0	0
-20	0	0	0
-10	0	0	0
0	0	0	0
+10	0	0	0
+20	0	0	0
+30	0	0	0
+40	0	0	0
+50	0	0	0

5.7.5.3. Frequency Stability in 896-901 MHz Band

Center Frequency:	896 MHz
Full Power Level:	-14.4 dBm
Frequency Tolerance Limit:	<u>+</u> 1.5 ppm
Max. Frequency Tolerance Measured:	±0 ppm
Input Voltage Rating:	120VAC, 60Hz

CENTER FREQUENCY & RF POWER OUTPUT VARIATION

Ambient Temperature	Supply Voltage (Nominal) 120 Volts	Supply Voltage (85% of Nominal) 102 Volts	Supply Voltage (115% of Nominal) 138 Volts
(°C)	Hz	Hz	Hz
-30	0	0	0
-20	0	0	0
-10	0	0	0
0	0	0	0
+10	0	0	0
+20	0	0	0
+30	0	0	0
+40	0	0	0
+50	0	0	0

5.7.5.4. Frequency Stability in 1850-1910 MHz Band

Center Frequency:	1850 MHz
Full Power Level:	-17.57 dBm
Frequency Tolerance Limit:	0.1 ppm
Max. Frequency Tolerance Measured:	Stay within permitted bands
Input Voltage Rating:	120VAC, 60Hz

CENTER FREQUENCY & RF POWER OUTPUT VARIATION

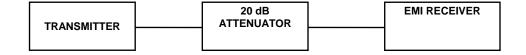
Ambient Temperature	Supply Voltage (Nominal) Volts	Supply Voltage (85% of Nominal) Volts	Supply Voltage (115% of Nominal) Volts
(°C)	Hz	Hz	Hz
-30	0	0	0
-20	0	0	0
-10	0	0	0
0	0	0	0
+10	0	0	0
+20	0	0	0
+30	0	0	0
+40	0	0	0
+50	0	0	0

5.8. OCCUPIED BANDWIDTH & AMPLIFIER GAIN BANDPASS @ FCC 2.1049 & 90.209

5.8.1. Limits

FCC 90.209:

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
806-821 821-824 896-901	12.5	20 20 13.6


5.8.2. Method of Measurements

Refer to Exhibit 7, § 7.4 of this report for measurement details

5.8.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird			DC – 22 GHz
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz

5.8.4. Test Arrangement

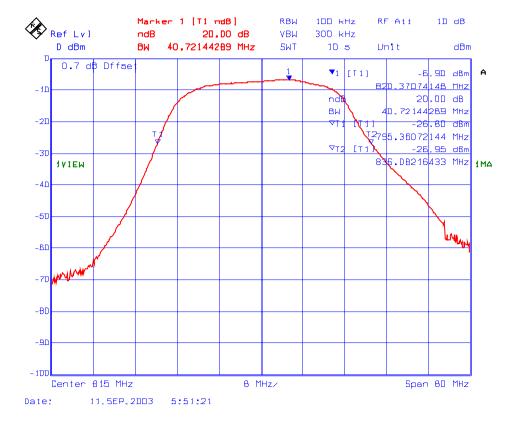
5.8.5. Test Data

Remark:

Tests were performed on the RF Input and RF Output Signals for comparison purpose. The RF input signals from the signal generator are the same at all frequencies; therefore only 1 rf input signal plot is provided for review.

5.8.5.1. 20 dB Bandwidth and Gain of the Amplifier (806-824 MHz)

Refer to Plot # 34 for detailed measurements of 20 dB and maximum gain of the Amplifier


5.8.5.2. 99% Occupied Bandwidth(806-824 MHz)

Frequency (MHz)	Channel Spacing (kHz)	Modulation	Measured 99% OBW of RF Input Signal (kHz)	Measured 99% OBW of RF Output Signal (kHz)	Recommended 99% OBW (kHz)			
806.0	25	FM Voice	15.75	15.75	20			
813.5	25	FM Voice	15.75	15.75	20			
821.0	25	FM Voice	15.75	15.75	20			
 Refer to Plots 35 to 38 below for the details of the above measurements 								
806.0	25	FM Data	20.32	20.62	20			
813.5	25	FM Data	20.32	20.74	20			
821.0	25	FM Data	20.32	20.50	20			
 Refer to Plot 	 Refer to Plots 39 to 42 below for the details of the above measurements 							
821.0	12.5	FM Voice	10.46	10.46	20			
822.5	12.5	FM Voice	10.46	10.46	20			
824.0	12.5	FM Voice	10.46	10.50	20			
Refer to Plot	 Refer to Plots 43 to 46 below for the details of the above measurements 							
821.0	12.5	FM Data	11.98	12.02	20			
822.5	12.5	FM Data	11.98	12.02	20			
824.0	12.5	FM Data	11.98	11.78	20			
 Refer to Plot 	s 47 to 50 below for the	details of the above m	easurements		•			

Plot # 34: 20 dB BW of the 806 - 824 MHz band pass gain

RF Input: -40 dBm from 750 -850 MHz

MAX. GAIN: 33.1 dB

Plot # 35: 99% OBW, RF Input Signal

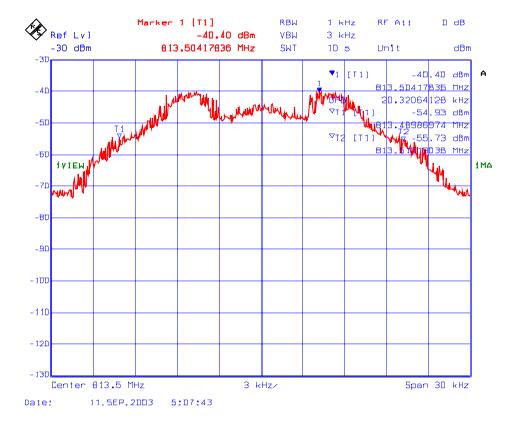
Frequency: 813.5 MHz, 25 kHz Channel Spacing

Plot # 36: 99% OBW, RF Output

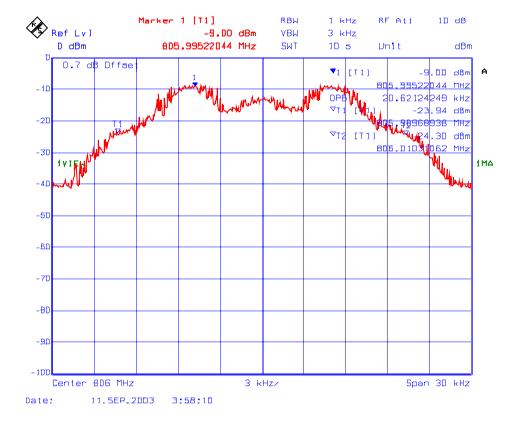
Frequency: 806 MHz, 25 kHz Channel Spacing

Plot # 37 : 99% OBW, RF Output

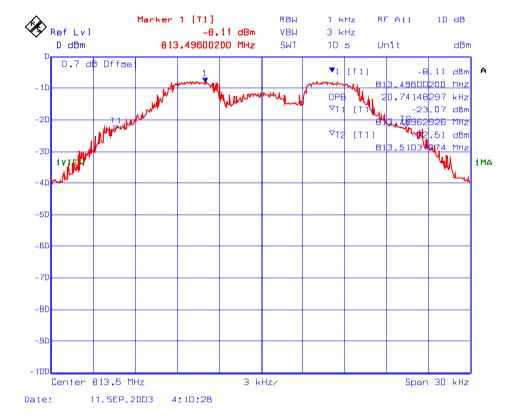
Frequency: 813.5 MHz, 25 kHz Channel Spacing


Plot # 38 : 99% OBW, RF Output

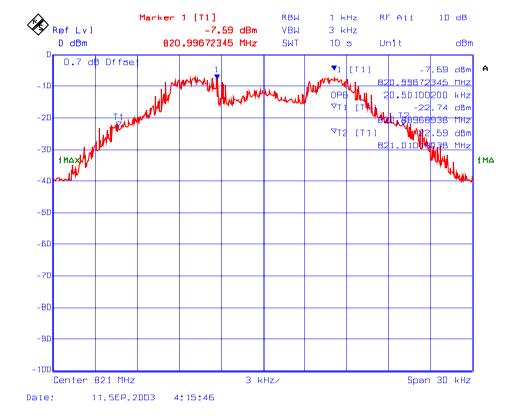
Frequency: 821 MHz, 25 kHz Channel Spacing


Plot # 39 : 99% OBW, RF Input

Frequency: 813.5 MHz, 25 kHz Channel Spacing


Plot # 40: 99% OBW, RF Output

Frequency: 806 MHz, 25 kHz Channel Spacing


Plot # 41 : 99% OBW, RF Output

Frequency: 813.5 MHz, 25 kHz Channel Spacing

Plot # 42 : 99% OBW, RF Output

Frequency: 821 MHz, 25 kHz Channel Spacing

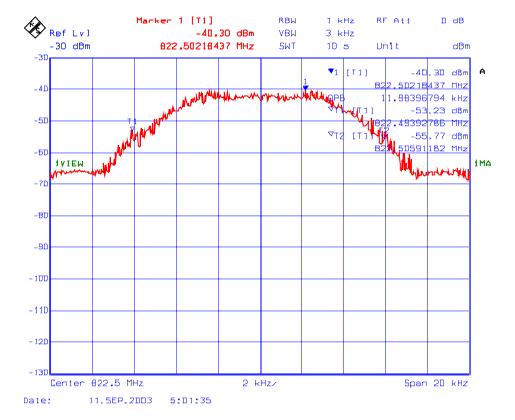
Plot # 43 : 99% OBW, RF Input

Frequency: 822.5 MHz, 12.5 kHz Channel Spacing

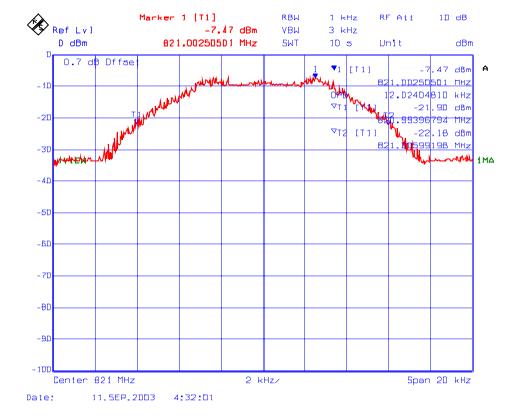
Plot # 44 : 99% OBW, RF Output

Frequency: 821 MHz, 12.5 kHz Channel Spacing

Frequency: 822.5 MHz, 12.5 kHz Channel Spacing


Plot # 46: 99% OBW, RF Output

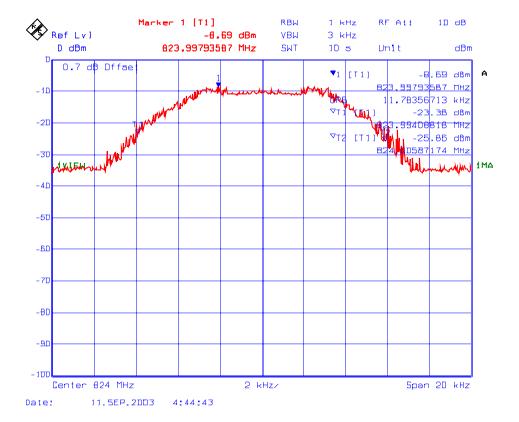
Frequency: 824 MHz, 12.5 kHz Channel Spacing


Plot # 47 : 99% OBW, RF Input

Frequency: 822.5 MHz, 12.5 kHz Channel Spacing


Plot # 48 : 99% OBW, RF Output

Frequency: 821 MHz, 12.5 kHz Channel Spacing


Plot # 49 : 99% OBW, RF Output

Frequency: 822.5 MHz, 12.5 kHz Channel Spacing

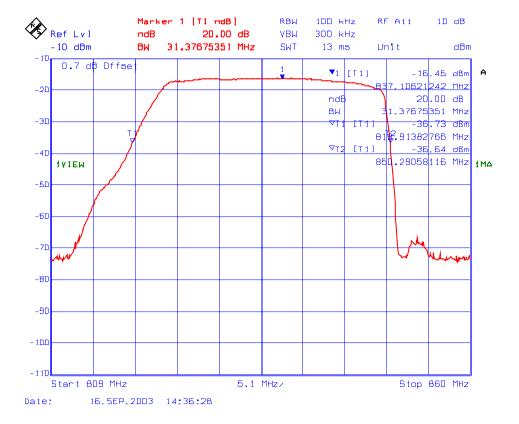
Plot # 50: 99% OBW, RF Output

Frequency: 824 MHz, 12.5 kHz Channel Spacing

Remark: Since the device under test is an amplifier, the comparison test of RF input and output signals are conducted for compliance with FCC Rules.

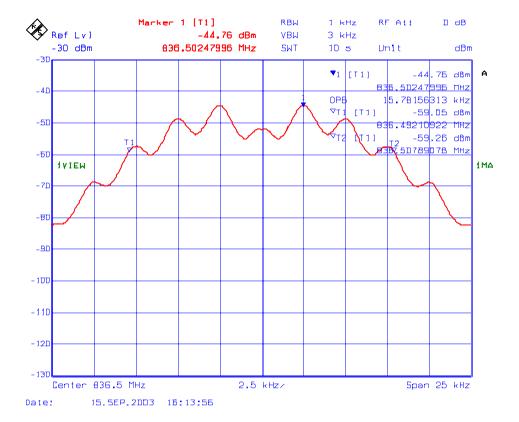
5.8.5.3. 20 dB Bandwidth and Gain of the Amplifier (824-849 MHz)

Refer to Plot # 51 for detailed measurements of 20 dB BW and maximum gain of the Amplifier

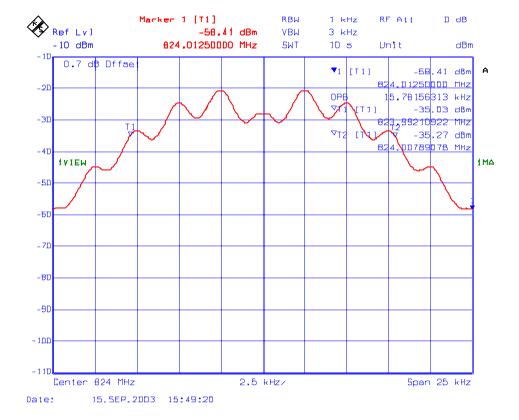

5.8.5.4. 99% Occupied Bandwidth(824-849 MHz)

Frequency (MHz)	Channel Spacing (kHz)	Modulation	Measured 99% OBW of RF Input Signal (kHz)	Measured 99% OBW of RF Output Signal (kHz)	Recommended 99% OBW (kHz)
824.0	25	FM Voice	15.78	15.78	20
836.5	25	FM Voice	15.78	15.78	20
849.0	25	FM Voice	15.78	15.78	20
 Refer to Plot 	s 52 to 55 below for the	details of the above m	easurements		
824.0	25	FM Data	20.24	19.74	20
836.5	25	FM Data	20.24	20.09	20
849.0	25	FM Data	20.24	20.24	20
 Refer to Plot 	s 56 to 59 below for the	details of the above m	easurements		
824.0	12.5	CDMA	1278	1278	
836.5	12.5	CDMA	1278	1278	
849.0	12.5	CDMA	1278	1262	
 Refer to Plot 	s 60 to 63 below for the	details of the above m	easurements		
824.0	12.5	TDMA	28.37	28.37	
836.5	12.5	TDMA	28.37	28.37	
849.0	12.5	TDMA	28.37	28.26	
 Refer to Plot 	s 64 to 67 below for the	details of the above m	easurements		
824.0	12.5	GSM	244.09	244.09	
836.5	12.5	GSM	244.09	245.29	
849.0	12.5	GSM	244.09	244.09	
 Refer to Plot 	s 68 to 71 below for the	details of the above m	easurements		

Plot # 51: 20 dB BW of the 824 - 849 MHz band pass gain


RF Input: -40 dBm from 800 -900 MHz

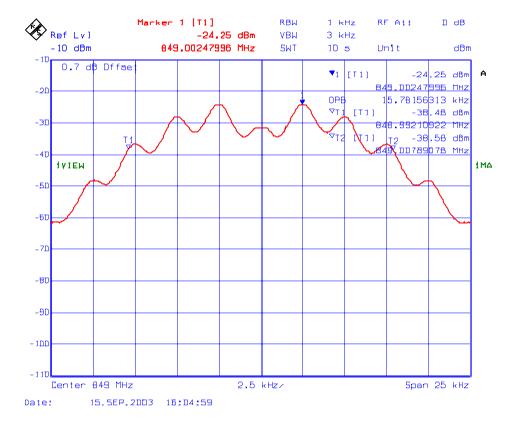
MAX. GAIN: 23.55 dB


Plot # 52 : 99% OBW, RF Input

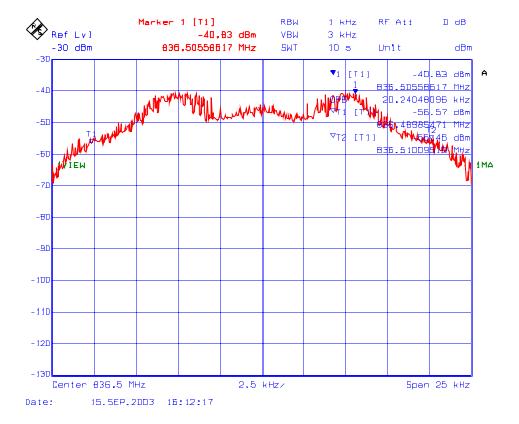
Frequency: 836.5 MHz

Plot # 53 : 99% OBW, RF Output

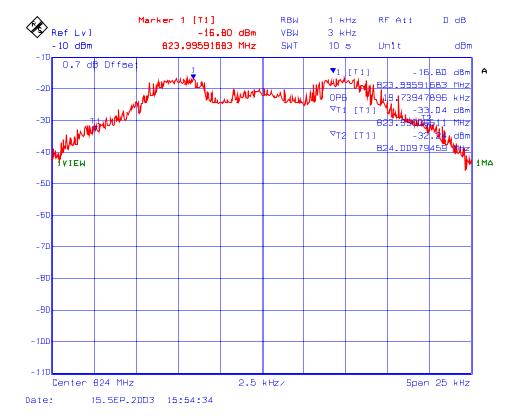
Frequency: 824 MHz


Plot # 54 : 99% OBW, RF Output

Frequency: 836.5 MHz

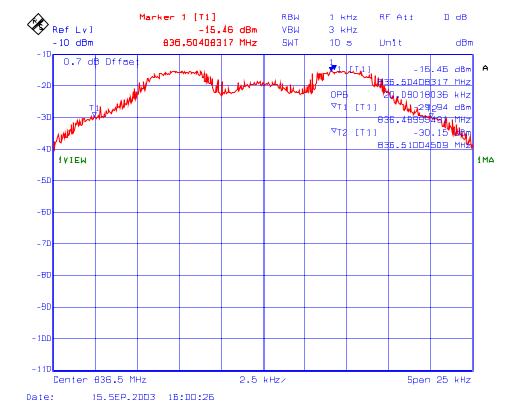

Plot # 55 : 99% OBW, RF Output

Frequency: 849 MHz


Plot # 56 : 99% OBW, RF Input

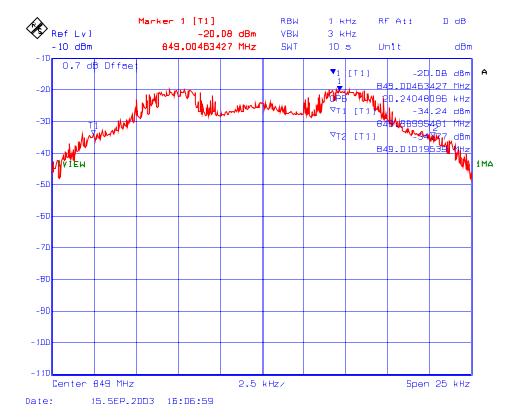
Frequency: 836.5 MHz

Plot # 57 : 99% OBW, RF Output


Frequency: 824 MHz

Satelink RF - Fiber Interface Module, Model : LNKFIB-R

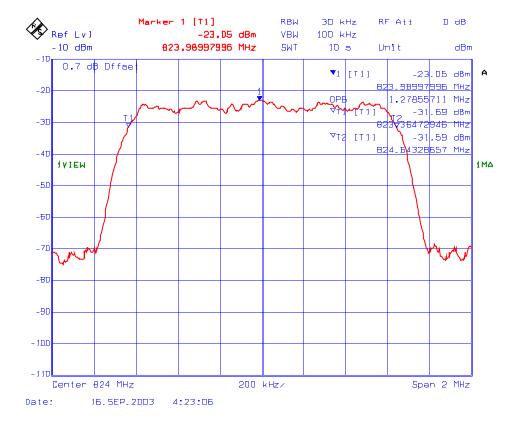
Plot # 58 : 99% OBW, RF Output


Frequency: 836.5 MHz

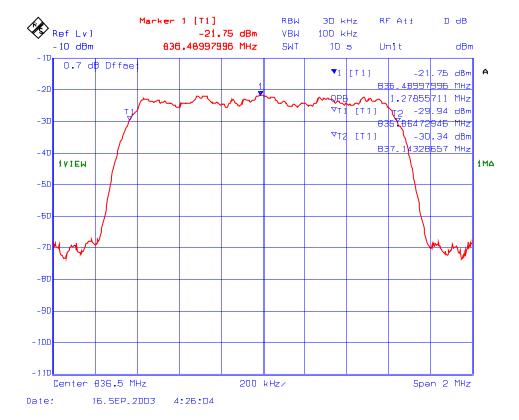
Satelink RF - Fiber Interface Module, Model : LNKFIB-R

