

January 11, 2000

FEDERAL COMMUNICATIONS COMMISSION 7435 Oakland Mills Road Columbia, MD 21046

HC

Canada

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone(905) 829-1570Facsimile(905) 829-8050

Website: www.ultratech-labs.com Email: vhk.ultratech@sympatico.ca

USA Subject: Type Acceptance Application under FCC CFR 47, Parts 2 and 90 (Subpart I) - Radio Services Transmitters Operating in the frequency bands 806-824 MHz and 851-869 MHz.

Applicant: Kaval Telecom Inc. Product: 800 MHz Trunking "Micro" BDA Model: BDA1250-T FCC ID: H6M-BDA1250

Dear Sir/Madam,

As appointed agent for Kaval Telecom Inc., please find enclosed copies of the engineering report, authorization form, application form and a cheque of US \$610.00.

Please refer to User's Manual for antenna installation instructions and RF Safety warning for compliance with FCC RF Exposure Requirement @ 2.1093.

If you have any queries, please do not hesitate to contact us by our TOLL FREE numbers:

OUR TELEPHONE NO .: 1-877-765-4173

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

TML/AK

Encl.

January 11, 2000

Kaval Telecom Inc. 60 Gough Road Markham, Ontario Canada, L3R 8X7

Attn.: Mr. Alan Aslett

 Dject: Certification Testing in accordance with FCC CFR 47, Parts 2 and 90 (Subpart I) - Radio Services Transmitters Operating in the frequency bands 806-824 MHz and 851-869 MHz.

Product:800 MHz Trunking "Micro" BDAModel:BDA1250-TFCC ID:H6M-BDA1250

Dear Mr. Aslett,

The product sample has been tested in accordance with FCC CFR 47, Parts 2 and 90 (Subpart I) - Radio Services Transmitters Operating in the frequency bands 806-824 MHz and 851-869 MHz, and the results and observation were recorded in the engineering report, Our File No.: KTI04_F90

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P.Eng Vice President - Engineering

Encl.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone(905) 829-1570Facsimile(905) 829-8050

Website: www.ultratech-labs.com Email: vhk.ultratech@sympatico.ca _____

∅

FC

Canada

Subject:

ENGINEERING TEST REPORT

800 MHz Trunking "Micro" BDA Model No.: BDA1250-T FCC ID: H6M-BDA1250

Applicant:

Kaval Telecom Inc.

60 Gough Road Markham, Ontario Canada, L3R 8X7

Tested in Accordance With

Federal Communications Commission (FCC) CFR 47, PARTS 2 and 90 (Subpart I) (Operating Frequency Bands: 806-824 MHz and 851-869 MHz)

UltraTech's File No.: KTI04_F90

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs				
Date:				
Report Prepared by: Mike Tom	Tested by: Hung Trinh, RFI/EMI Technician			
Issued Date: January 11, 2000	Test Dates: Dec. 21/99 to Jan. 10/2000			
The results in this Test Report apply only to the same randomly selected.	ple(s) tested, and the sample tested is			
UltraTech				

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vhk.ultratech@sympatico.ca

TABLE OF CONTENTS

EXHIBIT 1.	INTRODUCTION	4
1.1. SCC	PE	4
	RMATIVE REFERENCES	
EXHIBIT 2.	PERFORMANCE ASSESSMENT	5
	NT INFORMATION	
-	IPMENT UNDER TEST (EUT) INFORMATION	
	"S TECHNICAL SPECIFICATIONS of EUT's Ports	
	CIAL CHANGES ON THE EUT'S HARDWARE/SOFTWARE FOR TESTING PURPOSES	
	IFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
	ATED SUBMITAL(S)/GRANT(S)	
	ILLARY EQUIPMENT	
EXHIBIT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	8
3.1. CLIN	IATE TEST CONDITIONS	8
	RATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	
3.3. BLC	OCK DIAGRAM OF TEST SETUP	9
EXHIBIT 4.	SUMMARY OF TEST RESULTS	10
4.1. LOO	CATION OF TESTS	10
4.2. APF	LICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	10
EXHIBIT 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	11
5.1. TES	PROCEDURES	11
	SUREMENT UNCERTAINTIES	
	SUREMENT EQUIPMENT USED:	
	ENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:	
	DWER OUTPUT, 20DB GAIN BANDWIDTH (BW) & AMPLIFIER GAIN FREQUENCY RESPONSE @ F	
	205	
5.5.1. 5.5.2.	Limits @ FCC 90.205	
5.5.2. 5.5.3.	Method of Measurements Test Equipment List	
5.5.3. 5.5.4.	Test Arrangement	
5.5.5.	Test data	
5.5.5.1		
5.5.5.2	*	
5.5.5.3		
5.5.5.4		
	SSION LIMITATION & EMISSION MASK @ FCC 2.989, 90.209 & 90.910	
5.6.1.	Limits @ 90.209 & 90.910	
5.6.2.	Method of Measurements	
5.6.3. 5.6.4	Test Equipment List	
5.6.4.	Test Arrangement	10