Plot # 59 : 99% OBW, RF Output

Frequency: 849 MHz


Plot # 60 : 99% OBW, RF Input

Frequency: 836.5 MHz, Modulation: CDMA


Plot # 61 : 99% OBW, RF Output

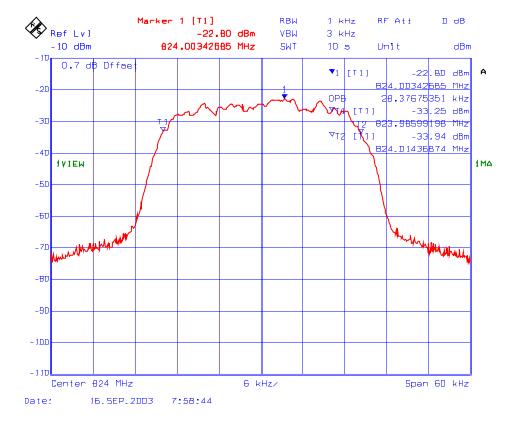
Frequency: 824 MHz, Modulation: CDMA

Plot # 62: 99% OBW, RF Output

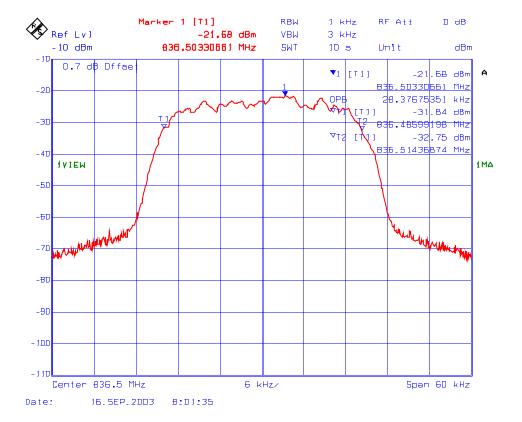
Frequency: 836.5 MHz, Modulation: CDMA

Plot # 63: 99% OBW, RF Output

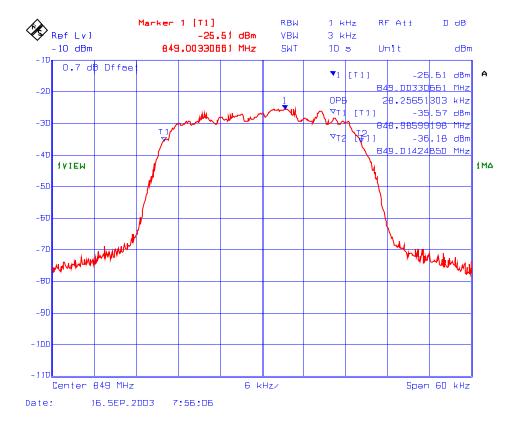
Frequency: 849 MHz, Modulation: CDMA


Plot # 64: 99% OBW, RF Input

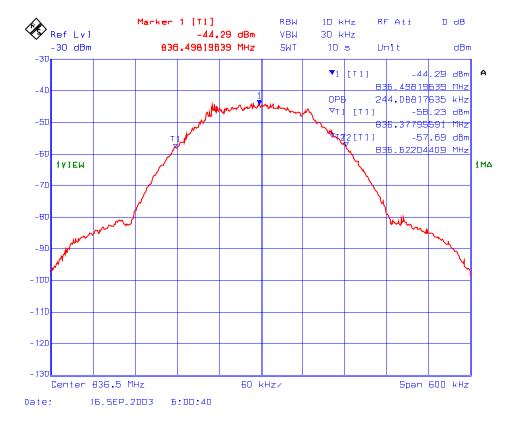
Frequency: 836.5 MHz, Modulation: TDMA


Plot # 65 : 99% OBW, RF Output

Frequency: 824 MHz, Modulation: TDMA


Plot # 66 : 99% OBW, RF Output

Frequency: 836.5 MHz, Modulation: TDMA


Plot # 67 : 99% OBW, RF Output

Frequency: 849 MHz, Modulation: TDMA

Plot # 68 : 99% OBW, RF Input

Frequency: 836.5 MHz, Modulation: GSM

Plot # 69 : 99% OBW, RF Output

Frequency: 824 MHz, Modulation: GSM

Plot # 70 : 99% OBW, RF Output

Frequency: 836.5 MHz, Modulation: GSM

Plot # 71 : 99% OBW, RF Output

Frequency: 849 MHz, Modulation: GSM

Remark:

Since the device under test is an amplifier, the comparison test of RF input and output signals are conducted for compliance with FCC Rules.

5.8.5.5. 20 dB Bandwidth and Gain of the Amplifier (896-901 MHz)

Refer to Plot # 72 for detailed measurements of 20 dB and maximum gain of the Amplifier


5.8.5.6. 99% Occupied Bandwidth (896-901 MHz)

Frequency (MHz)	Channel Spacing (kHz)	Modulation	Measured 99% OBW of RF Input Signal (kHz)	Measured 99% OBW of RF Output Signal (kHz)	Recommended 99% OBW (kHz)			
896.0	12.5	FM Voice	10.5	10.5	13.6			
901.0	12.5	FM Voice	10.5	10.5	13.6			
 Refer to Plots 73 to 75 below for the details of the above measurements 								
896.0	12.5	FM Data	11.7	12.1	13.6			
901.0	12.5	FM Data	11.7	11.7	13.6			
 Refer to Plots 76 to 78 below for the details of the above measurements 								

Plot # 72: 20 dB BW of the 896 - 901 MHz band pass gain

RF Input: -40 dBm from 800 -950 MHz

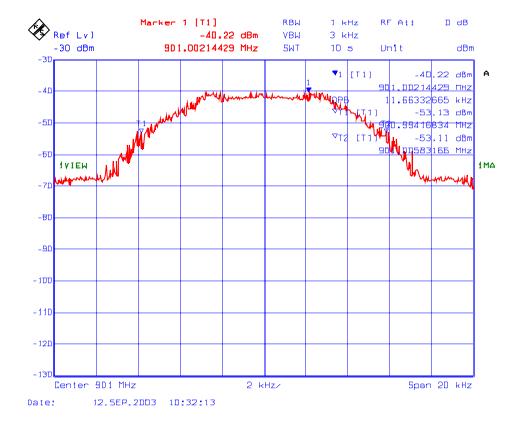
MAX. GAIN: 24.75 dB



Plot # 73: 99% OBW, RF Input Frequency: 901 MHz

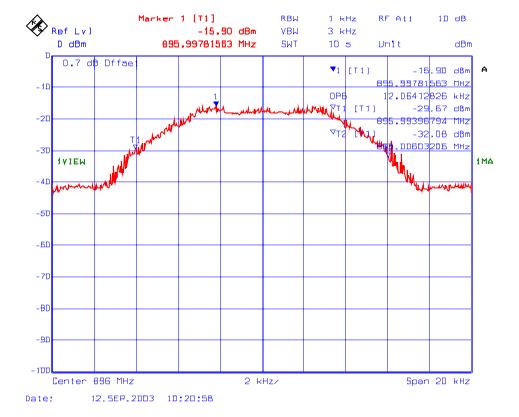
Plot # 74 : 99% OBW, RF Output

Frequency: 896 MHz



Plot # 75 : 99% OBW, RF Output

Frequency: 901 MHz



Plot # 76: 99% OBW, RF Input Frequency: 901 MHz

Plot # 77 : 99% OBW, RF Output

Frequency: 896 MHz

Plot # 78 : 99% OBW, RF Output

Frequency: 901 MHz

Remark: Since the device under test is an amplifier, the comparison test of RF input and output signals are conducted for compliance with FCC Rules.

5.8.5.7. 20 dB Bandwidth and Gain of the Amplifier 1850-1910 MHz Band

Refer to Plot # 79 for detailed measurements of 20 dB and maximum gain of the Amplifier

5.8.5.8. 26dB Bandwidth - RF Output versus RF Input in 1850-1910 MHz Band

Frequency (MHz)	Modulation	26 dB Bandwidth of RF Input Signal (MHz)	26 dB Bandwidth of RF Output Signal (MHz)		
1851	CDMA	1.44	1.45		
1880	CDMA	1.44	1.52		
1909 CDMA		1.44	1.43		
Re	Refer to Plots # 80 to 83 below for detailed measurement				
1851	TDMA	0.033	0.033		
1880	TDMA	0.033	0.033		
1909	TDMA	0.033	0.033		
Refer to Plots # 84 to 87 below for detailed measurement					
1851	GSM	0.32	0.32		
1880	1880 GSM		0.32		
1909 GSM		0.32	0.32		
Refer to Plots # 88 to 91 below for detailed measurement					


5.8.5.9. *Band-edge*

Since the carrier signal level was too low, we have not plotted the test result for 6 band-edge.

Plot # 79: 20 dB BW of the 1850 - 1910 MHz band pass gain


RF Input: -40 dBm from 1800 -1960 MHz

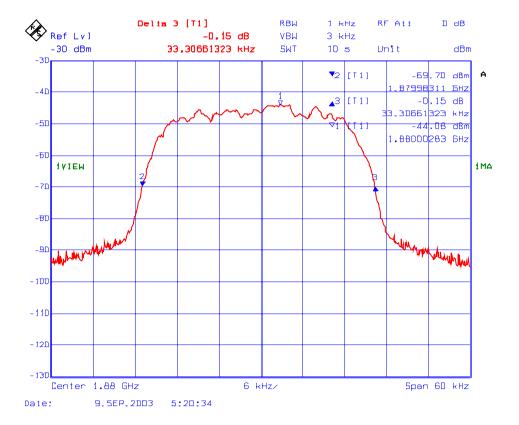
MAX. GAIN: 23 dB

Plot # 80 : 26 dB BW of the 1850 – 1910 MHz, RF Input

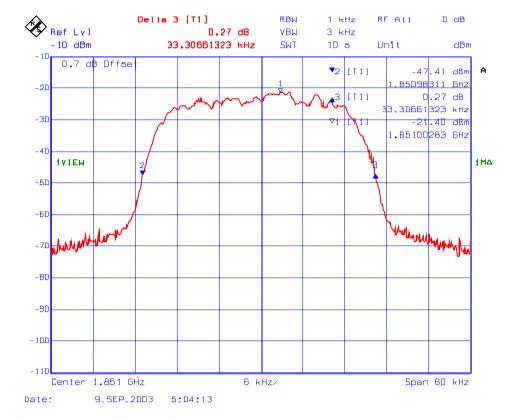
Frequency: 1880 MHz, Modulation: CDMA

Plot # 81: 26 dB BW of the 1850 – 1910 MHz, RF Output Frequency: 1851 MHz, Modulation: CDMA

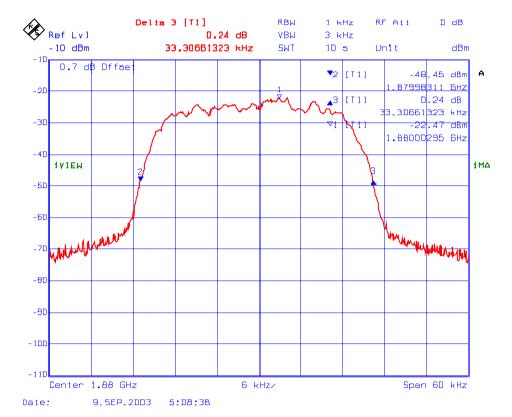
Plot # 82: 26 dB BW of the 1850 – 1910 MHz, RF Output Frequency: 1880 MHz, Modulation: CDMA



Plot # 83: 26 dB BW of the 1850 – 1910 MHz, RF Output Frequency: 1909 MHz, Modulation: CDMA


Plot # 84 : 26 dB BW of the 1850 – 1910 MHz, RF Input

Frequency: 1880 MHz, Modulation: TDMA



Plot # 85 : 26 dB BW of the 1850 – 1910 MHz, RF Output

Frequency: 1851 MHz, Modulation: TDMA

Plot # 86 : 26 dB BW of the 1850 – 1910 MHz, RF Output Frequency: 1880 MHz, Modulation: TDMA


All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Plot # 87: 26 dB BW of the 1850 – 1910 MHz, RF Output Frequency: 1909 MHz, Modulation: TDMA

Plot # 88 : 26 dB BW of the 1850 – 1910 MHz, RF Input

Frequency: 1880 MHz, Modulation: GSM

Plot # 89 : 26 dB BW of the 1850 – 1910 MHz, RF Output

Frequency: 1851 MHz, Modulation: GSM

Plot # 90: 26 dB BW of the 1850 – 1910 MHz, RF Output

Frequency: 1880 MHz, Modulation: GSM

Plot # 91: 26 dB BW of the 1850 – 1910 MHz, RF Output Frequency: 1909 MHz, Modulation: GSM

5.9. EMISSION MASK @ 22.917 & 90.210

5.9.1. Limits

FCC 22.917:

Mobile station in AMPS:

EMISISON MASK @ FCC 22.917			
EMISSION TYPE	Frequency removed from the carrier frequency	Attenuation wrt Carrier Level	
F3E (radiotelephony) & F3D (SAT) - with audio filter	20 kHz to 45 kHz45 kHz to 2*Fc	 26 dBc 60 dBc or 43+10*log(P) dBc (P in Watts) whichever is less 	
Alternative - F3E (radiotelephony) & F3D (SAT) - with audio filter	12 kHz to 20 kHz20 kHz to 2*Fc	 117*log(f_d/12) dBc 100*log(f_d/11) dBc or 60 dBc or 43+10*log(P) dBc (P in Watts) whichever is less 	

Mobile station in Wideband Digital Mode:

EMISISON MASK @ FCC 22.917				
EMISSION TYPE	Frequency removed from the carrier frequency	Attenuation wrt Carrier Level		
F1D (Wideband Data Mode) / F3D (Signaling Tone)	 20 kHz to 45 kHz 45 kHz to 90 kHz 90 kHz to 2*Fc 	 26 dBc 45 dBc 60 dBc or 43+10*log(P) dBc (P in Watts) whichever is less 		

Mobile station in CDMA mode:

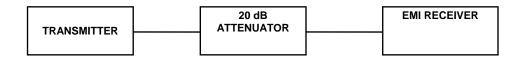
	Centre frequency offset by greater than 900 kHz for 30 kHz bandwidth or greater than 1.385 MHz for 1 MHz bandwidth	Center frequency offset by greater than 1.98 MHz for 30 kHz bandwidth or greater than 2.465 MHz for 1 MHz bandwidth
Spurious emissions not to exceed (a), or, or both (b) and (c), whichever is less stringent	(a) -42 dBc/30 kHz (b) -60 dBm / 30 kHz (c) -55 dBm/ 1 MHz	(a) -54 dBc/30 kHz (b) -60 dBm / 30 kHz (c) -55 dBm/ 1 MHz

FCC ID: H6M-LNKFIB-RA

- Base station in CDMA mode shall not exceed the following limits:
- (a) For all offset frequencies greater than 750 kHz from the CDMA centre frequency, at least 45 dBc
- (b) For all offset frequencies greater than 1,.98 MHz from the CDMA centre frequency, at least 60 dBc
- (c) for all offset frequencies not allocated to the same operator system, at least 60 dB or –13 dBm, whichever is less stringent.

FCC 90.209 & 90.210: Emissions shall be attenuated below the mean output power of the transmitter as follows:

	FREQUENCY RANGE (MHz)	Maximum Authorized BW (KHz)	CHANNEL SPACING (KHz)	Recommended Max. FREQ. DEVIATION (KHz)	FCC APPLICABLE MASK @ FCC 90.210
	806-821	20	25	5	MASK B (Voice) & MASK G (Data)
ĺ	821-824	20	12.5	5	MASK B (Voice) & MASK H (Data)
ĺ	896-901	13.6	12.5	2.5	MASK I (Voice) & MASK J (Data)


5.9.2. Method of Measurements

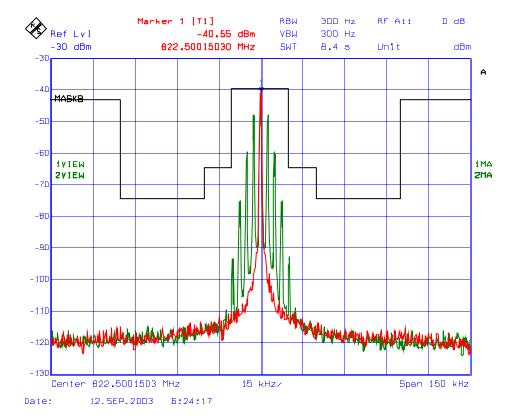
Refer to Exhibit 7, § 7.4 of this report for measurement details

5.9.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird			DC – 22 GHz
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz

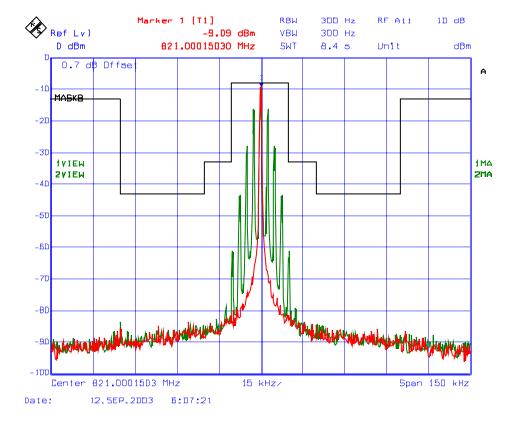
5.9.4. Test Arrangement

5.9.5. Test Data

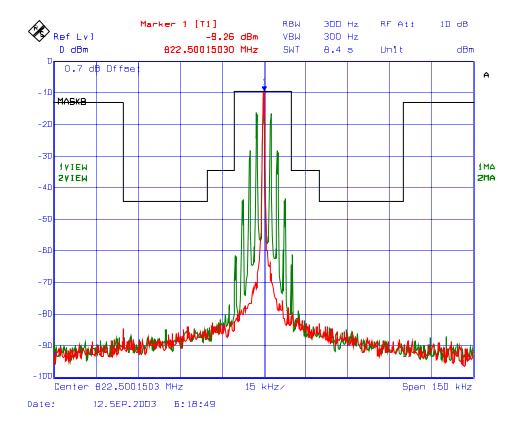

5.9.5.1. Emissions Mask (806-824 MHz)

Conform.