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.6.5.	Test data	
	ANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FC	
5.7.1.	Limits @ 90.210	
5.7.2.	Method of Measurements	
5.7.3.	Test Equipment List	17
5.7.4.	Test Arrangement	18
5.7.5.	Test Data	18
5.7.5.	1. UPLINK BAND 806-824 MHz	
5.7	5.1.1. Near Lowest Frequency (806 MHz)	
5.7	5.1.2. Near Middle Frequency (815 MHz)	
5.7	5.1.3. Near Highest Frequency (824 MHz)	
5.7.5.2	2. DOWNLINK BAND 851-869 MHz	
5.7	5.2.1. Near Lowest Frequency (851 MHz)	
5.7	5.2.2. Near Middle Frequency (860 MHz)	
5.7	5.2.3. Near Highest Frequency (869 MHz)	
5.7.5.		
5.7.5.4	4. DOWNLINK BAND 851-869 MHz	
5.8. Tr	ANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210	
5.8.1.	Limits @ FCC 90.210	
5.8.2.	Method of Measurements	
5.8.3.	Test Arrangement	
	0	
5.8.4.	Test Equipment List	
5.8.5.	Test Data	
5.8.5.		
	5.1.1. Near Lowest Frequency (806 MHz)	
	5.1.2. Near Middle Frequency (815 MHz)	
	5.1.3. Near Highest Frequency (824 MHz)	
5.8.5.2		
	5.2.1. Near Lowest Frequency (851 MHz)	
	5.2.2. Near Middle Frequency (860 MHz)	
	5.2.3. Near Highest Frequency (869 MHz)	
5.8.6.	Plots	
5.8.7.	Photographs of Test Setup	38
	MEASUREMENT UNCERTAINTY	20
EXHIBIT 6.		
6.1. Lin	E CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	
	DIATED EMISSION MEASUREMENT UNCERTAINTY	
0.2. 101		
EXHIBIT 7.	MEASUREMENT METHODS	41
7.1. GE	NERAL TEST CONDITIONS	<i>A</i> 1
7.1.1.	Test Conditions	
7.1.2.	Method of Measurements - AC Mains Conducted Emissions	
7.1.3.	Method of Measurements - Electric Field Radiated Disturbance	
EXHIBIT 8.	PLOTS OF MEASUREMENT DATA	10
EAHIDII 0	PLOIS OF MEASUREMENT DATA	
		40
EXHIBIT 9.	FCC FORM 731, APPLICANT'S LETTERS & STATEMENT	
9.1. FC	C FORM 731	
	LICANT'S AUTHORIZATION TO APPOINT ULTRATECH ENGINEERING LABS INC. TO ACT AS AN AGENT	
	TER REQUEST FOR FCC CONFIDENTIALITY FILING	
EXHIBIT 1). FCC ID LABEL & SKETCH OF LABEL LOCATION	50

ULTRATECH GROUP OF LABS	
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4	
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca,	Website: http://www.ultratech-labs.com

File #: KTI04_F90 January 11, 2000

.

•

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST) •

EXHIBIT 11.	"FCC INFORMATION TO USER"	51
EXHIBIT 12.	PHOTOGRAPHS OF EQUIPMENT UNDER TEST	52
EXHIBIT 13.	SYSTEM BLOCK DIAGRAM(S) & SCHEMATIC DIAGRAMS	53
EXHIBIT 14.	USER'S MANUAL	54

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada) •

•

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Parts 2 and 90 (Subpart 90): 1999			
Title	Telecommunication - Code of Federal Regulations, CFR 47, Parts 2 & 90			
Purpose of Test:	To gain FCC Certification Authorization for Radio operating in the frequency bands 806-			
	824 MHz and 851-869 MHz			
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance with			
	American National Standards Institute ANSI C63.4 - American National Standard for			
	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and			
	Electronic Equipment in the Range of 9 kHz to 40 GHz.			