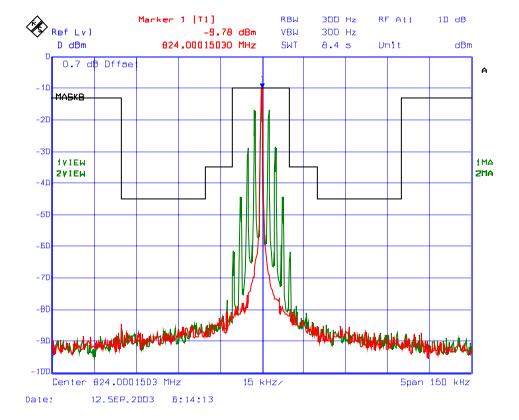
- Refer to Plots 92 to 95 for Emissions Mask B with FM Voice modulation, 12.5 kHz Channel Spacing
- Refer to Plots 96 to 99 for Emissions Mask H with FM Data modulation, 12.5 kHz Channel Spacing
- Refer to Plots 100 to 103 for Emissions Mask B with FM Voice modulation, 25 kHz Channel Spacing
- Refer to Plots 104 to 107 for Emissions Mask G with FM Data modulation, 25 kHz Channel Spacing


Plot # 92: Emission Mask B, RF Input Signal

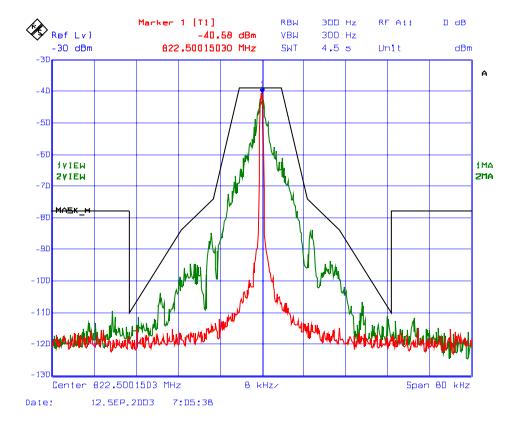
Frequency: 822.5 MHz, 12.5 kHz Channel Spacing


Plot # 93 : Emission Mask B, RF Output Signal

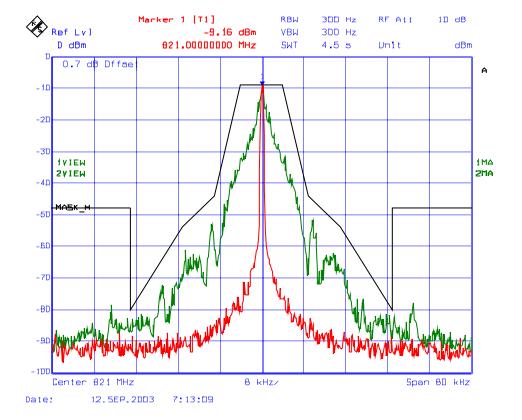
Frequency: 821 MHz, 12.5 kHz Channel Spacing


Plot # 94 : Emission Mask B, RF Output Signal

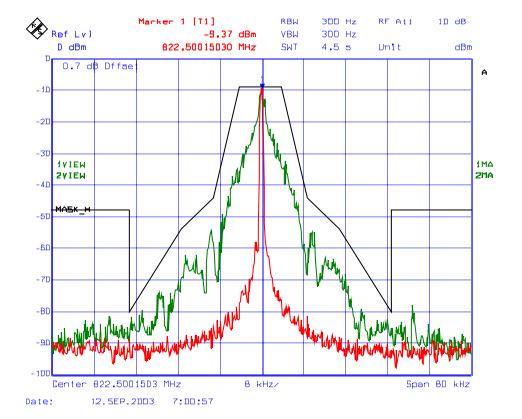
Frequency: 822.5 MHz, 12.5 kHz Channel Spacing


Plot # 95: Emission Mask B B, RF Output Signal

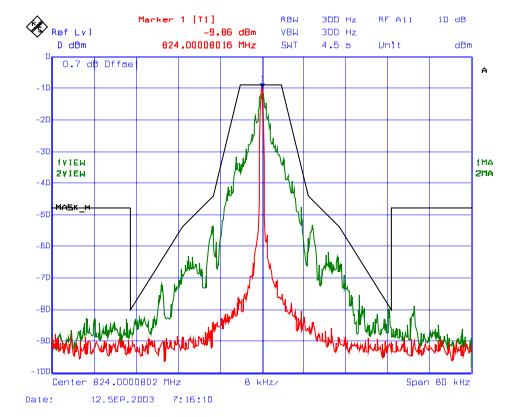
Frequency: 824 MHz, 12.5 kHz Channel Spacing


FCC ID: H6M-LNKFIB-RA

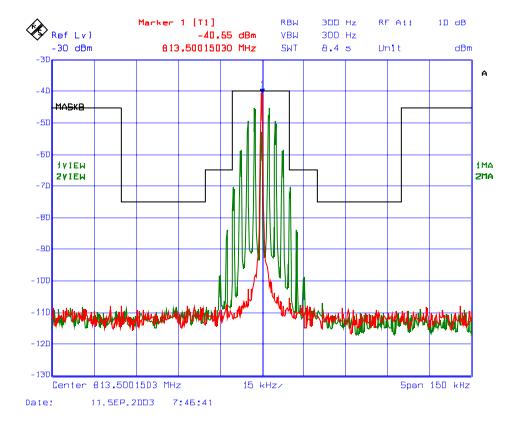
Frequency: 822.5 MHz, 12.5 kHz Channel Spacing


Plot # 97: Emission Mask H, RF Output

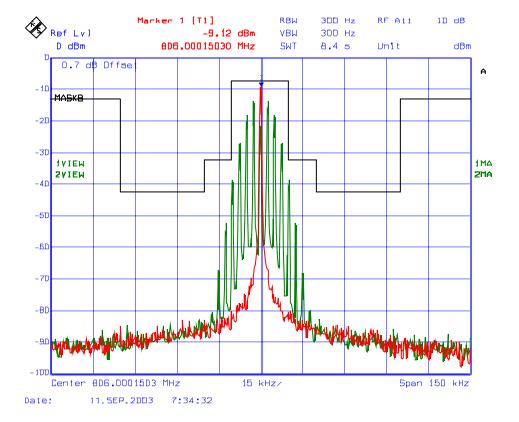
Frequency: 821 MHz, 12.5 kHz Channel Spacing


Plot # 98: Emission Mask H, RF Output

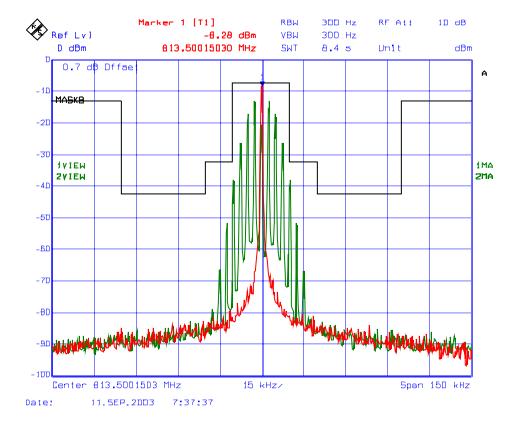
Frequency: 822.5 MHz, 12.5 kHz Channel Spacing


Plot # 99: Emission Mask H, RF Output

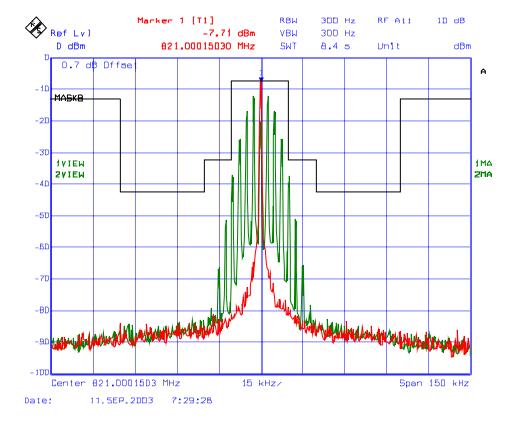
Frequency: 824 MHz, 12.5 kHz Channel Spacing


Plot # 100: Emission Mask B, RF Input

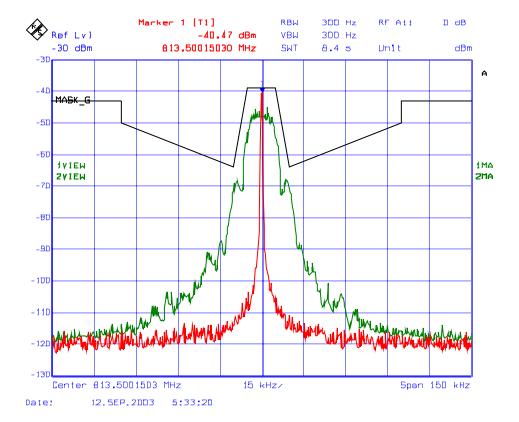
Frequency: 813.5 MHz, 25 kHz Channel Spacing


Plot # 101: Emission Mask B, RF Output

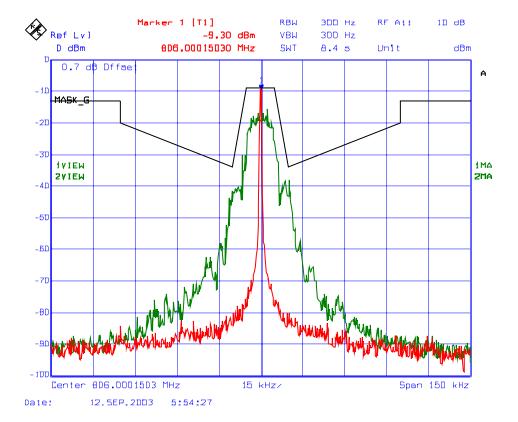
Frequency: 806 MHz, 25 kHz Channel Spacing


Plot # 102: Emission Mask B, RF Output

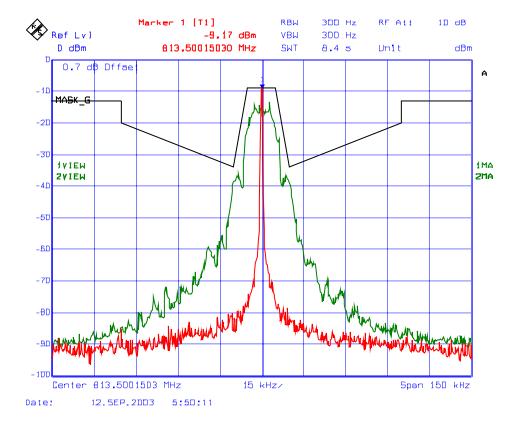
Frequency: 813.5 MHz, 25 kHz Channel Spacing


Plot # 103: Emission Mask B, RF Output

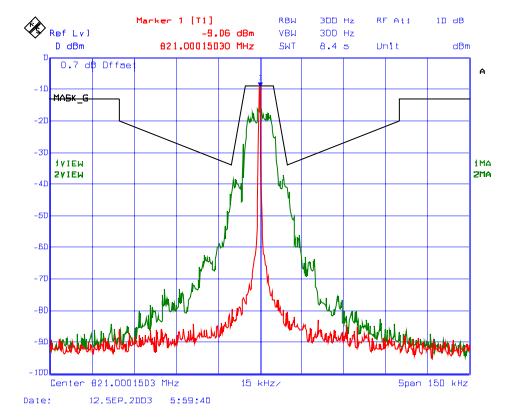
Frequency: 821 MHz, 25 kHz Channel Spacing


Plot # 104: Emission Mask G, RF Input

Frequency: 813.5 MHz, 25 kHz Channel Spacing


Plot # 105: Emission Mask G, RF Output

Frequency: 806 MHz, 25 kHz Channel Spacing

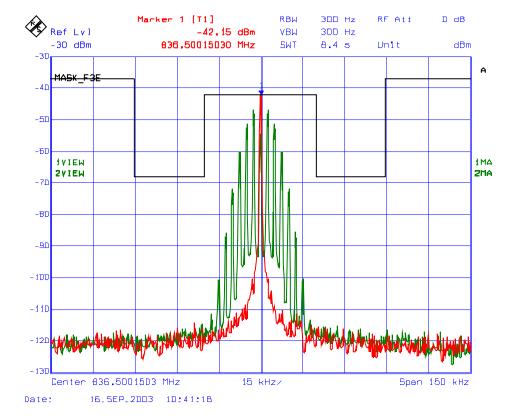

Plot # 106: Emission Mask G, RF Output

Frequency: 813.5 MHz, 25 kHz Channel Spacing

Plot # 107: Emission Mask G, RF Output

Frequency: 821MHz, 25 kHz Channel Spacing

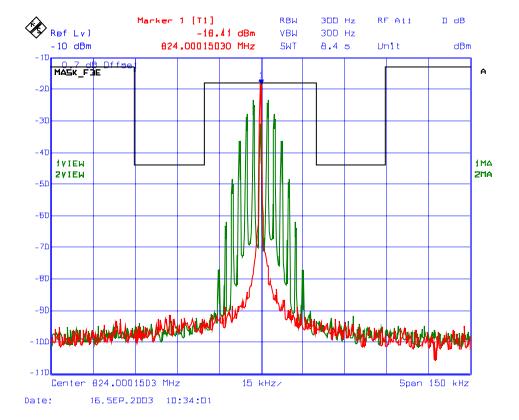
5.9.5.2. Emission Masks / Band-Edge Emissions (824-849 MHz)


Conform.

- Refer to Plots 108 to 111 for Emissions Mask F3E with FM Voice modulation
- Refer to Plots 112 to 115 for Emissions Mask F1D with FM Data modulation
- Refer to Plots 116 to 119 for Emissions Mask CDMA with CDMA modulation
- Refer to Plots 120 to 123 for Band-Edge Emissions with TDMA and GSM modulations.

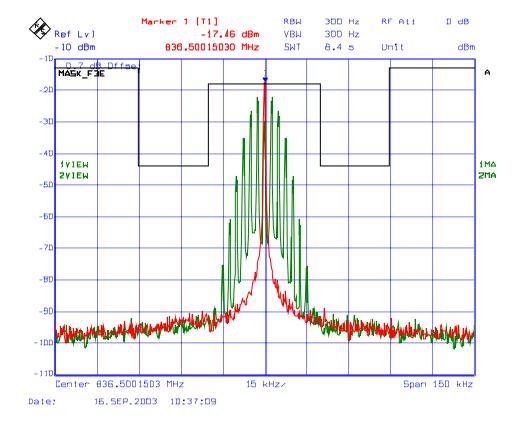
Plot # 108: Emission Mask F3E, RF Input

Frequency: 836.5 MHz


Modulation: FM Modulation with 2.5 kHz Sine wave signal

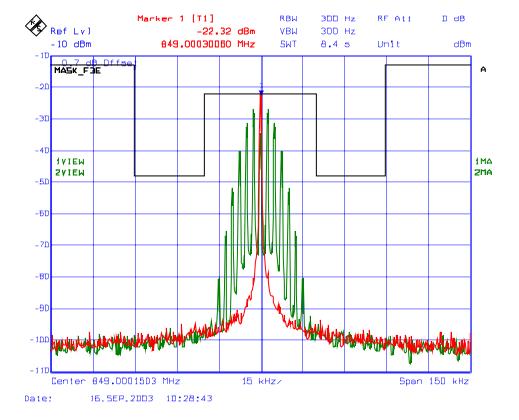
ULTRATECH GROUP OF LABS

Plot # 109: Emission Mask F3E, RF Output

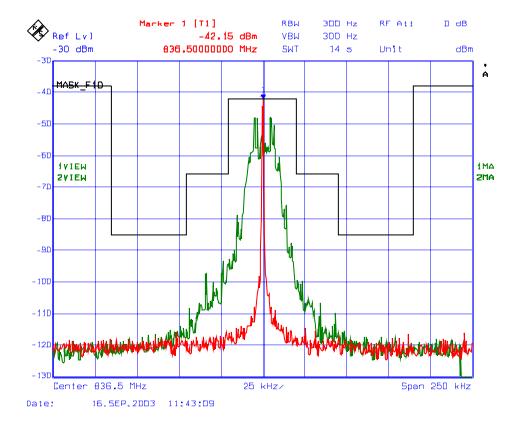

Frequency: 824 MHz

Plot # 110: Emission Mask F3E, RF Output

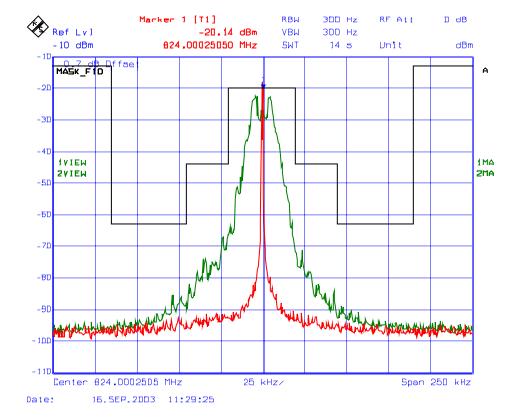
Frequency: 836.5 MHz


Modulation: FM Modulation with 2.5 kHz Sine wave signal

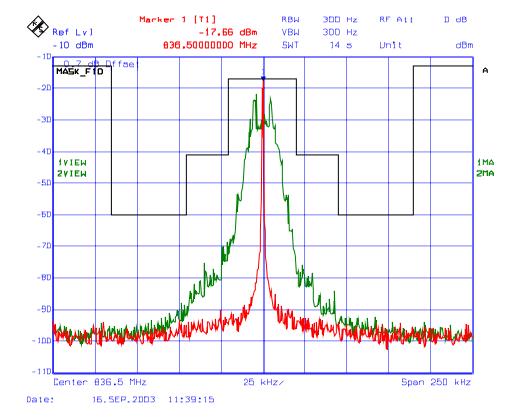
FCC ID: H6M-LNKFIB-RA


Frequency: 849 MHz

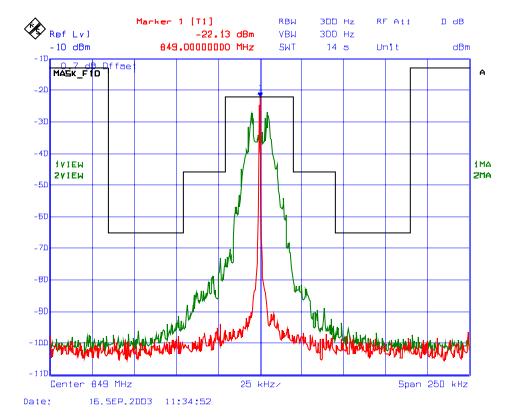
Modulation: FM Modulation with 2.5 kHz Sine wave signal


Plot # 112: Emission Mask F1D, RF Input

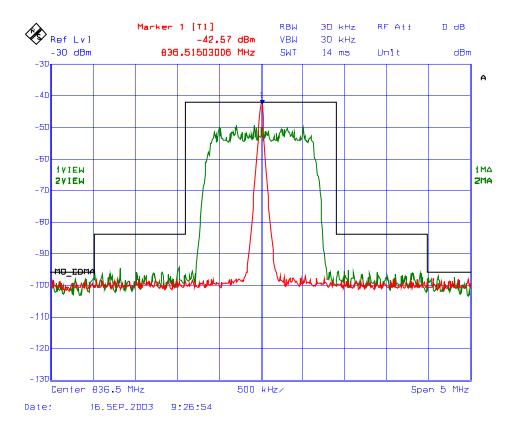
Frequency: 836.5 MHz


Plot # 113: Emission Mask F1D, RF Output

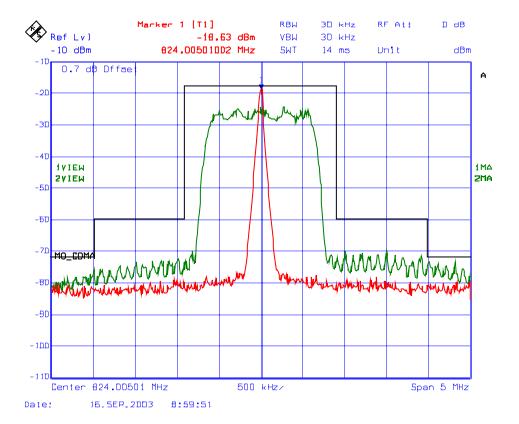
Frequency: 824 MHz

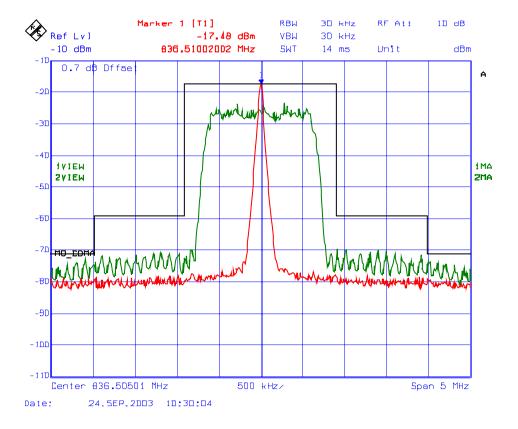

Plot # 114: Emission Mask F1D, RF Output

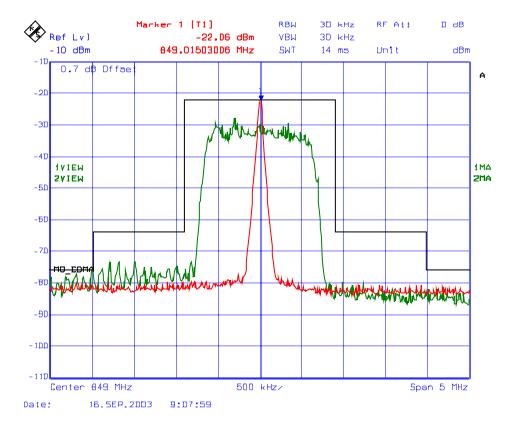
Frequency: 836.5 MHz

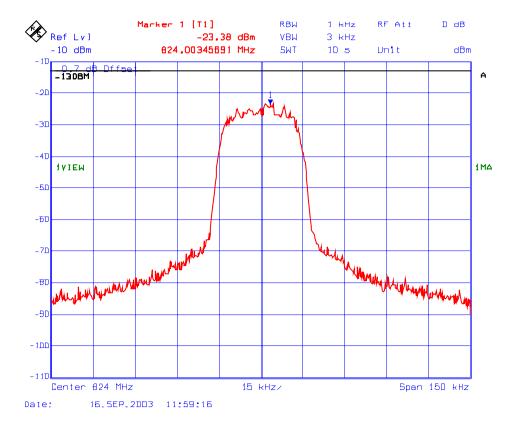


Plot # 115: Emission Mask F1D, RF Output


Frequency: 849 MHz

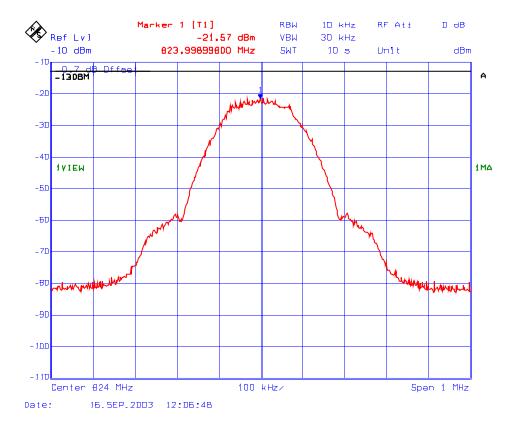

Plot # 116: Emission Mask CDMA, RF Input Frequency: 836.5 MHz, Modulation: CDMA


Plot # 117 : Emission Mask CDMA, RF Output Frequency: 824 MHz, Modulation: CDMA

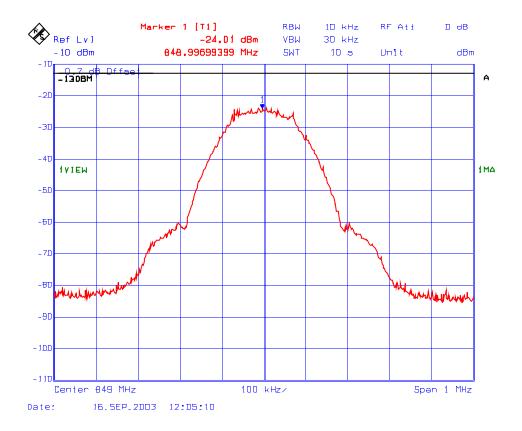

Plot # 118 : Emission Mask CDMA, RF Output Frequency: 836.5 MHz, Modulation: CDMA

Plot # 119 : Emission Mask CDMA, RF Output Frequency: 849 MHz, Modulation: CDMA

Plot # 120 : Lower Band-Edge, RF Output Frequency: 824 MHz, Modulation: TDMA



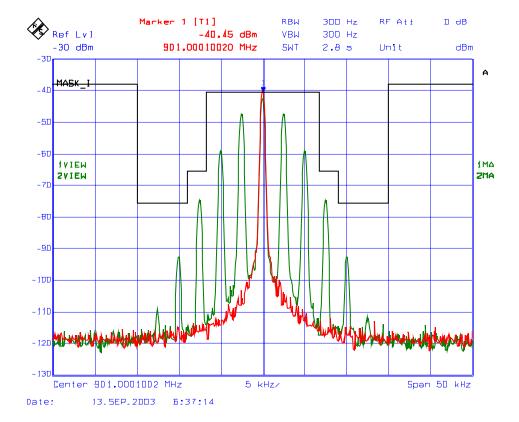
Plot # 121: Upper Band-Edge, RF Output


Frequency: 849 MHz, Modulation: TDMA

Plot # 122 : Lower Band-Edge, RF Output Frequency: 824 MHz, Modulation: GSM

Plot # 123 : Upper Band-Edge, RF Output Frequency: 849 MHz, Modulation: GSM

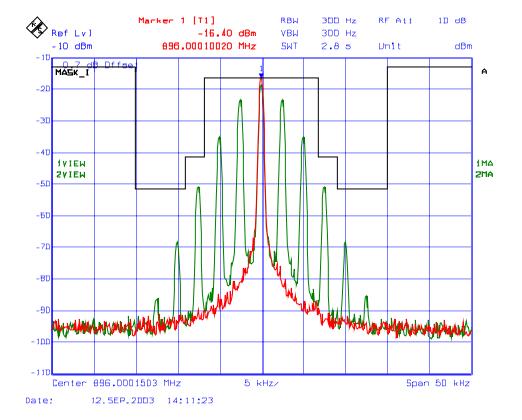
5.9.5.3. Emission Masks (896-901 MHz)


Conform.

- Refer to Plots 124 to 126 for Emissions Mask I with FM Voice modulation, 12.5 kHz Channel Spacing
- Refer to Plots 127 to 129 for Emissions Mask J with FM Data modulation, 12.5 kHz Channel Spacing

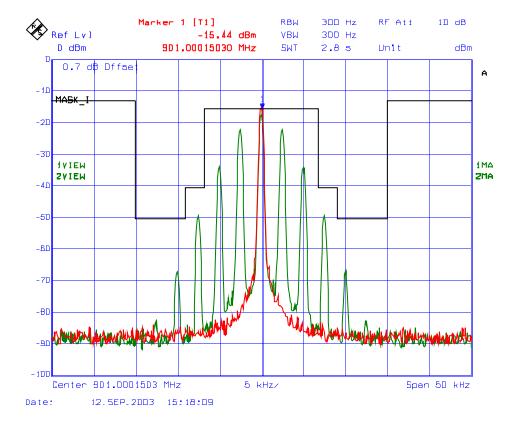
Plot # 124: Emission Mask I, RF Input

Frequency: 901 MHz

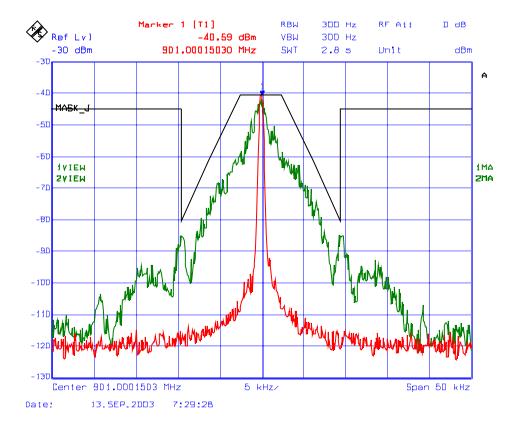

Modulation: FM modulation with 2.5 kHz Sine wave signal

Plot # 125: **Emission Mask I, RF Output**

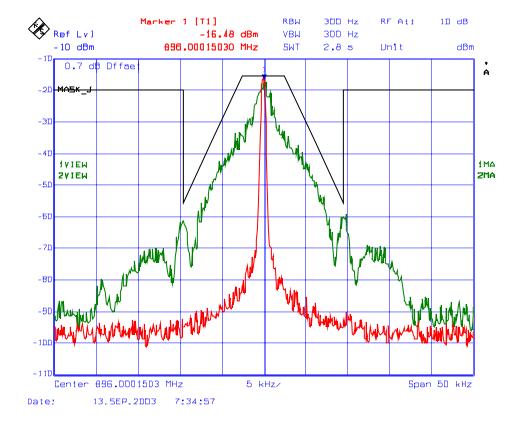
Frequency: 896 MHz


Modulation: FM modulation with 2.5 kHz Sine wave signal

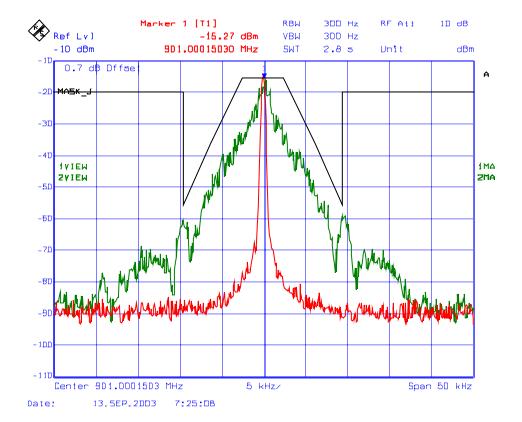
Plot # 126: Emission Mask I, , RF Output


Frequency: 901 MHz

Modulation: FM modulation with 2.5 kHz Sine wave signal


Plot # 127: Emission Mask J, RF Input

Frequency: 901 MHz


Plot # 128: Emission Mask J, , RF Output

Frequency: 896 MHz

Plot # 129: Emission Mask J, , RF Output

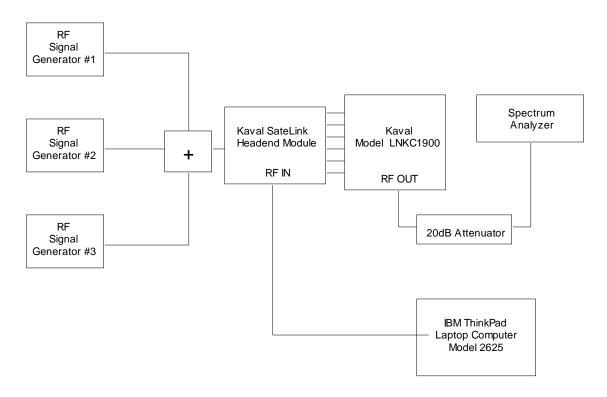
Frequency: 901 MHz

5.10. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FCC 2.1049, 22.217, 24.238 & 90.210

5.10.1. Limits

Emissions outside the permitted band shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	FCC Rules	FCC Applicable Mask
806-821 MHz (Trunking) 821-824 MHz	90.210(b), (g) 90.210(b), (h)	• 43+10*log(P) dBc, P is power in watts or –13 dBm
824-849 MHz (Base Cellular)	22.917(e)	• 43+10*log(P) dBc, P is power in watts or –13 dBm
896-901MHz (Paging)	90.210(i), (j)	• 50+10*log(P) dBc, P is power in watts or -20 dBm
1850-1910 MHz (PCS)	24.238 (a)	• 43+10*log(P) dBc, P is power in watts or –13 dBm,


5.10.2. Method of Measurements

Refer to Exhibit 7 § 7.1 of this report for measurement details

5.10.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird		•••	DC – 22 GHz
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz
Highpass Filter, Microphase	Microphase	CR220HID	IITI11000AC	Cut-off Frequency at 600 MHz, 1.3 GHz or 4 GHz

5.10.4. Test Arrangement

5.10.5. Test Data

Remarks:

Based on our prescans, the unmodulated signal operation was the worst case of rf interference; since the un-modulated rf output power is higher than the FM analog, FM data, CDMA, TDMA and GSM modulation, the unmodulated rf input and output signals will be operated during tests for the wost case of spurious/harmonic emissions.

5.10.5.1. 806 – 824 MHz (Trunking)

5.10.5.1.1. Lowest Frequencies

Fundamental Frequency: 806 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.79 dBm / Channel Modulation: unmodulated

Modulation.	umnodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
847.23	-46.4	4.2	-50.6	PASS
894.84	-38.9	4.2	-43.1	PASS
1595.20	-47.7	4.2	-51.9	PASS
2406.81	-54.1	4.2	-58.3	PASS
3633.26	-57.9	4.2	-62.1	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 130 –131 for spurious conducted emissions.

Fundamental Frequency: 806 & 806.025 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 9.5 dBm / Channel Modulation: unmodulated

Modulation.	ummodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
847.23	-46.5	3.5	-50.0	PASS
896.83	-38.2	3.5	-41.7	PASS
1613.22	-48.2	3.5	-51.7	PASS
2406.81	-56.7	3.5	-60.2	PASS
3633.26	-57.7	3.5	-61.2	PASS

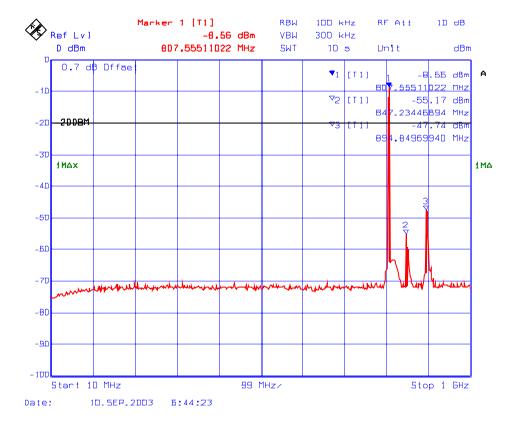
• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

Refer to plots # 132 –133 for spurious conducted emissions.

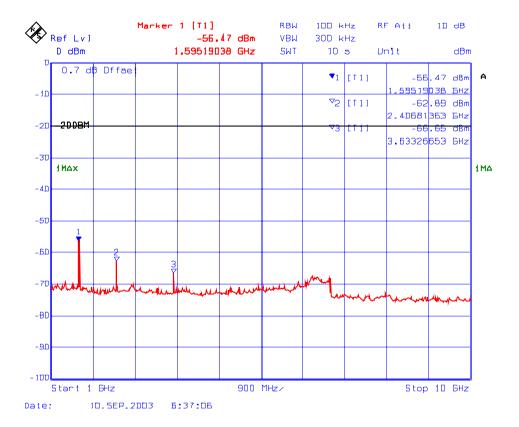
Fundamental Frequency: 806, 806.025 & 806.50 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.9 dBm / Channel Modulation: unmodulated

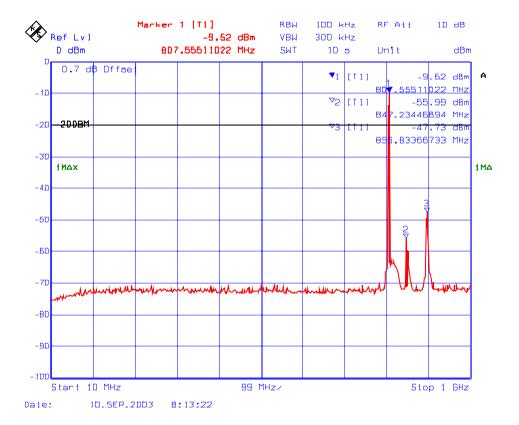

Modulation.	ummodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
851.20	-50.5	4.1	-54.6	PASS
896.83	-38.4	4.1	-42.5	PASS
1613.22	-49.7	4.1	-53.8	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.


• Refer to plots # 134 –135 for spurious conducted emissions.

ULTRATECH GROUP OF LABS

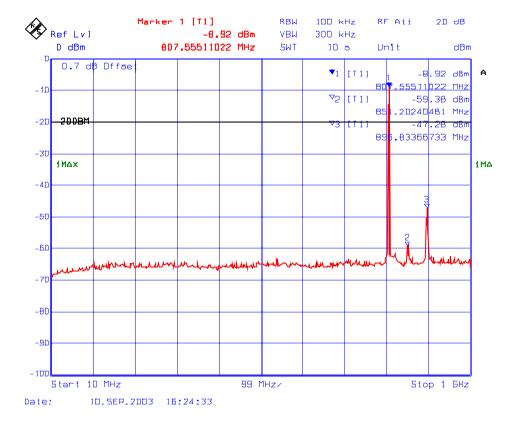
Plot # 130 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 806 - 824 MHz
Fc: 806 MHz



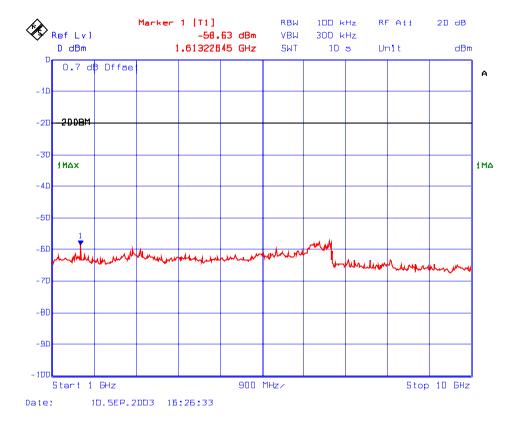
Plot # 131 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 806 - 824 MHz
Fc: 806 MHz


Plot # 132 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 806 – 824 MHz

Fc: 806 MHz, Fc + 25 kHz


Plot # 133 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 806 – 824 MHz

Fc: 806 MHz, Fc + 25 kHz


Plot # 134 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 806 – 824 MHz

Fc: 806 MHz, Fc - 25 kHz, Fc - 50 kHz

Plot # 135 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 806 – 824 MHz

Fc: 806 MHz, Fc - 25 kHz, Fc - 50 kHz

5.10.5.1.2. Middle Frequencies

Fundamental Frequency: 815 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: - 7.7 dBm / Channel Modulation: unmodulated

	Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
Ī	851.20	-50.9	5.3	-56.2	PASS
Ī	896.84	-38.9	5.3	-44.2	PASS
Ī	1613.22	-50.1	5.3	-55.4	PASS
Ī	2444.88	-55.6	5.3	-60.9	PASS
Ī	3633.26	-59.0	5.3	-64.3	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 136 –137 for spurious conducted emissions.

Fundamental Frequency: 815 & 815.025 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.3 dBm / Channel Modulation: unmodulated

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
851.20	-51.4	4.7	-56.1	PASS
896.84	-39.9	4.7	-44.6	PASS
1631.26	-50.1	4.7	-54.8	PASS
2442.88	-56.9	4.7	-61.6	PASS
3633.26	-59.3	4.7	-64.0	PASS

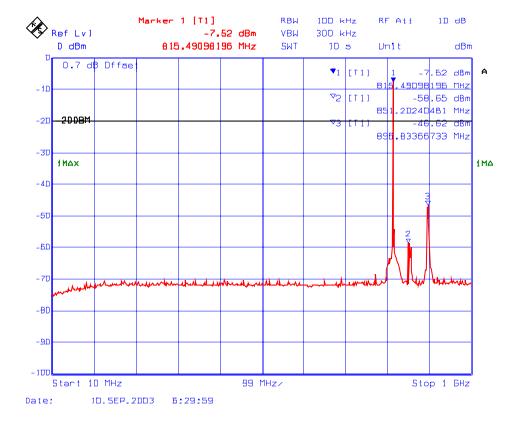
• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 138 –139 for spurious conducted emissions.

Fundamental Frequency: 815, 815.025 & 814.975 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.7 dBm / Channel Modulation: unmodulated

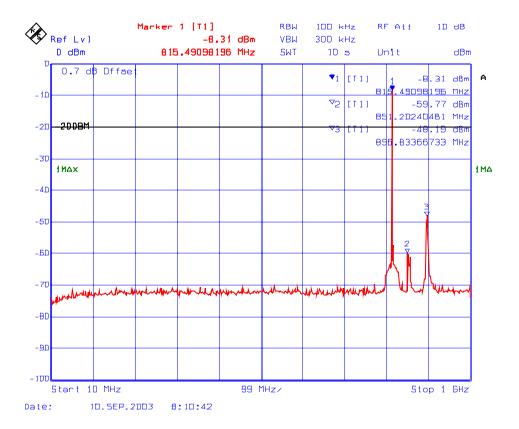

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBm)	Margin (dB)	Pass / Fail
853.20	-48.9	4.3	-53.2	PASS
896.84	-39.5	4.3	-43.8	PASS
1631.26	-50.6	4.3	-54.9	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

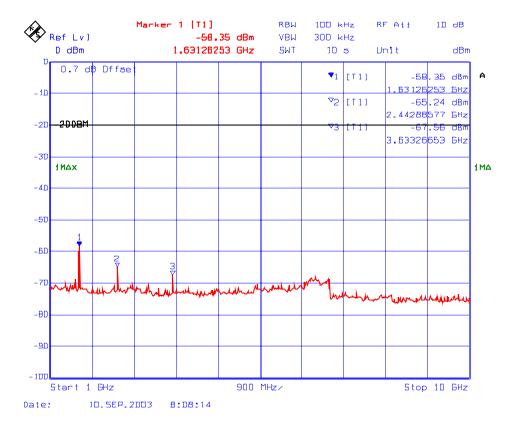
• Refer to plots # 140 –141 for spurious conducted emissions.

ULTRATECH GROUP OF LABS

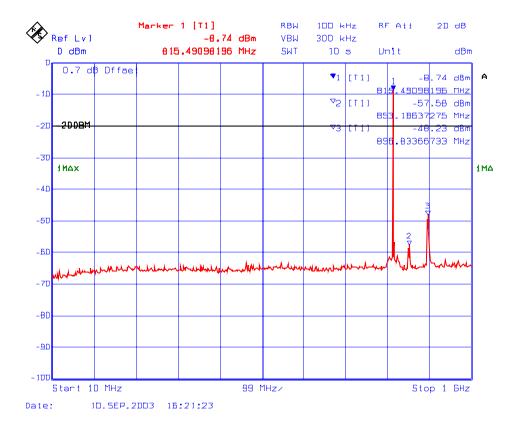
Plot # 136 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 806 – 824 MHz
Fc: 815 MHz


Plot # 137: Transmitter Spurious Emissions Conducted with 1 RF signal input in 806 – 824 MHz
Fc: 815 MHz

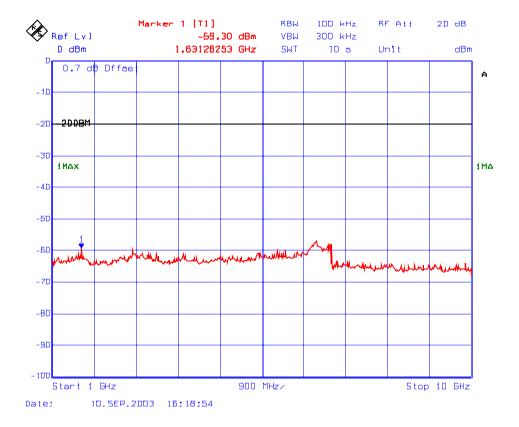
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


Plot # 138 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 806 – 824 MHz

Fc: 815 MHz, Fc + 25 kHz


Plot # 139 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 806 – 824 MHz

Fc: 815 MHz, Fc + 25 kHz


Plot # 140 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 806 – 824 MHz

Fc: 815 MHz, Fc – 25 kHz, Fc + 25 kHz

Plot # 141 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 806 – 824 MHz

Fc: 815 MHz, Fc -25 kHz, Fc +25 kHz

5.10.5.1.3. Highest Frequencies

Fundamental Frequency: 824 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.4 dBm / Channel Modulation: unmodulated

Modulation.	umnodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
853.18	-51.3	4.6	-55.9	PASS
894.85	-38.4	4.6	-43.0	PASS
1649.29	-47.6	4.6	-52.2	PASS
2460.92	-58.1	4.6	-62.7	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 142 –143 for spurious conducted emissions.