1.2. NORMATIVE REFERENCES

<u>Note</u>: When the international publication has been modified by common modifications, indicated by (mod), the relevant *EN/HD* applies.

Publication	Year	Title			
FCC CFR Parts 0-19,	1998	Code of Federal Regulations – Telecommunication			
80-End					
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions			
		from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40			
		GHz			
CISPR 22 &	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics of			
EN 55022	1998	Information Technology Equipment			
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and methods			

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:	
Name:	Kaval Telecom Inc.
Address:	60 Gough Road
	Markham, Ontario
	Canada, L3R 8X7
Contact Person:	Mr. Alan Aslett
	Phone #: 905-946-3397
	Fax #: 905-946-3392

MANUFACTURER:	
Name:	Kaval Telecom Inc.
Address:	60 Gough Road
	Markham, Ontario
	Canada, L3R 8X7
Contact Person:	Mr. Alan Aslett
	Phone #: 905-946-3397
	Fax #: 905-946-3392

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	Kaval Telecom Inc.			
Product Name	800 MHz Trunking "Micro" BDA			
Model Name or Number	BDA1250-T			
Serial Number	Pre-Production			
Type of Equipment	Radio Communication Equipment – Bi-directional Amplifier			
External Power Supply	12 Vdc using the Kaval external power supply, Model MKD-142000B			
Transmitting/Receiving	Non-Integral			
Antenna Type				
Primary User Functions of	None			
EUT:				

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

Recognized/Listed by FCC (USA), Industry Canada (Canada)

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER					
Equipment Type: • Portable					
	•	Mobile			
	•	Base station (fixed use)			
Intended Operating Environment:	•	Commercial, light industry & heavy industry			
Power Supply Requirement:	•	120V/230V AC Adapter, 12Vdc Out			
RF Output Power Rating:	•	806-824 MHz Band: 430.0 mWatts/channel (1 Channel)			
	•	806-824 MHz Band: 67.6 mWatts/channel (2 Channels)			
	•	806-824 MHz Band: 38.9 mWatts/channel (3 Channels)			
	•	806-824 MHz Band: 30.2 mWatts/channel (4 Channels)			
	•	851-869 MHz Band: 400.0 mWatts/channel (1 Channel)			
	•	851-869 MHz Band: 37.2 mWatts/channel (2 Channels)			
	•	851-869 MHz Band: 31.6 mWatts/channel (3 Channels)			
	•	851-869 MHz Band: 28.2 mWatts/channel (4 Channels)			
Maximum Input Power Rating	•	-34.69 dBm			
Operating Frequency Range:	•	806-824 MHz and 851-869 MHz			
Amplifier 20 dB Bandwidth	•	39.0 MHz in 806-824 MHz Band			
	•	37.3 MHz in 851-869 MHz Band			
RF Output Impedance:	•	50 Ohms			
Channel Spacing:	•	N/A			
Emission Designation:	•	F1D & F3E			
Antenna Connector Type:	•	N			
Antenna Description:	•	User supplied			

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Roof-Top Antenna Port	1	Type N	Double shielded coaxial cable
2	In-Building Port	1	Type N	Double shielded coaxial cable
3	AC Adapter power in	1	Mini-plug	Non-shielded

NOTES:

- (1) Ports of the EUT which in normal operation were connected to ancillary equipment through interconnecting cables via a representative interconnecting cable to simulate the input/output characteristics. RF input/output was correctly terminated to the 50 Ohm RF Load.
- (2) Ports which are not connected to cables during normal intended operation (for factory/technical services uses only) None.

2.5. SPECIAL CHANGES ON THE EUT'S HARDWARE/SOFTWARE FOR TESTING PURPOSES

None

2.6. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

2.7. RELATED SUBMITAL(S)/GRANT(S)

None

2.8. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

No ancillary equipment was required.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

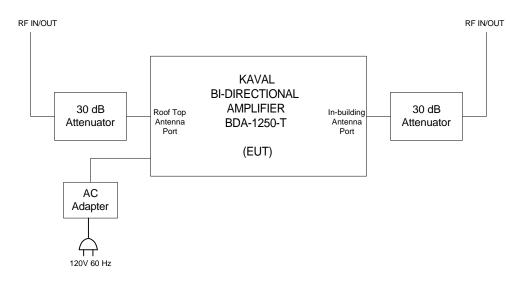
The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	120V/230V AC Adapter,
	12Vdc Out

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.		
Special Test Software:	None		
Special Hardware Used:	None		
Transmitter Test Antenna:	The EUT is tested with the transmitter antenna port terminated to a 50 Ohm RF Load.		

Transmitter Test Signals:	
Frequencies:	Near lowest, near middle & near highest frequencies each frequency bands that the transmitter covers:
 806 - 824 MHz band: 	 806 MHz, 815 MHz and 824 MHz
 851 - 869 MHz band: 	 851 MHz, 860 MHz and 869 MHz
Maximum Input Test Signals	• -34.69 dBm
Transmitter Wanted Output Test Signals:	
 RF Power Output (measured maximum output power): 	• 0.43 Watts
Normal Test ModulationModulating signal source:	 Standard Data and Voice FM modulation. external


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

3.3. BLOCK DIAGRAM OF TEST SETUP

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at UltraTech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Sep. 20, 1999.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
90.205 & 2.985	RF Power Output	Yes
90.213 & 2.995	Frequency Stability	Not applicable for RF Amplifier
90.242(b)(8) & 2.987(a)	Audio Frequency Response	Not applicable for RF Amplifier
90.210 & 2.987(b)	Modulation Limiting	Not applicable for RF Amplifier
90.209, 90.210 & 2.989	Emission Limitation & Emission Masks	Yes
90.210, 2.997 & 2.991	Emission Limits - Spurious Emissions at Antenna Terminal	Yes
90.210, 2.997 & 2.993	Emission Limits - Field Strength of Spurious Emissions	Yes
90.214	Transient Frequency Behavior	Not applicable

800 MHz Trunking "Micro" BDA, Model No.: BDA1250-T, by **Kaval Telecom Inc.** has also been tested and found to comply with **FCC Part 15, Subpart B - Radio Receivers and Class A Digital Devices**. The engineering test report is on file and is available upon FCC request.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 7 of this report

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:1992 and CISPR 16-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:

The BDA is intended to extend Cellular coverage into areas with coverage deficiency such as inside office buildings, shopping malls, etc. It is designed to be located independent of the donor site and must be equipped with its own antenna systems.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

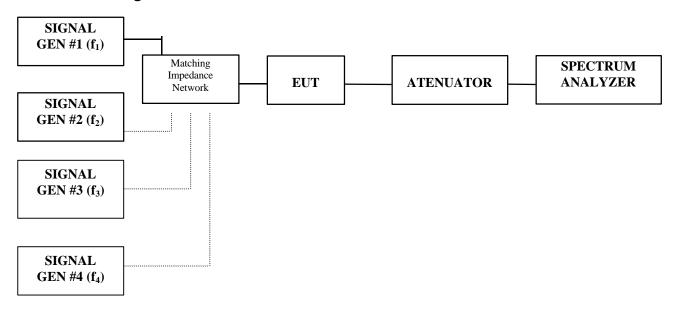
Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.5. RF POWER OUTPUT, 20DB GAIN BANDWIDTH (BW) & AMPLIFIER GAIN FREQUENCY RESPONSE @ FCC 2.985 & 90.205

5.5.1. Limits @ FCC 90.205

Please refer to FCC CFR 47, Part 90, Subpart I, Para. 90.205 for specification details.


5.5.2. Method of Measurements

(a) For transmitter other than single sideband, independent sideband and controlled carrier radiotelephone, power rf output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of the current and voltage on the circuit elements specified in 2.983(d)(5). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

5.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			
Attenuator(s)	Bird			DC – 22 GHz
Synthesized Signal	Fluke	6061A		10 kHz – 1050 MHz,
Generators				13 dBm output max.

5.5.4. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.5.5. Test data

5.5.5.1. 806-824 MHz Uplink Band

Single Channel Input/Output

	Maximu Power	m Input (dBm)	Maximum RF Output Level (dBm)		Maximum Gain (dB)	
Channel Frequency (MHz)	Measured	Rating	Measured	Rating	Measured	Rating
806	-34.68	-34.68	24.93	27.78	59.61	60.00
815	-34.68	-34.68	26.34	27.78	61.02	60.00
824	-34.68	-34.68	23.80	27.78	58.50	60.00

Refer to Plots #9 to 11 in Exhibit 8 of this report for details of measurement.

Multiple Channel Input/Output

Number of Channel Input/Output	Channel Frequency (MHz)	Measured Average per Channel RF Output Level (dBm) to provide –13 dBm maximum I.M.C.	Tx Rating
2	814.975 & 815.025	18.3 (Note 1)	
3	814.950, 815.000 & 815.050	15.9 (Note 1)	
4	814.90, 814.95, 815.00 & 815.05	14.8 (Note 1)	

Refer to Plots #1 to 3 in Exhibit 8 of this report for details of measurement results.