Fundamental Frequency: 824 & 823.975 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 9.1 dBm / Channel Modulation: unmodulated

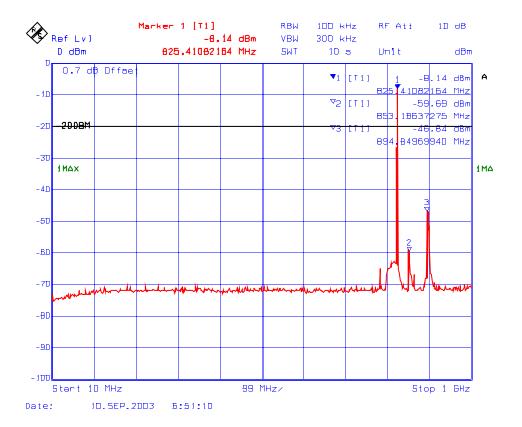
Modulation.	ummodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
851.20	-50.7	3.9	-54.6	PASS
896.83	-38.9	3.9	-42.8	PASS
1649.30	-49.6	3.9	-53.5	PASS
2460.92	-59.6	3.9	-63.5	PASS
3633.26	-58.1	3.9	-62.0	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

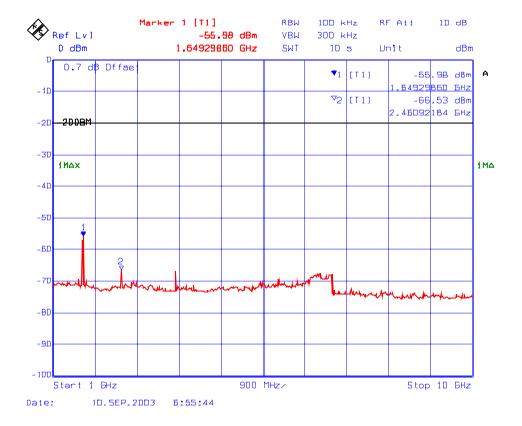
• Refer to plots # 144 –145 for spurious conducted emissions.

Fundamental Frequency: 824, 823.975 & 823.95 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

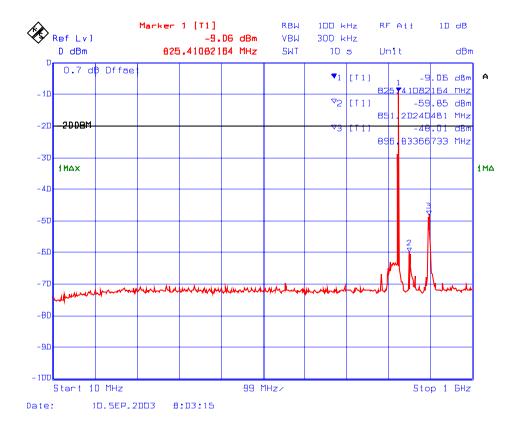

RF Output Power: - 9.3 dBm / Channel Modulation: unmodulated

Modulation:	unmodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
851.20	-48.5	3.7	-52.4	PASS
894.84	-39.9	3.7	-43.8	PASS
1631.26	-50.0	3.7	-53.9	PASS


• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 146 –147 for spurious conducted emissions.

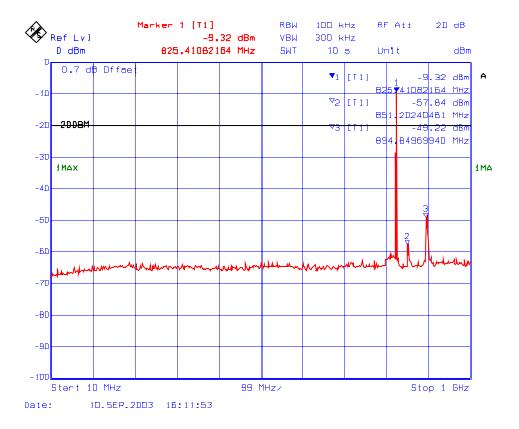
Plot # 142 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 806 – 824 MHz
Fc: 824 MHz



Plot # 143 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 806 – 824 MHz
Fc: 824 MHz

Plot # 144 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 806 – 824 MHz

Fc: 824 MHz, Fc – 25 kHz


Plot # 145 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 806 – 824 MHz

Fc: 824 MHz, Fc – 25 kHz

Plot # 146 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 806 – 824 MHz

Fc: 824 MHz, Fc -25 kHz, Fc -50 kHz

Plot # 147 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 806 – 824 MHz

Fc: 824 MHz, Fc -25 kHz, Fc -50 kHz

FCC ID: H6M-LNKFIB-RA

5.10.5.2. 824 – 849 (Cellular)

5.10.5.2.1. Lowest Frequencies

Fundamental Frequency: 824 MHz (1 Channel input) RF Input Power: - 40.0 dBm RF Output Power: -17.8 dBm / Channel Modulation: unmodulated Tx conducted Antenna Frequency (MHz) Limit (dBc) Margin (dB) Pass / Fail Emission (dBc) 1649.29 -4.8 -37.5 **PASS** -42.3-4.8 2444.88 -41.1 -36.3 PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 148 –149 for spurious conducted emissions.

Fundamental Frequency: 824 & 824.03 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

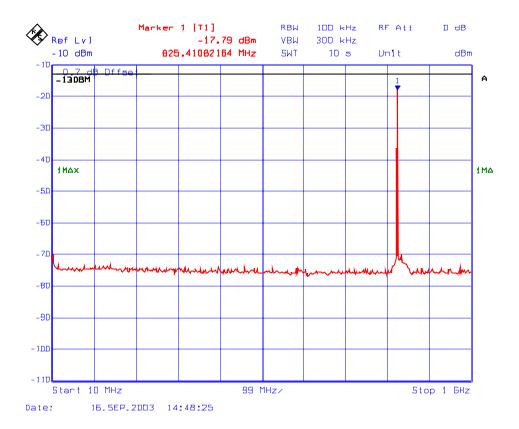
RF Output Power: - 17.1 dBm / Channel Modulation: unmodulated

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
1649.29	-45.6	-4.1	-41.5	PASS
3633.26	-41.0	-4.1	-36.9	PASS

• The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.

• Refer to plots # 150 –151 for spurious conducted emissions.

Fundamental Frequency: 824, 824.030 & 824.060 MHz (3 Channel inputs)

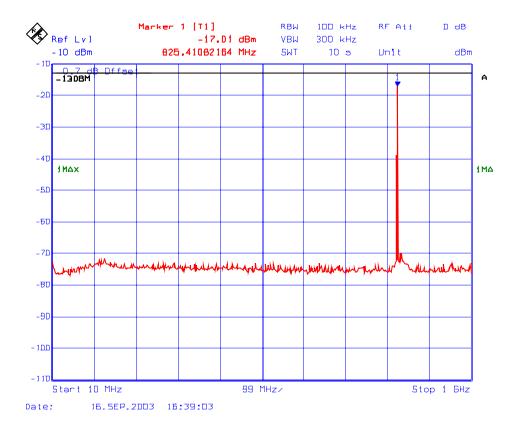

RF Input Power: - 40.0 dBm

RF Output Power: - 17.6 dBm / Channel Modulation: unmodulated

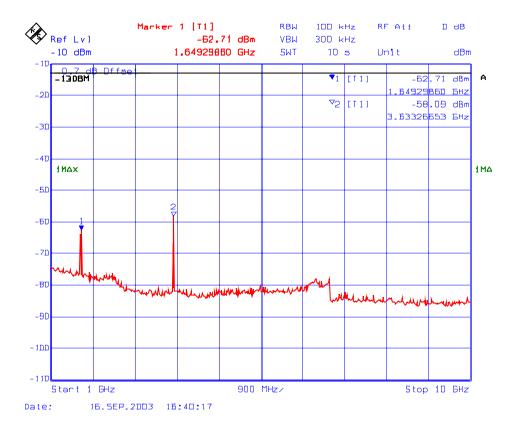
Modulation.	umnodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBm)	Margin (dB)	Pass / Fail
1649.29	-46.4	-4.6	-41.8	PASS
3633.26	-41.0	-4.6	-36.4	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 152 –153 for spurious conducted emissions.

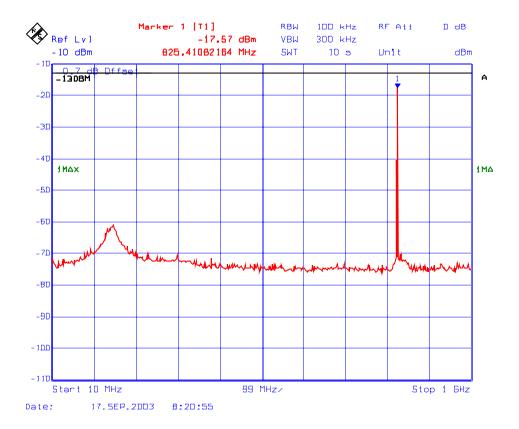
Plot # 148: Transmitter Spurious Emissions Conducted with 1 RF signal input in 824 - 849 MHz Fc: 824 MHz



Plot # 149 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 824 - 849 MHz
Fc: 824 MHz


Plot # 150 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 824 – 849 MHz

Fc: 824 MHz, Fc + 30 kHz


Plot # 151 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 824 – 849 MHz

Fc: 824 MHz, Fc + 30 kHz


Plot # 152 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 824 – 849 MHz

Fc: 824 MHz, Fc + 30 kHz, Fc + 60 kHz

Plot # 153: Transmitter Spurious Emissions Conducted with 3 RF signal input in 824 - 849 MHz

Fc: 824 MHz, Fc + 30 kHz, Fc + 60 kHz

5.10.5.2.2. Middle Frequencies

Fundamental Frequency: 836.5 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: - 14.7 dBm / Channel Modulation: unmodulated

Modulation.	ullillodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
1667.33	-43.7	-1.7	-42.0	PASS
3633.26	-44.5	-1.7	-42.8	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 154 –155 for spurious conducted emissions.

Fundamental Frequency: 836.5 & 836.530 MHz (2 Channel inputs)

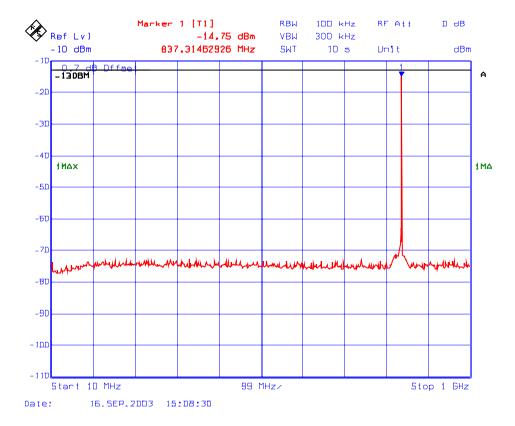
RF Input Power: - 40.0 dBm

RF Output Power: - 16.2 dBm / Channel Modulation: unmodulated

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
1667.33	-45.7	-3.2	-42.5	PASS
3633.26	-42.0	-3.2	-38.8	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 156 –157 for spurious conducted emissions.

Fundamental Frequency: 836.5, 836.530 & 836.470 MHz (3 Channel inputs)

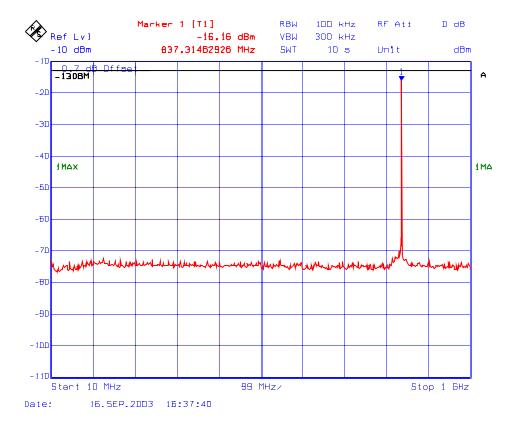

RF Input Power: - 40.0 dBm

RF Output Power: -16.8 dBm / Channel Modulation: unmodulated

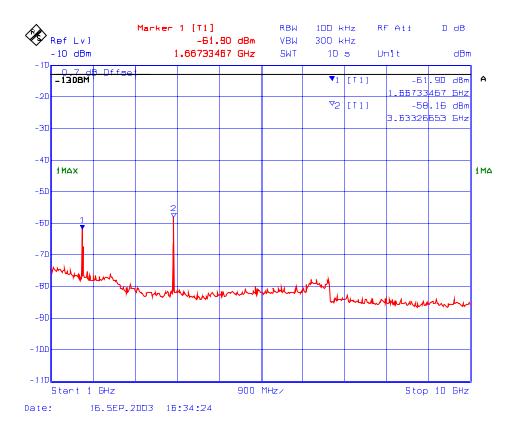
Modulation.	umnodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBm)	Margin (dB)	Pass / Fail
1667.33	-46.1	-3.8	-42.3	PASS
3633.26	-42.0	-3.8	-38.2	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 158 –159 for spurious conducted emissions.

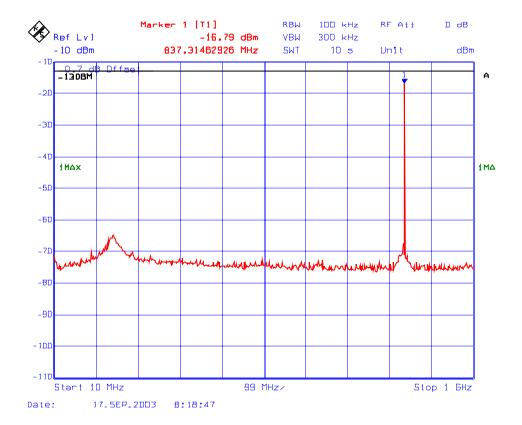
Plot # 154 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 824 - 849 MHz
Fc: 836.5 MHz



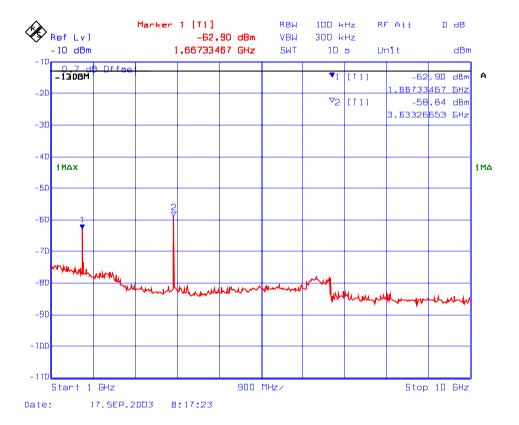
Plot # 155 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 824 - 849 MHz
Fc: 836.5 MHz


Plot # 156 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 824 – 849 MHz

Fc: 836.5 MHz, Fc + 30 kHz


Plot # 157 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 824 – 849 MHz

Fc: 836.5 MHz, Fc + 30 kHz


Plot # 158 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 824 – 849 MHz

Fc: 836.5 MHz, Fc - 30 kHz, Fc + 30 kHz

Plot # 159 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 824 – 849 MHz

Fc: 836.5 MHz, Fc - 30 kHz, Fc + 30 kHz

5.10.5.2.3. Highest Frequencies

Fundamental Frequency: 849 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: -19.3 dBm / Channel Modulation: unmodulated

1:10 0:01011	WIIII O G G I G C G			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
1685.37	-46.3	-6.3	-40.0	PASS
3633.26	-39.3	-6.3	-33.0	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 160 –161 for spurious conducted emissions.

Fundamental Frequency: 849 & 848.970 MHz (2 Channel inputs)

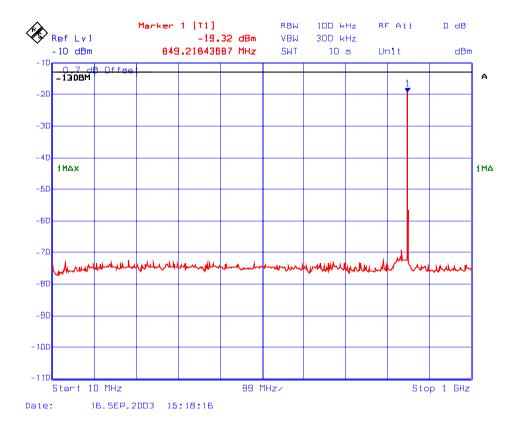
RF Input Power: - 40.0 dBm

RF Output Power: -20.5 dBm / Channel unmodulated

Modulation.	umnodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
1685.37	-47.7	-7.5	-40.2	PASS
3633.26	-37.7	-7.5	-30.2	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 162 –163 for spurious conducted emissions.

Fundamental Frequency: 849, 848.970 & 848.940 MHz (3 Channel inputs)

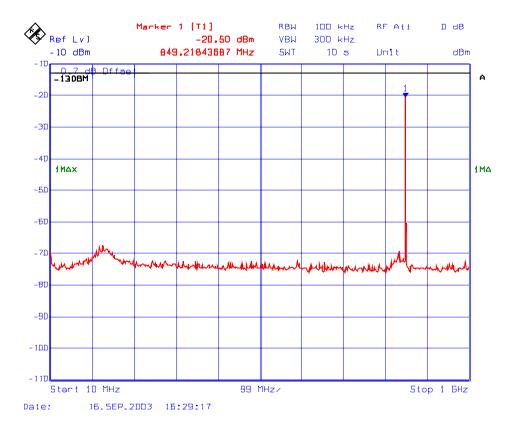

RF Input Power: - 40.0 dBm

RF Output Power: -21.1 dBm / Channel Modulation: unmodulated

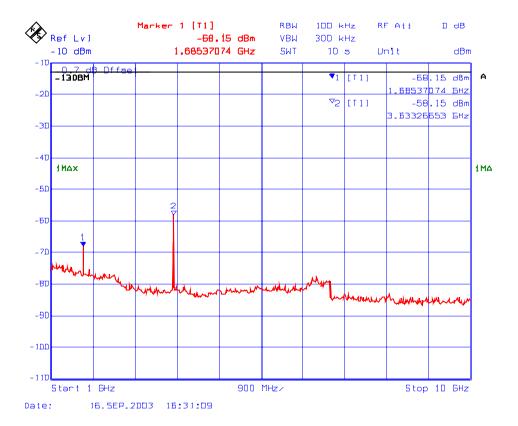
Modulation.	ummodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
1685.37	-35.5	-8.1	-27.4	PASS
3633.26	-37.7	-8.1	-29.6	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 164 –165 for spurious conducted emissions.

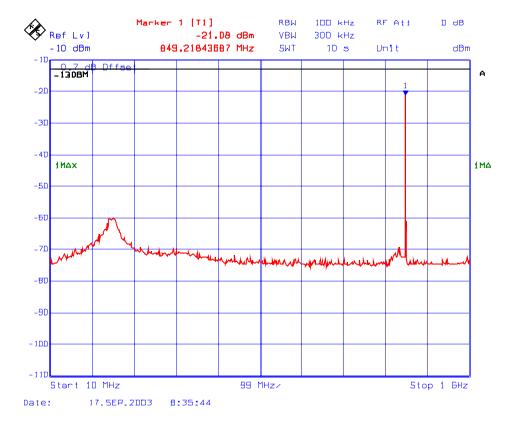
Plot # 160 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 824 - 849 MHz
Fc: 849 MHz



Plot # 161 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 824 - 849 MHz
Fc: 849 MHz


Plot # 162 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 824 – 849 MHz

Fc: 849 MHz, Fc - 30 kHz


Plot # 163: Transmitter Spurious Emissions Conducted with 2 RF signal input in 824 – 849 MHz

Fc: 849 MHz, Fc - 30 kHz

Plot # 164: Transmitter Spurious Emissions Conducted with 3 RF signal input in 824 – 849 MHz

Fc: 849 MHz, Fc - 30 kHz, Fc - 60 kHz

Plot # 165: Transmitter Spurious Emissions Conducted with 3 RF signal input in 824 – 849 MHz

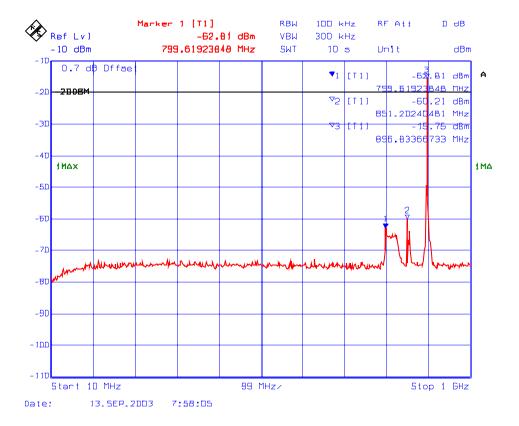
Fc: 849 MHz, Fc - 30 kHz, Fc - 60 kHz

ULTRATECH GROUP OF LABS

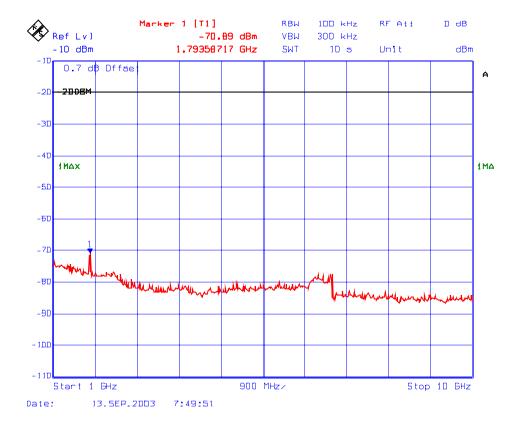
5.10.5.3. 896 – 901 MHz (Paging)

<u>Remarks</u>: The most stringent limit -20 dBm is used for compliance for the worst case operations in FCC permitted band 896-901 MHz (Limit = -20 dBm).