5.5.5.2. 851-869 MHz Downlink Band

Single Channel Input/Output

	Maximu Power	m Input (dBm)	Maximum RF Output Level (dBm)		t Maximum Gain (dB)	
Channel Frequency (MHz)	Measured	Rating	Measured	Rating	Measured	Rating
851	-34.69	-34.69	24.20	27.78	58.90	60.00
860	-34.69	-34.69	26.02	27.78	60.71	60.00
869	-34.69	-34.69	23.90	27.78	58.60	60.00

Refer to Plots #12 to 14 in Exhibit 8 of this report for details of measurement results.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Multiple Channel Input/Output

Number of Channel Input/Output	Channel Frequency (MHz)	Measured Average per Channel RF Output Level (dBm) to provide –13 dBm maximum I.M.C.	Tx Rating
2	859.9750 & 860.025	15.7	
3	859.95, 860.00 & 860.05	15.1	
4	859.90, 859.95, 860.00 & 860.05	14.5	

Please refer to plots #4 to #6 in this report for details of measurement results.

5.5.5.3. 20 dB Bandwidth

FREQUENCY BAND	20 dB BANDWIDTH (BW)
806 – 824 MHz	39.03 MHz
851 – 869 MHz	37.28 MHz

Please refer to plots #7 to #10 and #12 and #13 in this report for the data plots of the above measurement data.

5.5.5.4. Gain Vs. Frequency Response Graphs

Please refer to plots #11 and #14 in this report for Amplifier Gain Frequency Response Characteristics of 806 - 824 MHz and 851 - 869 MHz Amplifier Bands.

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.6. EMISSION LIMITATION & EMISSION MASK @ FCC 2.989, 90.209 & 90.910

5.6.1. Limits @ 90.209 & 90.910

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FREQUENCY RANGE (MHz)	Maximum Authorized BW (kHz)	Channel Spacing (kHz)	Recommended Max. Freq. Deviation (kHz)	FCC APPLICABLE MASK @ FCC 90.210
806-821/851-866	20	25	5	MASK B (Voice) & MASK G (Data)

Note 1: See note 4 of 90.209 for non-multilateration and multilateration LMS operations

5.6.2. Method of Measurements

FCC CFR 47, Para. 2.989 - Out-of-Band Emissions:

The Emission Masks was measured with the Spectrum Analyzer controls set as shown on the test results (RBW \geq 300 Hz, VBW \geq 300 Hz and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

Voice or Digital Modulation Through a Voice Input Port @ **2.989(c)(i)**:- The transmitter was modulated by a 2.5 kHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: \pm 2.5 kHz peak deviation at 1 kHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

Digital Modulation Through a Data Input Port @ **2.989(h)**:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			
Attenuator(s)	Bird			DC – 22 GHz
Audio Oscillator	Hewlett	HP 204C	0989A08798	DC to 1.2 MHz
	Packard			

5.6.4. Test Arrangement

TRANSMITTER ATTENUATOR ANALYZER	TRANSMITTER		20 dB ATTENUATOR		SPECTRUM ANALYZER
---------------------------------	-------------	--	---------------------	--	----------------------

5.6.5. Test data

Since the EUT is an amplifier, the RF output will be the same as the RF input from a FCC certified FCC transmitter source. Input and out signals in 806-824 MHz and 851-869 MHz amplifier sub-bands will be measured for comparison purposes.

Please see attached plots #15 to #26 (Mask B) in Exhibit 8 of this report for details of measurement results, and plots #27 to #38 (Mask G) in Exhibit 8 of this report for details of measurement results.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.7. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FCC 90.210

5.7.1. Limits @ 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC RULES	WORST CASE EMISSIONS LIMIT	ATTENUATION LIMIT (dBc)
FCC 90.210 (b) & (g)	-13 dBm	39.3

5.7.2. Method of Measurements

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.989, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the Spectrum Analyzer controls set as RBW = 30 kHz minimum, VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

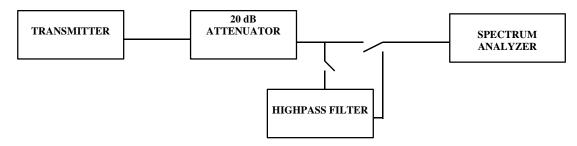
FCC CFR 47, Para. 2.997 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.991 - Spurious Emissions at Antenna Terminal:- The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.989 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			
Attenuator(s)	Bird			DC – 22 GHz
Audio Oscillator	Hewlett	HP 204C	0989A08798	DC to 1.2 MHz
	Packard			
Highpass Filter,	Microphase	CR220HID	IITI11000AC	Cut-off Frequency at
Microphase				600 MHz, 1.3 GHz or 4
				GHz

5.7.3. Test Equipment List

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.7.4. Test Arrangement

- The transmitter was coupled to the Spectrum Analyzer through a 20 dB attenuator.
- The insertion loss between the transmitter output terminal and the spectrum analyzer was measured to be <u>20 dB</u>
- The channel frequencies (Low, Middle and High) was established on the extreme edges of the operating band, both upper and lower at its full rated output power. The emissions was investigated up to the tenth harmonic of the fundamental emissions in each case

5.7.5. Test Data

5.7.5.1. UPLINK BAND 806-824 MHz

Fundamental Freq	uency: 806 MHz			
RF Output Power:	0.31 Watts			
Modulation:	FM modu	lation with 2.5 kHz	z Sine Wave Signal	
	RF LEVEL	LIMIT		
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/
(MHz)	(dBm)	Note 1	(dB)	FAIL
202	-47.34	-13.0	-34.34	PASS
1607	-46.28	-13.0	-33.28	PASS
4836	-44.59	-13.0	-31.59	PASS
5643	-46.78	-13.0	-33.78	PASS
The emissions were	re scanned from 10	MHz to 10 GHz ar	nd all emissions less	20 dB below the
limits were record	ed.			

Fundamental Frequency: 806 MHz					
RF Output Power: 0.31 Watts					
Modulation:	Modulation: FM modulation with 9600b/s internal random data source.				
	RF LEVEL	LIMIT			
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/	
				TAT	
(MHz)	(dBm)		(dB)	FAIL	
(MHZ) 1607	(dBm) -46.31	-13.0	-33.31	PASS	
		-13.0 -13.0			
1607 5636	-46.31	-13.0	-33.31 -32.69	PASS PASS	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

File #: KTI04_F90 January 11, 2000

Fundamental Frequency: 805 MHz					
RF Output Power	: 0.43 Watts				
Modulation: FM modulation with 2.5 kHz Sine Wave Signal					
	RF LEVEL	LIMIT			
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/	
(MHz)	(dBm)		(dB)	FAIL	
1621.0	-45.81	-13.0	-27.81	PASS	
6514.0	-45.91	-13.0	-32.91	PASS	
The emissions we	re scanned from 10	MHz to 10 GHz an	d all emissions less	20 dB below the	
limits were record	led.				

5.7.5.1.2. Near Middle Frequency (815 MHz)

Fundamental Freq	quency: 815 MHz					
RF Output Power:	0.43 Watts	0.43 Watts				
Modulation:	FM modu	FM modulation with 9600 b/s internal random data Source.				
	RF LEVEL	LIMIT				
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)		(dB)	FAIL		
1628.0	-43.28	-13.0	-30.28	PASS		
6521.0	-45.75	-13.0	-32.75	PASS		
The emissions we	re scanned from 10	MHz to 10 GHz an	d all emissions less	20 dB below the		

limits were recorded.

5.7.5.1.3. Near Highest Frequency (824 MHz)

Fundamental Freq	uency: 824 MHz					
RF Output Power:	0.24 Watts	0.24 Watts				
Modulation:	FM modu	FM modulation with 2.5 kHz Sine Wave Signal				
	RF LEVEL	LIMIT				
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)		(dB)	FAIL		
(MHz) 8657.0	(dBm) -42.97	-13.0	(dB) -29.97	FAIL PASS		

limits were recorded.

Fundamental Frequency: 824 MHz					
RF Output Power: 0.24 Watts					
Modulation: FM modulation with 9600 b/s internal random data source.					
	RF LEVEL	LIMIT			
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/	
(MHz)	(dBm)		(dB)	FAIL	
1642.0	-43.31	-13.0	-30.31	PASS	
8664.0	-43.59	-13.0	-30.59	PASS	
The emissions we	re scanned from 10	MHz to 10 GHz an	d all emissions less	20 dB below the	
limits were record	led.				