5.10.5.3.1. Lowest Frequencies

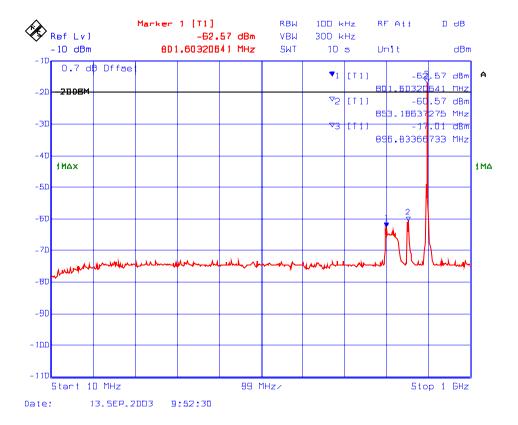

Fundamental Frequency: 896 MHz (1 Channel input) RF Input Power: - 40.0 dBm RF Output Power: -15.8 dBm / Channel Modulation: unmodulated RF Level (dBc) Pass / Fail Frequency (MHz) Limit (dBc) Margin (dB) 799.61 -47.0 4.2 -51.2 **PASS** 851.20 4.2 PASS -44.4 -48.6 1793.60 -55.1 4.2 -59.3 **PASS** The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded. Refer to plots # 166 –167 for spurious conducted emissions.

Fundamental Frequency: 896 & 896.0125 MHz (2 Channel inputs) RF Input Power: -40.0 dBm RF Output Power: -17.0 dBm / Channel Modulation: unmodulated						
Frequency (MHz)	RF Level (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail		
801.60	-45.6	3.0	-48.6	PASS		
853.18	-43.6	3.0	-46.6	PASS		
1793.58	-55.8	3.0	-58.8	PASS		
The emission	The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.					


Fundamental Frequency: 896,896.0125 & 896.025 MHz (3 Channel inputs)				
RF Input Power:	- 40.0 dBm			
RF Output Power:	-16.8 dBm / Channel			
Modulation:	unmodulated			
Frequency (MHz)	RF Level (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
801.60	-46.3	3.2	-49.5	PASS
851.20	-44.2	3.2	-47.4	PASS
1793.58	-55.8	3.2	-59.0	PASS
The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.				
• Refer to plots # 170 –171 for spurious conducted emissions.				

Refer to plots # 168 –169 for spurious conducted emissions.

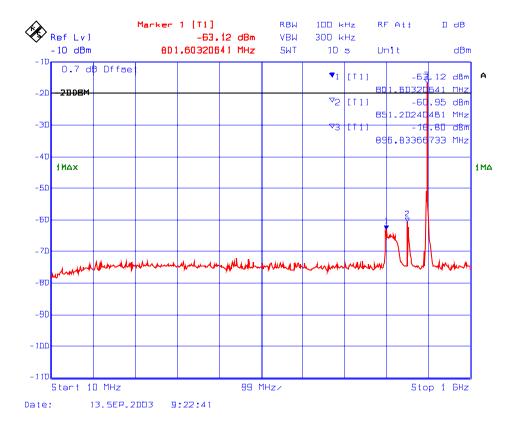
Plot # 166 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 896 – 901 MHz
Fc: 896 MHz



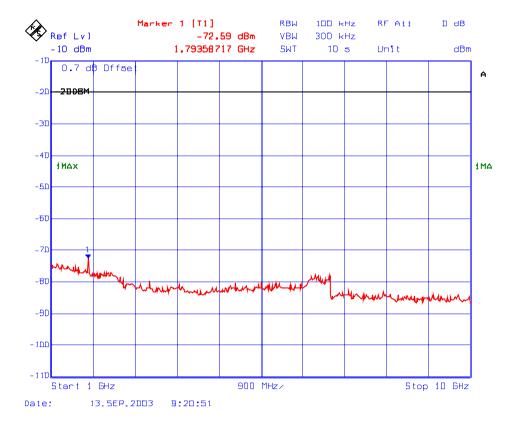
Plot # 167: Transmitter Spurious Emissions Conducted with 1 RF signal input in 896 – 901 MHz
Fc: 896 MHz

Plot # 168: Transmitter Spurious Emissions Conducted with 2 RF signal input in 896 – 901 MHz

Fc: 896 MHz, Fc + 12.5 kHz


Plot # 169: Transmitter Spurious Emissions Conducted with 2 RF signal input in 896 – 901 MHz

Fc: 896 MHz, Fc + 12.5 kHz


Plot # 170: Transmitter Spurious Emissions Conducted with 3 RF signal input in 896 – 901 MHz

Fc: 896 MHz, Fc + 12.5 kHz, Fc + 25 kHz

Plot # 171: Transmitter Spurious Emissions Conducted with 3 RF signal input in 896 – 901 MHz

Fc: 896 MHz, Fc + 12.5 kHz, Fc + 25 kHz

5.10.5.3.2. Highest Frequencies

Fundamental Frequency: 901 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: -14.6 dBm / Channel Modulation: unmodulated

Frequency (MHz)	RF Level (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
801.60	-47.7	5.4	-53.1	PASS
851.20	-45.3	5.4	-50.7	PASS
1793.58	-53.5	5.4	-58.9	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 172 –173 for spurious conducted emissions.

Fundamental Frequency: 901 & 900.9875 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: -15.8 dBm / Channel Modulation: unmodulated

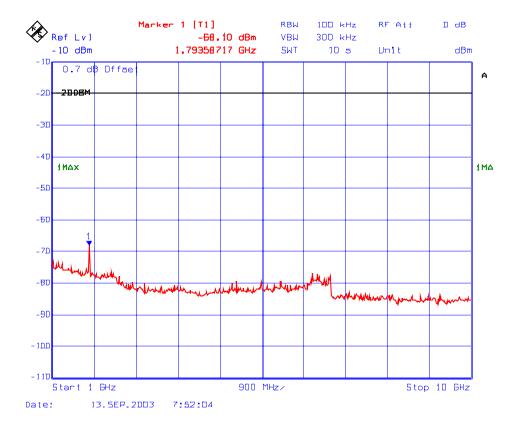
Frequency (MHz)	RF Level (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
801.60	-45.7	4.2	-49.9	PASS
853.18	-44.1	4.2	-48.3	PASS
1793.58	-55.5	4.2	-59.7	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 174 –175 for spurious conducted emissions.

Fundamental Frequency: 901, 900.9875 & 900.975 MHz (3 Channel inputs)

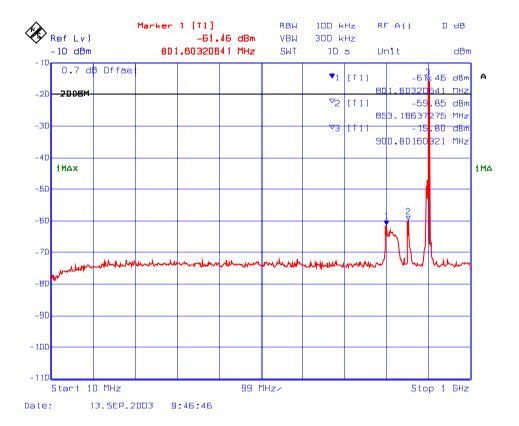
RF Input Power: - 40.0 dBm

RF Output Power: -15.6 dBm / Channel Modulation: unmodulated

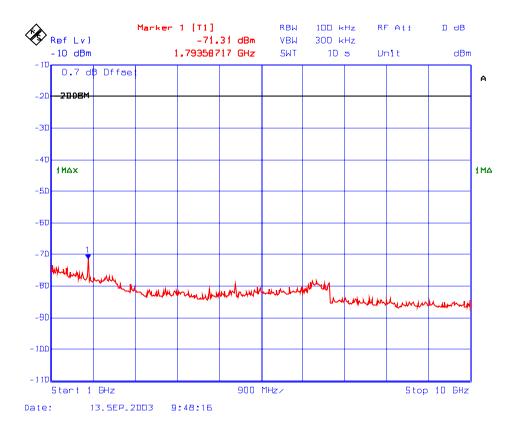

Frequency (MHz)	RF Level (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
801.60	-46.5	4.4	-50.9	PASS
853.18	-44.6	4.4	-49.0	PASS
1793.58	-53.9	4.4	-58.3	PASS

- The emissions were scanned from 10 MHz to 10 GHz and all emissions were recorded.
- Refer to plots # 176 –177 for spurious conducted emissions.

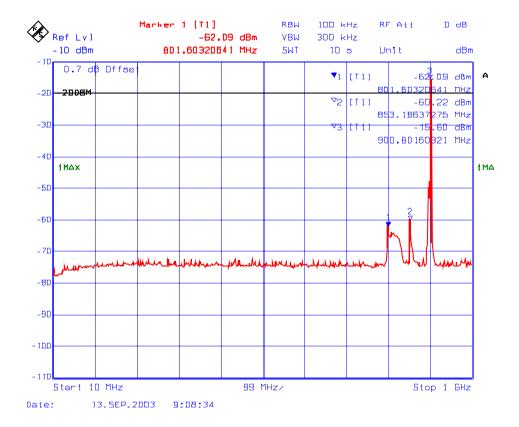
Plot # 172 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 896 – 901 MHz
Fc: 901 MHz



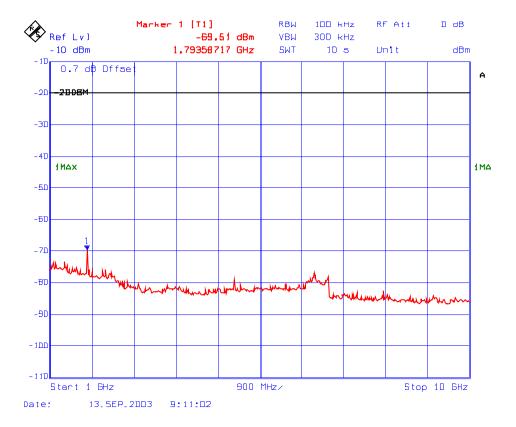
Plot # 173 : Transmitter Spurious Emissions Conducted with 1 RF signal input in 896 – 901 MHz
Fc: 901 MHz


Plot # 174 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 896 – 901 MHz

Fc: 901 MHz, Fc - 12.5 kHz


Plot # 175 : Transmitter Spurious Emissions Conducted with 2 RF signal input in 896 – 901 MHz

Fc: 901 MHz, Fc - 12.5 kHz


Plot # 176 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 896 – 901 MHz

Fc: 901 MHz, Fc - 12.5 kHz, Fc - 25 kHz

Plot # 177 : Transmitter Spurious Emissions Conducted with 3 RF signal input in 896 – 901 MHz

Fc: 901 MHz, Fc - 12.5 kHz, Fc - 25 kHz

FCC ID: H6M-LNKFIB-RA

5.10.5.4. Transmitter RF Conducted Spurious Emissions at the Antenna Port

Uplink Band 1850 - 1910 MHz: Test Frequency: 1851 MHz, Modulation: CDMA 5.10.5.4.1.

Fundamental Frequency: 1851 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -17.6 dBm as maximum rated by the manufacturer

Modulation:

1	FREQUENCY	FREQUENCY TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
	(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
	10.00	-56.4	-38.8	-4.6	-34.2	PASS
	3687.27	-61.8	-44.2	-4.6	-39.6	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 178-179 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.2. Uplink Band 1850 - 1910 MHz: Test Frequency: 1880 MHz, Modulation: CDMA

Fundamental Frequency: 1880 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacture RF Output Power: -18.7 dBm as maximum rated by the manufacturer

Modulation: **CDMA**

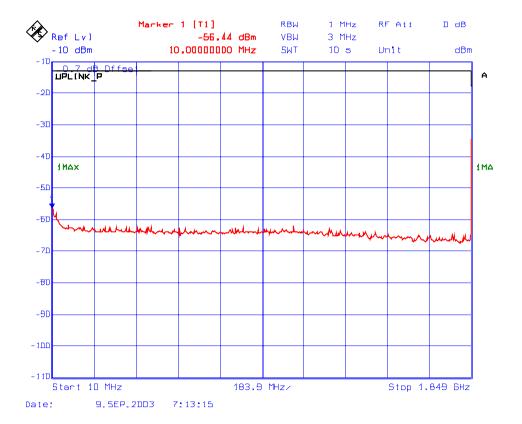
1100					
FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10.00	-59.8	-41.1	-5.7	-35.4	PASS
3759.77	-60.7	-42.0	-5.7	-36.3	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 180-181 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

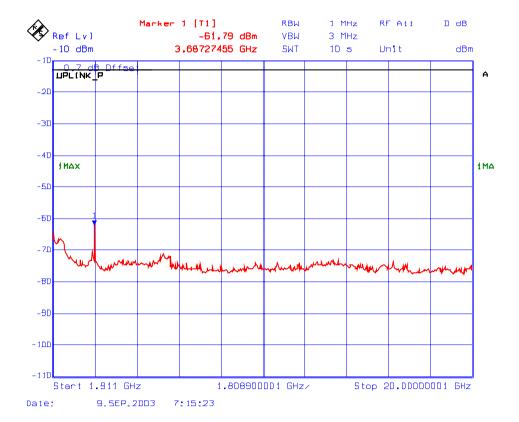
5.10.5.4.3. Uplink Band 1850 - 1910 MHz: Test Frequency: 1909 MHz, Modulation: CDMA

Fundamental Frequency: 1909 MHz

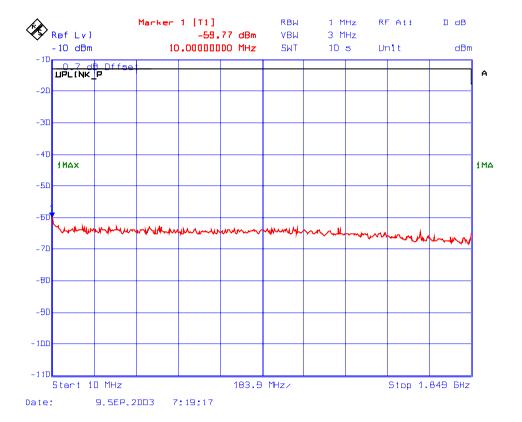
RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.5 dBm as maximum rated by the manufacturer

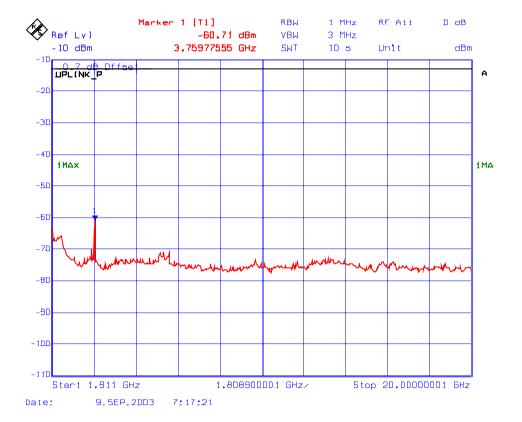

Modulation: CDMV

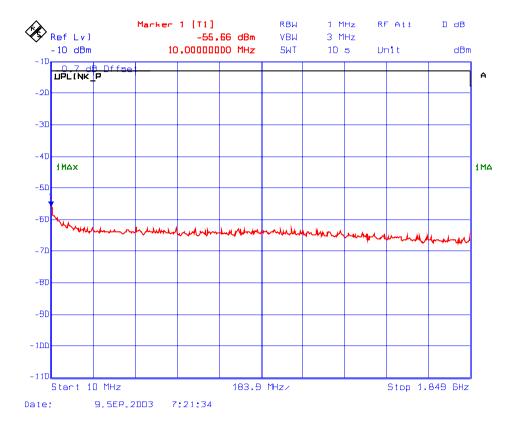
J	Modulation.	CDIVIA				
Ĭ	FREQUENCY	TRANSMITTER		LIMIT	MARGIN	PASS/
		ANTENNA EMISSIONS				
	(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
ĺ	10.00	-55.7	-37.2	-5.5	-31.7	PASS
	3796.02	-65.4	-46.9	-5.5	-41.4	PASS

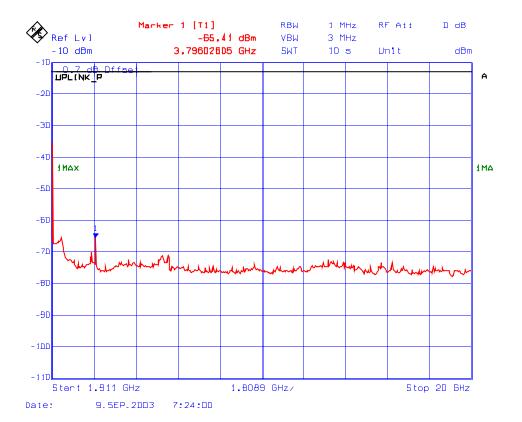

- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 182-183 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

ULTRATECH GROUP OF LABS


Plot # 178: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1851 MHz, Modulation: CDMA


Plot # 179: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1851 MHz, Modulation: CDMA


Plot # 180 : Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1880 MHz, Modulation: CDMA


Plot # 181: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1880 MHz, Modulation: CDMA

Plot # 182: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1909 MHz, Modulation: CDMA

Plot # 183: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1909 MHz, Modulation: CDMA

FCC ID: H6M-LNKFIB-RA

Uplink Band 1850 - 1910 MHz: Test Frequency: 1851 MHz, Modulation: TDMA

Fundamental Frequency: 1851 MHz

5.10.5.4.4.