Please refer to plots #39 to #44 in exhibit 8 of this report for details on the above test data.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Recognized/Listed by FCC (USA), Industry Canada (Canada)

File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

5.7.5.2. DOWNLINK BAND 851-869 MHz

5.7.5.2.1.	Near Lowest Frequency	(851 MHz)
------------	-----------------------	-----------

Fundamental Frequency: 851 MHz						
RF Output Power: 0.26 Watts						
Modulation:	FM modu	lation with 2.5 kHz	Sine Wave Signal			
	RF LEVEL	LIMIT				
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)		(dB)	FAIL		
1707.0	-41.44	-13.0	-28.44	PASS		
2555.0	-29.63	-13.0	-17.63	PASS		
4252.0	-27.09	-13.0	-14.09	PASS		
5100.0	-35.56	-13.0	-22.56	PASS		
5957.0	-28.63	-13.0	-15.63	PASS		
6807.0	-27.34	-13.0	-14.34	PASS		
7664.0	-28.88	-13.0	-15.88	PASS		
The emissions we	re scanned from 10	MHz to 10 GHz an	d all emissions less	20 dB below the		

The emissions were scanned from 10 MHz to 10 GHz and all emissions less 20 dB below the limits were recorded.

Fundamental Frequency: 851 MHz					
RF Output Power:	: 0.26 Watts				
Modulation: FM modulation with 9600 b/s internal random data source.					
RF LEVEL LIMIT					
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/	
(MHz)	(dBm)		(dB)	FAIL	
1707.0	-41.44	-13.0	-28.44	PASS	
2555.0	-29.63	-13.0	-16.63	PASS	
4252.0	-27.09	-13.0	-14.09	PASS	
5100.0	-34.94	-13.0	-21.94	PASS	
5957.0	-27.53	-13.0	-14.53	PASS	
6814.0	-30.28	-13.0	-17.28	PASS	
7671.0	-30.47	-13.0	-17.47	PASS	
The emissions were scanned from 10 MHz to 10 GHz and all emissions less 20 dB below the limits were recorded.					

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada)

Fundamental Frequency: 860 MHz						
RF Output Power	0.40 Watts					
Modulation:	Modulation: FM modulation with 2.5 kHz Sine Wave Signal					
RF LEVEL LIMIT						
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)		(dB)	FAIL		
1714.0	-39.25	-13.0	-26.25	PASS		
2576.0	-23.78	-13.0	-10.78	PASS		
4294.0	-24.06	-13.0	-11.06	PASS		
5157.0	-34.19	-13.0	-21.19	PASS		
6021.0	-27.91	-13.0	-14.91	PASS		
6879.0	-23.19	-13.0	-10.19	PASS		
7750.0	-26.63	-13.0	-13.63	PASS		
The emissions were scanned from 10 MHz to 10 GHz and all emissions less 20 dB below the						
limits were record	led.					

5.7.5.2.2. Near Middle Frequency (860 MHz)

Fundamental Freq RF Output Power:	•			
-				
Modulation:	FM modu	lation with 9600 b	/s internal random dat	ta Source.
	RF LEVEL	LIMIT		
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/
(MHz)	(dBm)		(dB)	FAIL
1714.0	-38.16	-13.0	-25.16	PASS
2576.0	-23.91	-13.0	-10.91	PASS
4294.0	-24.75	-13.0	-11.75	PASS
5157.0	-36.97	-13.0	-13.97	PASS
6014.0	-26.50	-13.0	-13.50	PASS
6879.0	-23.28	-13.0	-10.28	PASS
7750.0	-26.34	-13.0	-13.34	PASS
The emissions we	re scanned from 10	MHz to 10 GHz a	nd all emissions less 2	20 dB below the
limits were record				

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

Fundamental Frequency: 869 MHz						
RF Output Power:	: 0.25 Watts					
Modulation: FM modulation with 2.5 kHz Sine Wave Signal						
RF LEVEL LIMIT						
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)	Note 1	(dB)	FAIL		
1735.0	-42.75	-13.0	-29.75	PASS		
2605.0	-29.66	-13.0	-16.66	PASS		
4337.0	-22.56	-13.0	-9.56	PASS		
5207.0	-36.53	-13.0	-23.53	PASS		
6079.0	-28.56	-13.0	-15.56	PASS		
6950.0	-34.97	-13.0	-21.97	PASS		
7829.0	-29.94	-13.0	-16.94	PASS		
The emissions were scanned from 10 MHz to 10 GHz and all emissions less 20 dB below the						
limits were record	led.					