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -17.6 dBm as maximum rated by the manufacturer

Modulation:

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10.00	-57.0	-39.4	-4.6	-34.8	PASS
3687.27	-62.9	-45.3	-4.6	-40.7	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 184-185 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.5. Uplink Band 1850 - 1910 MHz: Test Frequency: 1880 MHz, Modulation: TDMA

Fundamental Frequency: 1880 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.7 dBm as maximum rated by the manufacturer

Modulation: **TDMA**

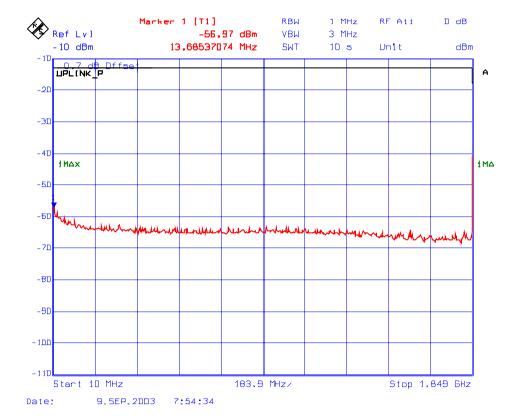
FREQUENCY TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/	
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10.00	-55.6	-36.9	-5.7	-31.2	PASS
3759.77	-63.4	-44.7	-5.7	-39.0	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 186-187 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

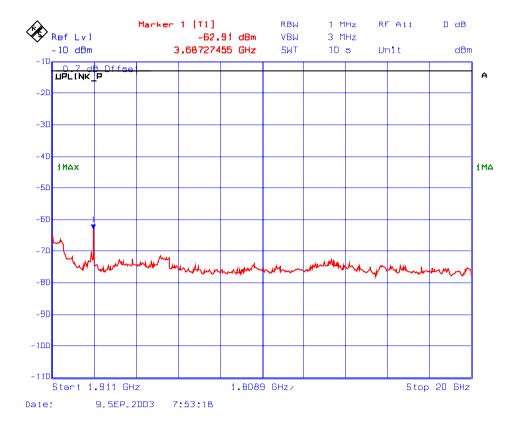
5.10.5.4.6. Uplink Band 1850 - 1910 MHz: Test Frequency: 1909 MHz, Modulation: TDMA

Fundamental Frequency: 1909 MHz

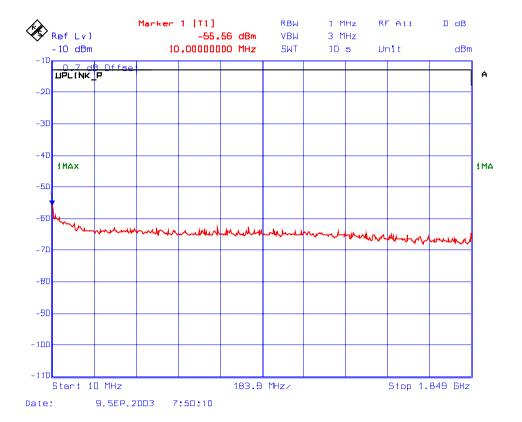
RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.5 dBm as maximum rated by the manufacturer

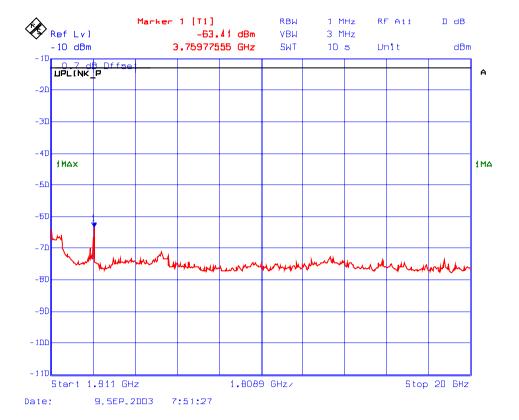

Modulation: **TDMA**

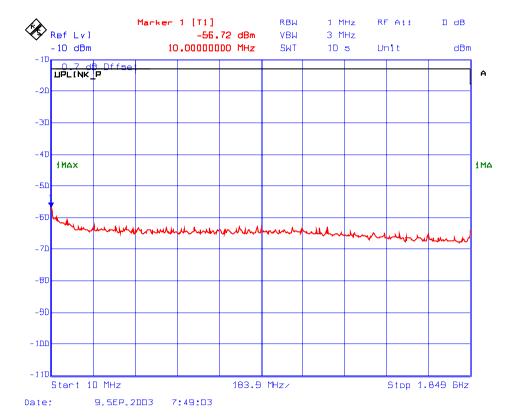
FREQUENCY	REQUENCY TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/		
	ANTENNA	EINIOSIONS					
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL		
10.00	-56.7	-38.2	-5.5	-32.7	PASS		
3796.02	-67.4	-48.9	-5.5	-43.4	PASS		


- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 188-189 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

File #: KTI-035BFCC22-90


Plot # 184: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1851 MHz, Modulation: TDMA


Plot # 185 : Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1851 MHz, Modulation: TDMA


Plot # 186: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1880 MHz, Modulation: TDMA

Plot # 187: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1880 MHz, Modulation: TDMA

Plot # 188 : Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1909 MHz, Modulation: TDMA

Plot # 189: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1909 MHz, Modulation: TDMA

5.10.5.4.7. Uplink Band 1850 - 1910 MHz: Test Frequency: 1851 MHz, Modulation: GSM

Fundamental Frequency: 1851 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -17.6 dBm as maximum rated by the manufacturer

Modulation: **GSM**

Modulation.	COIVI				
FREQUENCY	TRANSMITTER	CONDUCTED	LIMIT	MARGIN	PASS/
	ANTENNA	EMISSIONS			
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10.00	-55.2	-37.6	-4.6	-33.0	PASS
1911.00	-64.3	-46.7	-4.6	-42.5	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 190-191 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.8. Uplink Band 1850 - 1910 MHz: Test Frequency: 1880 MHz, Modulation: GSM

Fundamental Frequency: 1880 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.7 dBm as maximum rated by the manufacturer

Modulation: **GSM**

٠	FREQUENCY	TRANSMITTER ANTENNA	CONDUCTED EMISSIONS	LIMIT	MARGIN	PASS/
	(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
	10.00	-57.1	-38.4	-5.7	-32.7	PASS
	1911.00	-64.2	-45.5	-5.7	-39.8	PASS

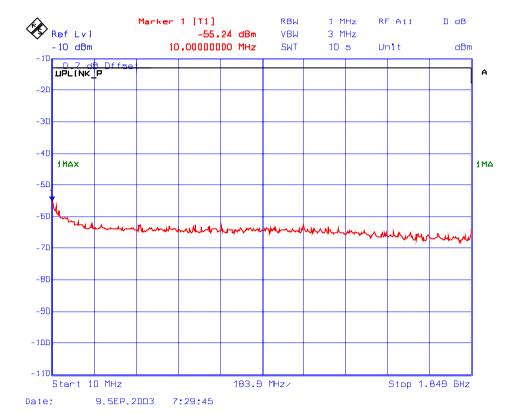
- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 192-193 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.9. Uplink Band 1850 - 1910 MHz: Test Frequency: 1909 MHz, Modulation: GSM

Fundamental Frequency: 1909 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.5 dBm as maximum rated by the manufacturer

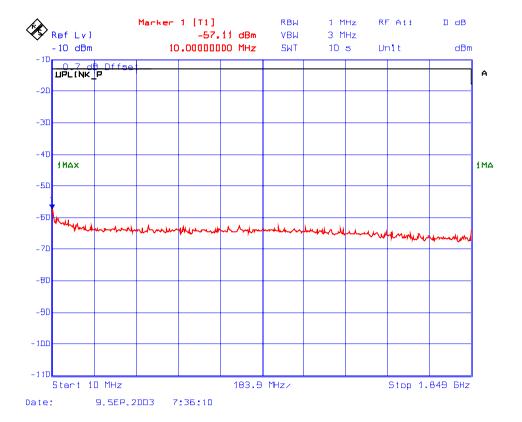
Modulation: **GSM**

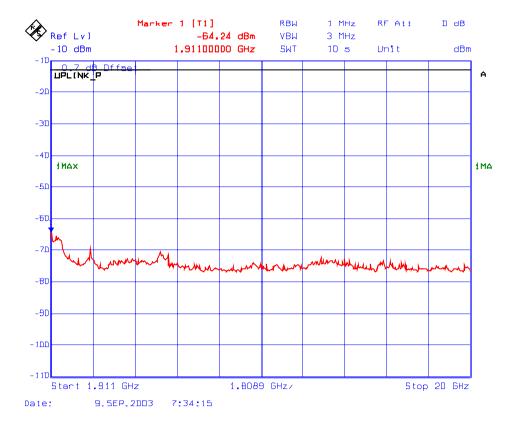

FREQUENCY TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/			
	(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL	
	13.68	-56.3	-37.8	-5.5	-32.3	PASS	
	1911.00	-63.8	-45.3	-5.5	-39.8	PASS	

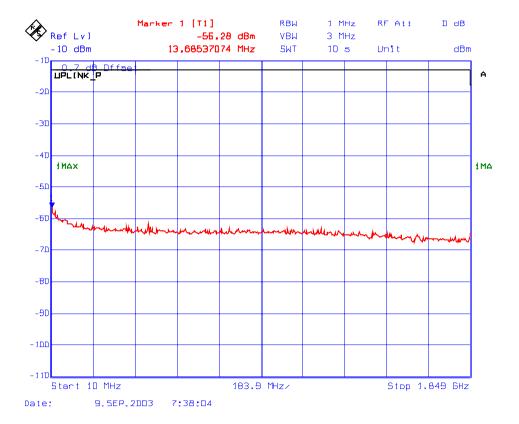
- The emissions were scanned from 10 MHz to 20 GHz and all spurious emissions within 40 dB below the limits were recorded.
 - Refer to Plots # 194-195 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

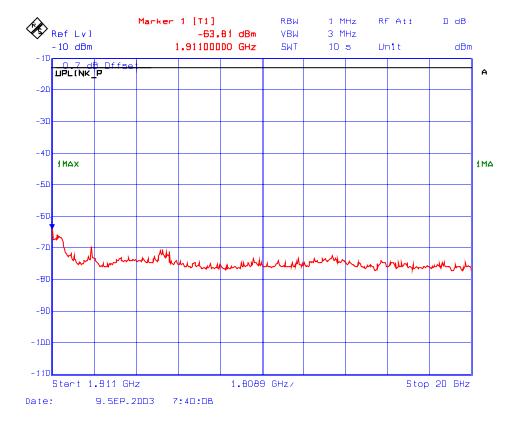
ULTRATECH GROUP OF LABS

File #: KTI-035BFCC22-90


Plot # 190 : Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1851 MHz, Modulation: GSM


Plot # 191: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1851 MHz, Modulation: GSM


Plot # 192: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1880 MHz, Modulation: GSM


Plot # 193: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1880 MHz, Modulation: GSM

Plot # 194: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1909 MHz, Modulation: GSM

Plot # 195: Transmitter Conducted Emissions Outside the Permitted Band Frequency: 1909 MHz, Modulation: GSM

5.10.5.4.10. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1851 & 1851.2 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1851 & 1851.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

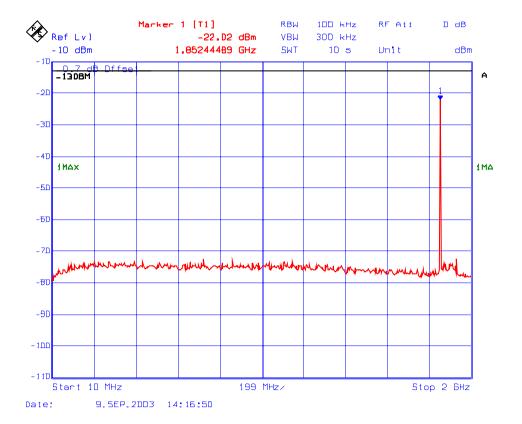
RF Output Power: -22.0 dBm Modulation: unmodulated

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
1851 & 1851.2	-22.0				
3623.24	-72.3	-50.3	-9.0	-41.3	PASS

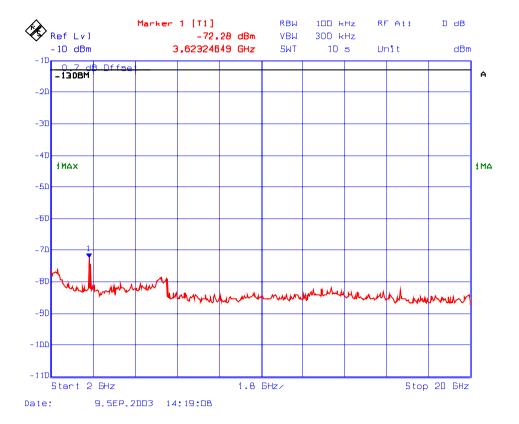
- The emissions were scanned from 10 MHz to 20 GHz and all RF spurious emissions less than 50 dB below the limits were recorded.
 - Refer to Plots # 196 197 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.11. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1851, 1851.2 & 1851.4 MHz, Modulation: unmodulated (for worst case)

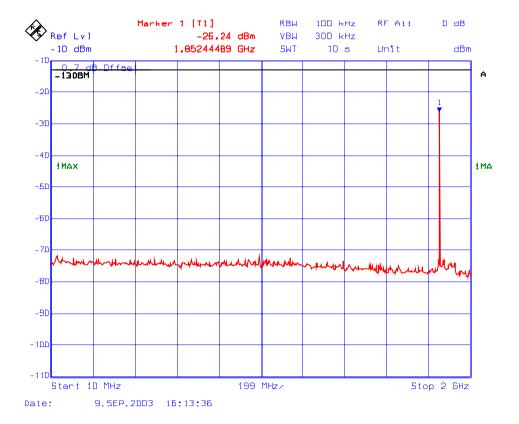
Fundamental Frequencies: 1851, 1851.2 & 1851.4 MHz


RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -26.2 dBm Modulation: unmodulated


FREQUENCY	TRANSMITTER CONDUCTED		LIMIT	MARGIN	PASS/
	ANTENNA EMISSIONS				
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
1851, 1851.2 &					
1851.4	-26.2				
3623.24	-71.7	-45.5	-13.2	-32.3	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all RF spurious emissions less than 50 dB below the limits were recorded.
 - Refer to Plots # 198–199 for Spurious emissions outside the Permitted Band 1850-1910 MHz.


Plot # 196 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1851 MHz, Fc + 200 kHz, Unmodulated


Plot # 197 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1851 MHz, Fc + 200 kHz, Unmodulated

Plot # 198 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1851 MHz, Fc + 200 kHz, Fc + 400 kHz, Unmodulated

Plot # 199 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1851 MHz, Fc + 200 kHz, Fc + 400 kHz, Unmodulated

FCC ID: H6M-LNKFIB-RA

5.10.5.4.12. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1880 & 1880.2 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1880 & 1880.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

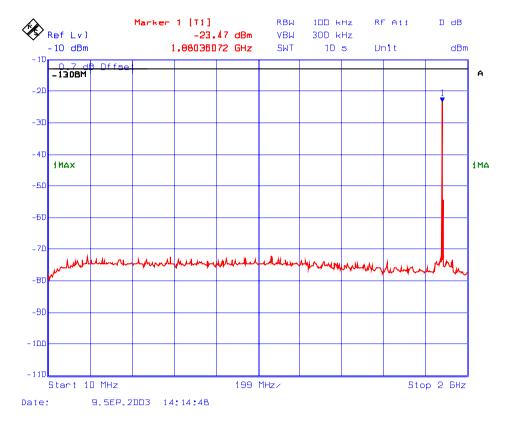
RF Output Power: -23.5 dBm Modulation: unmodulated

	FREQUENCY	EQUENCY TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
	(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
	1880 & 1880.2	-23.5				
Ī	3623.24	-72.6	-49.1	-10.5	-38.6	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all RF spurious emissions less than 50 dB below the limits were recorded.
 - Refer to Plots # 200-201 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.13. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1879.8, 1880 & 1880.2 MHz, Modulation: unmodulated (for worst case)

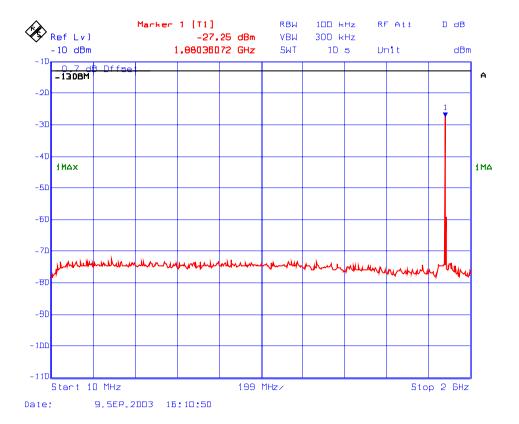
Fundamental Frequencies: 1879.8, 1880 & 1880.2 MHz

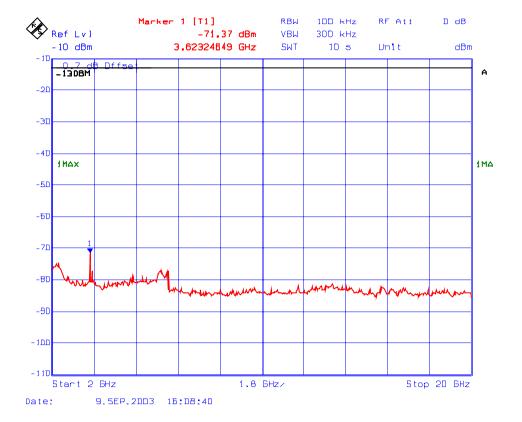

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -27.3 dBm Modulation: unmodulated

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
1879.8, 1880 &					
1880.2	-27.3				
3623.24	-71.4	-44.1	-14.3	-29.8	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all RF spurious emissions less than 50 dB below the limits were recorded.
 - Refer to Plots # 202-203 for Spurious emissions outside the Permitted Band 1850-1910 MHz.


Plot # 200 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1880 MHz, Fc + 200 kHz, Unmodulated


Plot # 201 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1880 MHz, Fc + 200 kHz, Unmodulated

Plot # 202 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1880 MHz, Fc - 200 kHz, Fc + 200 kHz, Unmodulated

Plot # 203 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1880 MHz, Fc - 200 kHz, Fc + 200 kHz, Unmodulated

5.10.5.4.14. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1908.8 & 1909 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1908.8 & 1909 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer -22.7 dBm as maximum rated by the manufacturer

Modulation: unmodulated

	0111110010101				
FREQUENCY	TRANSMITTER	CONDUCTED	LIMIT	MARGIN	PASS/
	ANTENNA EMISSIONS				
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
1908.8 & 1909	-22.7				
3623.24	-72.4	-49.7	-9.7	-40.0	PASS

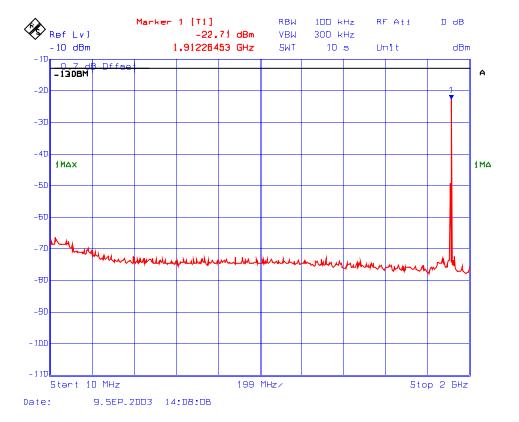
- The emissions were scanned from 10 MHz to 20 GHz and all RF spurious emissions less than 50 dB below the limits were recorded.
 - Refer to Plots # 204 –205 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

5.10.5.4.15. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1908.6, 1908.8 & 1909.0 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1908.6, 1908.8 & 1909.0 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -27.4 dBm Modulation: unmodulated

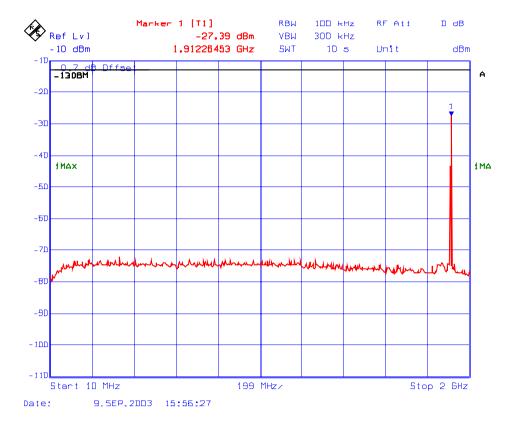

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
1908.6, 1908.8 &					
1909.0	-27.4				
3623.24	-72.1	-44.7	-14.4	-30.3	PASS

- The emissions were scanned from 10 MHz to 20 GHz and all RF spurious emissions less than 50 dB below the limits were recorded.
 - Refer to Plots # 206 –207 for Spurious emissions outside the Permitted Band 1850-1910 MHz.

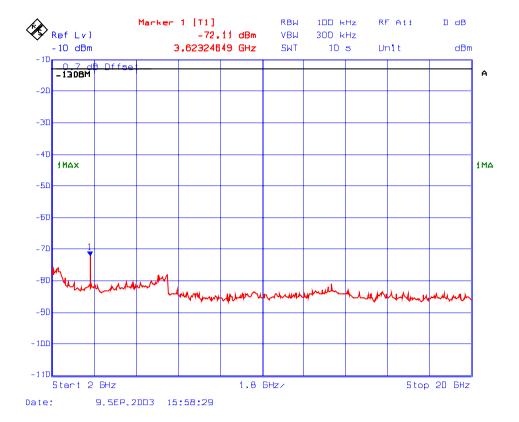
5.10.5.4.16. Band Edge Emissions:

Confirms. Refer to plot # 208 – 213 for detailed measurement of band edge emissions.

Plot # 204 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1909 MHz, Fc - 200 kHz, Unmodulated

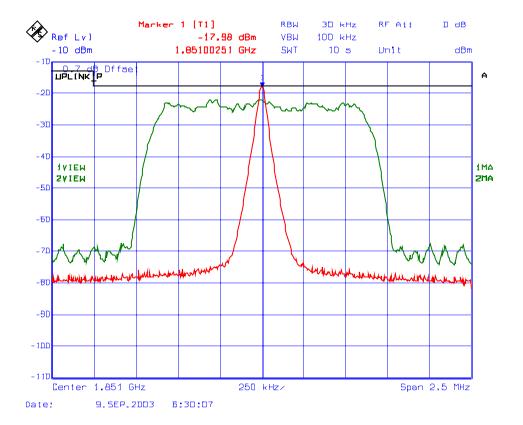


Plot # 205 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1909 MHz, Fc - 200 kHz, Unmodulated



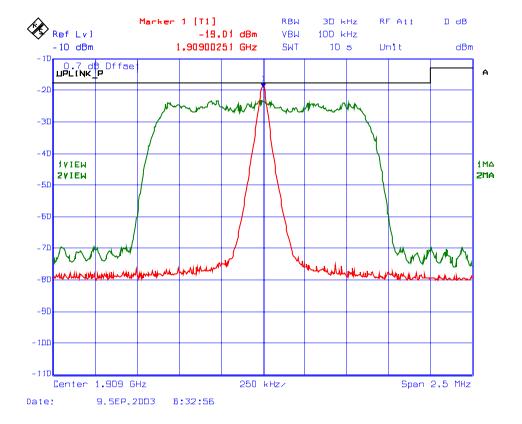
File #: KTI-035BFCC22-90

Plot # 206 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1909 MHz, Fc - 200 kHz, Fc - 400 kHz, Unmodulated


Plot # 207 : Transmitter Conducted Emissions (Multi Input/Output) In 1850–1910 MHz Band Fc: 1909 MHz, Fc - 200 kHz, Fc - 400 kHz, Unmodulated

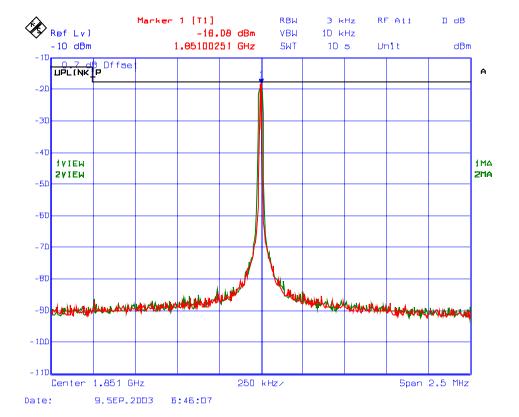
Plot # 208: Band-Edge Conducted Emissions

Frequency: 1851 MHz, Modulation: CDMA

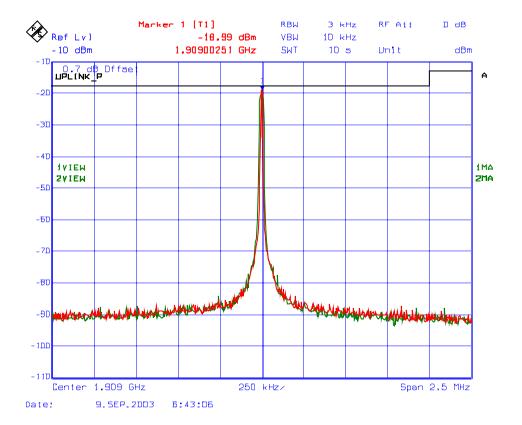

Trace 1; Unmodulated RF Output, Trace 2: CDMA RF Output

Plot # 209: Band-Edge Conducted Emissions

Frequency: 1909 MHz, Modulation: CDMA

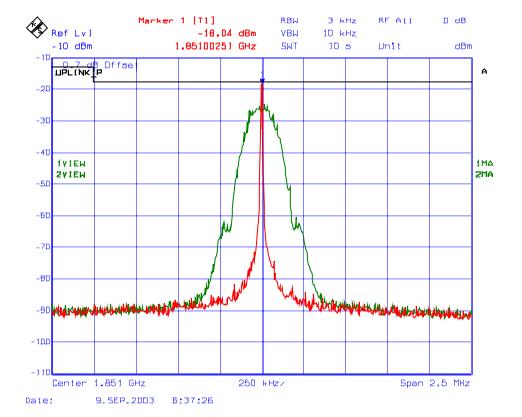

Trace 1; Unmodulated RF Output, Trace 2: CDMA RF Output

Plot # 210: Band-Edge Conducted Emissions


Frequency: 1851 MHz, Modulation: TDMA

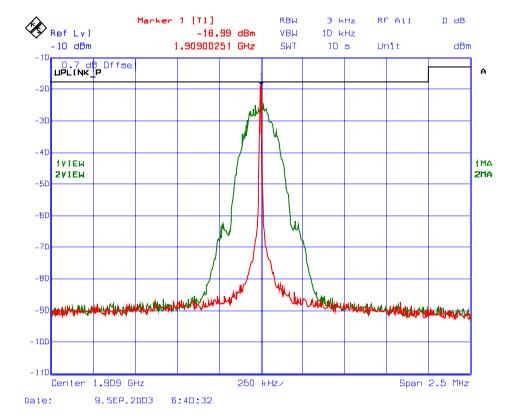
Trace 1; Unmodulated RF Output, Trace 2: TDMA RF Output

Frequency: 1909 MHz, Modulation: TDMA


Trace 1; Unmodulated RF Output, Trace 2: TDMA RF Output

Plot # 212: Band-Edge Conducted Emissions

Frequency: 1851 MHz, Modulation: GSM


Trace 1; Unmodulated RF Output, Trace 2: GSM RF Output

Plot # 213: Band-Edge Conducted Emissions

Frequency: 1909 MHz, Modulation: GSM

Trace 1; Unmodulated RF Output, Trace 2: GSM RF Output

5.11. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ 22.917(A), (B), (C) & (D), 90.208 & 90.210

5.11.1. Limits

The most stringent limit of 50+10*log(P in Watts) dBc is applied for all sub-bands for worst case.

5.11.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Exhibit 7, § 8.2 of this report and its value in dBc is calculated as follows:

- (1) If the transmitter's antenna is an integral part of the EUT, the ERP is measured using substitution method.
- (2) If the transmitter's antenna is non-integral and diverse, the lowest ERP of the carrier with 0 dBi antenna gain is used for calculation of the spurious/harmonic emissions in dBc:

 Lowest ERP of the carrier = EIRP 2.15 dB = Pc + G 2.15 dB = xxx dBm (conducted) + 0 dBi 2.15 dB
- (3) Spurious /harmonic emissions levels expressed in dBc (dB below carrier) are as follows:

ERP of spurious/harmonic (dBc) = ERP of carrier (dBm) - ERP of spurious/harmonic emission (dBm)

5.11.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8546A		9 kHz to 5.6 GHz with
EMI Receiver	Packard			built-in 30 dB Gain Pre-
				selector, QP, Average &
				Peak Detectors.
RF Amplifier	Com-Power	PA-102		1 MHz to 1 GHz, 30 dB
				gain nomimal
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz, 30
	Packard			dB nominal
Biconilog Antenna	EMCO	3142	10005	30 MHz to 2 GHz
Dipole Antenna	EMCO	3121C	8907-434	30 GHz – 1 GHz
Dipole Antenna	EMCO	3121C	8907-440	30 GHz – 1 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3155	9911-5955	1 GHz – 18 GHz
RF Signal Generator	Hewlett Packard	HP 83752B	3610A00457	0.01 – 20 GHz

5.11.4. Test Setup

Please refer to Photos # 1 and 2 in Annex 1 for detailed of test setup.

5.11.5. Test Data

5.11.5.1. 806 – 824 MHz (Trunking)

5.11.5.1.1. Lowest Frequencies

Fundamental Frequency: 806 MHz (1 Channel input) RF Input Power: - 40.0 dBm RF Output Power: - 8.79 dBm / Channel Modulation: unmodulated Tx conducted Antenna Pass / Fail Frequency (MHz) Limit (dBc) Margin (dB) Emission (dBc) 30-10,000 4.2 **PASS** The emissions were scanned from 10 MHz to 10 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 806 & 806.025 MHz (2 Channel inputs)					
RF Input Power:	- 40.0 dBm	•			
RF Output Power:	- 9.5 dBm / Channel				
Modulation:	unmodulated				
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail	
30-10000	**	3.5	**	PASS	
The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.					

Fundamental Frequency: 806, 806.025 & 806.50 MHz (3 Channel inputs)					
RF Input Power:	- 40.0 dBm				
RF Output Power:	- 8.9 dBm / Channel				
Modulation:	unmodulated				
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail	
30-10000	**	4.1	**	PASS	
The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.					

5.11.5.1.2. Middle Frequencies

Fundamental Frequency: 815 MHz (1 Channel input) - 40.0 dBm RF Input Power: RF Output Power: - 7.7 dBm / Channel Modulation: unmodulated Tx conducted Antenna Frequency (MHz) Pass / Fail Limit (dBc) Margin (dB) Emission (dBc) 5.3 PASS 30-10000

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 815 & 815.025 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.3 dBm / Channel Modulation: unmodulated

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
30-10000	**	4.7	**	PASS

 The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 815, 815.025 & 814.975 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 8.7 dBm / Channel Modulation: unmodulated

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBm)	Margin (dB)	Pass / Fail
30-10000	**	4.3	**	PASS

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

5.11.5.1.3. Highest Frequencies

Fundamental Frequency: 824 MHz (1 Channel input) RF Input Power: - 40.0 dBm - 8.4 dBm / Channel RF Output Power: Modulation: unmodulated Tx conducted Antenna Frequency (MHz) Limit (dBc) Margin (dB) Pass / Fail Emission (dBc) 30-10000 4.6 **PASS** The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were

Fundamental Frequency: 824 & 823.975 MHz (2 Channel inputs) RF Input Power: - 40.0 dBm RF Output Power: - 9.1 dBm / Channel Modulation: unmodulated Tx conducted Antenna Pass / Fail Frequency (MHz) Limit (dBc) Margin (dB) Emission (dBc) 30-10000 PASS 3.9 The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were

Fundamental Frequency: 824, 823.975 & 823.95 MHz (3 Channel inputs) RF Input Power: - 40.0 dBm RF Output Power: - 9.3 dBm / Channel Modulation: unmodulated Tx conducted Antenna Pass / Fail Frequency (MHz) Limit (dBc) Margin (dB) Emission (dBc) 30-10000 3.7 **PASS** The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were

5.11.5.2. 824 – 849 (Cellular)

5.11.5.2.1. Lowest Frequencies

Fundamental Frequency: 824 MHz (1 Channel input) RF Input Power: - 40.0 dBm RF Output Power: -17.8 dBm / Channel Modulation: unmodulated Tx conducted Antenna Pass / Fail Frequency (MHz) Limit (dBc) Margin (dB) Emission (dBc) **PASS** 30-10000 -4.8 The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 824 & 824.03 MHz (2 Channel inputs) RF Input Power: - 40.0 dBm RF Output Power: - 17.1 dBm / Channel Modulation: unmodulated Tx conducted Antenna Frequency (MHz) Limit (dBc) Margin (dB) Pass / Fail Emission (dBc) PASS 30-10000 -4.1

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 824, 824.030 & 824.060 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: - 17.6 dBm / Channel Modulation: unmodulated

Modulation.	umnodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBm)	Margin (dB)	Pass / Fail
30-10000	**	-4.6	**	PASS

The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

5.11.5.2.2. Middle Frequencies

Fundamental Frequency: 836.5 MHz (1 Channel input) - 40.0 dBm RF Input Power: RF Output Power: - 14.7 dBm / Channel Modulation: unmodulated Tx conducted Antenna Frequency (MHz) Limit (dBc) Margin (dB) Pass / Fail Emission (dBc) PASS 30-10000 -1.7 The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 836.5 & 836.530 MHz (2 Channel inputs)					
RF Input Power:	- 40.0 dBm	1 /			
RF Output Power:	- 16.2 dBm / Channel				
Modulation:	unmodulated				
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail	
30-10000	**	-3.2	**	PASS	
• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were					
found.					

Fundamental Frequency: 836.5, 836.530 & 836.470 MHz (3 Channel inputs)				
RF Input Power:	- 40.0 dBm			
RF Output Power:	-16.8 dBm / Channel			
Modulation:	unmodulated			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBm)	Margin (dB)	Pass / Fail
30-10000	**	-3.8	**	PASS
The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were				

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

5.11.5.2.3. Highest Frequencies

Fundamental Frequency: 849 MHz (1 Channel input)

RF Input Power: - 40.0 dBm

RF Output Power: -19.3 dBm / Channel Modulation: unmodulated

1:10 @@1@10111	WIIII O G G I G C G			
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
30-10000	**	-6.3	**	PASS

The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 849 & 848.970 MHz (2 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: -20.5 dBm / Channel unmodulated

Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail
30-10000	**	-7.5	**	PASS

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 849, 848.970 & 848.940 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: -21.1 dBm / Channel Modulation: unmodulated

1:10 0:010010111	WIIII O G G I G C G				
Frequency (MHz)	Tx conducted Antenna Emission (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail	_
30-10000	**	-8.1	**	PASS	

 The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

5.11.5.3. 896 – 901 MHz (Paging)

5.11.5.3.1. Lowest Frequencies

Fundamental Frequency: 896 MHz (1 Channel input) RF Input Power: - 40.0 dBm RF Output Power: -15.8 dBm / Channel Modulation: unmodulated Margin (dB) Frequency (MHz) RF Level (dBc) Limit (dBc) Pass / Fail 30-10000 -2.8 **PASS** The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 896 & 896.0125 MHz (2 Channel inputs) - 40.0 dBm RF Input Power: RF Output Power: -17.0 dBm / Channel Modulation: unmodulated Limit (dBm) Pass / Fail Frequency (MHz) RF Level (dBm) Margin (dB) 30-10000 -4.0 **PASS** The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

5.11.5.3.2. Highest Frequencies

Fundamental Frequency: 901 MHz (1 Channel input)						
RF Input Power:						
RF Output Power:	-14.6 dBm / Channel					
Modulation:	unmodulated		,			
Frequency (MHz)	RF Level (dBc)	Limit (dBc)	Margin (dB)	Pass / Fail		
30-10000	**	-1.6	**	PASS		
• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were						
found.						

Fundamental Frequency: 901 & 900.9875 MHz (2 Channel inputs) RF Input Power: - 40.0 dBm RF Output Power: -15.8 dBm / Channel Modulation: unmodulated Frequency (MHz) RF Level (dBm) Limit (dBm) Margin (dB) Pass / Fail ** PASS 30-10000 -2.8

• The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

Fundamental Frequency: 901, 900.9875 & 900.975 MHz (3 Channel inputs)

RF Input Power: - 40.0 dBm

RF Output Power: -15.6 dBm / Channel unmodulated

Wiodulation.	annoadiated			
Frequency (MHz)	RF Level (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
30-10000	**	-2.6	**	PASS

 The emissions were scanned from 10 MHz to 20 GHz and no emissions within 20 dB below the limits were found.

5.11.6. Test Data

5.11.6.1.1. Uplink Band 1850 - 1910 MHz: Test Frequency: 1851 MHz, Modulation: CDMA

Fundamental Frequency: 1851 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -17.6 dBm as maximum rated by the manufacturer

Modulation: CDMA

3	05.177				
FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-0.6	**	PASS

 ^{**} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.2. Uplink Band 1850 - 1910 MHz: Test Frequency: 1880 MHz, Modulation: CDMA

Fundamental Frequency: 1880 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.7 dBm as maximum rated by the manufacturer

Modulation: CDMA

FREQUENCY	TRANSMITTER EMISSIONS		ERP LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	4.0	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.3. Uplink Band 1850 - 1910 MHz: Test Frequency: 1909 MHz, Modulation: CDMA

Fundamental Frequency: 1909 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.5 dBm as maximum rated by the manufacturer

Modulation: CDMA

Modulation.	CDIVIA				
FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-0.1	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.4. Uplink Band 1850 - 1910 MHz: Test Frequency: 1851 MHz, Modulation: TDMA

Fundamental Frequency: 1851 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -17.6 dBm as maximum rated by the manufacturer

Modulation: TDMA

FREQUENCY	TRANSMITTER EMISSIONS		ERP LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-0.6	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.5. Uplink Band 1850 - 1910 MHz: Test Frequency: 1880 MHz, Modulation: TDMA

Fundamental Frequency: 1880 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.7 dBm as maximum rated by the manufacturer

Modulation: TDMA

FREQUENCY	TRANSMITTER EMISSIONS		ERP LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	4.0	***	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.6. Uplink Band 1850 - 1910 MHz: Test Frequency: 1909 MHz, Modulation: TDMA

Fundamental Frequency: 1909 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.5 dBm as maximum rated by the manufacturer

Modulation: TDMA

เพอนนเลเเอา.	IDIVIA				
FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-0.1	***	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.7. Uplink Band 1850 - 1910 MHz: 1851 MHz, Modulation: GSM

Fundamental Frequency: 1851 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -17.6 dBm as maximum rated by the manufacturer

Modulation: GSM

FREQUENCY	TRANSMITTER EMISSIONS		ERP LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-0.6	***	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.8. Uplink Band 1850 - 1910 MHz: Test Frequency: 1880 MHz, Modulation: GSM

Fundamental Frequency: 1880 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.7 dBm as maximum rated by the manufacturer

Modulation: GSM

FREQUENCY	TRANSMITTER		ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	4.0	***	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.9. Uplink Band 1850 - 1910 MHz: Test Frequency: 1909 MHz, Modulation: GSM

Fundamental Frequency: 1909 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -18.5 dBm as maximum rated by the manufacturer

Modulation: GSM

Modulation.	COIVI				
FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-0.1	***	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.10. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1851 & 1851.2 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1851 & 1851.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -22.0 dBm Modulation: unmodulated

FREQUENCY	TRANSMITTER EMISSIONS		ERP LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-30.0	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.11. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1851 & 1851.2, 1851.4 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1851 & 1851.2, 1851.4 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -26.3 dBm Modulation: unmodulated

FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/	
	EMISSIONS	(ERP)	LIMIT			
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL	
10 – 20000	**	**	-29.0	**	PASS	

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.12. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1880 & 1880.2 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1880 & 1880.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -23.5 dBm
Modulation: unmodulated

	0111110010101				
FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-30.0	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

ULTRATECH GROUP OF LABS

File #: KTI-035BFCC22-90

5.11.6.1.13. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1959.8, 1880 & 1880 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1959.8, 1880 & 1880.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -27.3 dBm Modulation: unmodulated

FREQUENCY	TRANSMITTER RADIATED		ERP	MARGIN	PASS/
	EMISSIONS (ERP)		LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-29.7	**	PASS

 ^{**} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.14. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1909 & 1909.2 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1909 & 1909.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer RF Output Power: -22.7 dBm as maximum rated by the manufacturer

Modulation: unmodulated

	01111100000				
FREQUENCY	TRANSMITTER RADIATED		ERP	MARGIN	PASS/
	EMISSIONS (ERP)		LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-30.0	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

5.11.6.1.15. Uplink Band 1850 - 1910 MHz: Test Frequencies: 1988.8, 1909 & 1909.2 MHz, Modulation: unmodulated (for worst case)

Fundamental Frequencies: 1988.8, 1909 & 1909.2 MHz

RF Input Power: -40.0 dBm as maximum rated by the manufacturer

RF Output Power: -27.4 dBm

Modulation: unmodulated

FREQUENCY	TRANSMITTER	RADIATED	ERP	MARGIN	PASS/
	EMISSIONS	(ERP)	LIMIT		
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 – 20000	**	**	-30.4	**	PASS

^{• **} The emissions were scanned from 10 MHz to 20 GHz and no emissions less than 40 dB below the limits were found.

ULTRATECH GROUP OF LABS

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (± dB)		
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivit	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi)~0.3~(Lp)$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \; dB \qquad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \; dB$$

EXHIBIT 7. MEASUREMENT METHODS

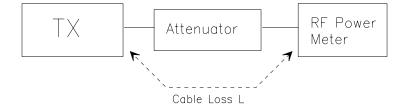
7.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- ➤ Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0 < x < 1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

$$EIRP = A + G + 10log(1/x)$$

{ X = 1 for continuous transmission => $10\log(1/x) = 0$ dB }

Figure 1.

7.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION **METHOD**

7.2.1. Maximizing RF Emission Level (E-Field)

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency Resolution BW: 100 kHz Video BW: same **Detector Mode:** positive Average: off

3 x the signal bandwidth Span:

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be
- (l) Repeat for all different test signal frequencies

7.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source

Resolution BW: 10 kHz Video BW: same Detector Mode: positive Average: off

Span: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

 $\label{eq:control_control_control} Total\ Correction\ Factor\ recorded\ in\ the\ EMI\ Receiver = Cable\ Loss\ +\ Antenna\ Factor\ E\ (dBuV/m)\ =\ Reading\ (dBuV)\ +\ Total\ Correction\ Factor\ (dB/m)$

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
 - ♦ DIPOLE antenna for frequency from 30-1000 MHz or
 - ♦ HORN antenna for frequency above 1 GHz }.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna:
 - ♦ DIPOLE antenna for frequency from 30-1000 MHz or
 - ♦ HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

Total Correction factor in EMI Receiver #2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator
P2: Power measured at attenuator A input
P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: KTI-035BFCC22-90

Sep. 24, 2003

Figure 2

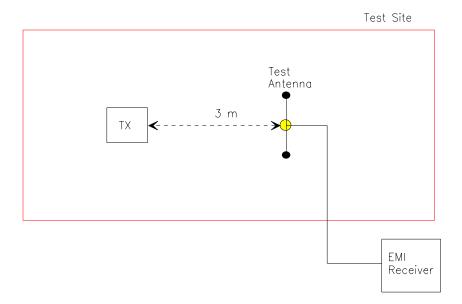
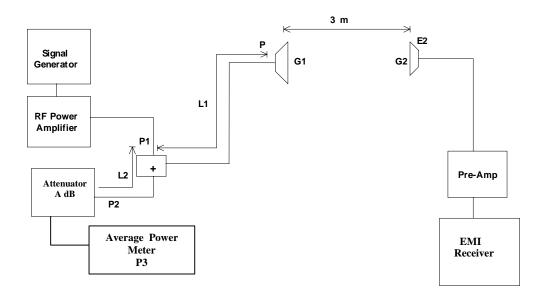



Figure 3

7.3. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

7.4. EMISSION MASK

Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i):- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: ±2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

<u>Digital Modulation Through a Data Input Port @ 2.1049(h)</u>:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 kHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 kHz or 6.25 kHz Channel Spacings: RBW = 100 Hz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

7.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 kHz minimum, VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC CFR 47, Para. 2.1057 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.1051 - Spurious Emissions at Antenna Terminal:- The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.