5.7.5.2.3. Near Highest Frequency (869 MHz)

Fundamental Frequency: 869 MHz						
RF Output Power:	0.25 Watts					
Modulation: FM modulation with 9600 b/s internal random data source.						
RF LEVEL LIMIT						
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)	Note 1	(dB)	FAIL		
1735.0	-41.63	-13.0	-28.63	PASS		
2605.0	-27.69	-13.0	-14.69	PASS		
4337.0	-23.16	-13.0	-10.16	PASS		
5207.0	-35.72	-13.0	-22.72	PASS		
6079.0	-27.31	-13.0	-14.31	PASS		
6950.0	-38.03	-13.0	-25.03	PASS		
7829.0	-30.28	-13.0	-17.28	PASS		
The emissions we	re scanned from 10	MHz to 10 GHz ar	nd all emissions less	20 dB below the		
limits were record	limits were recorded.					

Please refer to plots #45 to #50 in exhibit 8 of this report for details on the above test data.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.7.5.3. UPLINK BAND 806-824 MHz

1 1	Frequencies: 814.9	75 & 815.025 MHz	(2 in/out channels)	
RF Power Output				
	modulation with 2.5	0	equency deviation =	<u>+</u> 4 kHz
2-signal	RF LEVEL	LIMIT		
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/
(MHz)	(dBm)		(dB)	FAIL
202.0	-46.59	-13.0	-33.59	PASS
1621.0	-44.59	-13.0	-31.59	PASS
6514.0	-35.31	-13.0	-22.31	PASS
The emissions we	re scanned from 10	MHz to 10 GHz and	d all emissions less	20 dB below the
limits were record	led.			
	Frequencies: 814.9	5 & 815.00 & 815.0	05 MHz (3 in/out ch	annels)
RF Power Output				
	modulation with 2.5	kHz sine signal, fre	equency deviation =	<u>+</u> 4 kHz
3-signal	RF LEVEL	LIMIT		
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/
(MHz)	(dBm)		(dB)	FAIL
1628.0	-46.56	-13.0	-33.56	PASS
6514.0	-40.81	-13.0	-27.81	PASS
The emissions we	re scanned from 10	MHz to 10 GHz and	d all emissions less	20 dB below the
limits were record	led.			
RF Input/Output I	Frequencies: 814.9	0 & 814.95 & 815.0	00 & 815.05 MHz (4	4 in/out channels)
	00 0 III			
RF Power Output				
RF Power Output Modulation: FM r	modulation with 2.5	0	equency deviation =	<u>+</u> 4 kHz
RF Power Output: Modulation: FM r 4-signal	modulation with 2.5 RF LEVEL	LIMIT	*	
RF Power Output: Modulation: FM r 4-signal FREQUENCY	modulation with 2.5	0	equency deviation =	<u>+4 kHz</u> PASS/
RF Power Output: Modulation: FM r 4-signal	modulation with 2.5 RF LEVEL	LIMIT	*	
RF Power Output: Modulation: FM r 4-signal FREQUENCY	modulation with 2.5 RF LEVEL 30 kHz BW	LIMIT	MARGIN	PASS/
RF Power Output: Modulation: FM r 4-signal FREQUENCY (MHz)	nodulation with 2.5 RF LEVEL 30 kHz BW (dBm)	LIMIT (dBm)	MARGIN (dB)	PASS/ FAIL
RF Power Output: Modulation: FM r <i>4-signal</i> FREQUENCY (MHz) 210.0	nodulation with 2.5 RF LEVEL 30 kHz BW (dBm) -48.03	LIMIT (dBm) -13.0	MARGIN (dB) -35.03	PASS/ FAIL PASS

limits were recorded.

Please refer to plots #51 to #53 for measurement plots of the above test data.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.7.5.4. DOWNLINK BAND 851-869 MHz

RF Input/Output H RF Power Output:	1	75 & 860.025 MHz	z (2 in/out channels)			
1		kHz sine signal fr	equency deviation –	⊥/1 kHz		
Modulation: FM modulation with 2.5 kHz sine signal, frequency deviation = ± 4 kHz2-signal RF LEVELLIMIT						
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/		
(MHz)	(dBm)		(dB)	FAIL		
1714.0	-40.69	-13.0	-27.69	PASS		
2583.0	-25.84	-13.0	-12.84	PASS		
4301.0	-22.88	-13.0	-9.88	PASS		
5157.0	-25.78	-13.0	-12.78	PASS		
6014.0	-31.00	-13.0	-18.00	PASS		
6879.0	-29.88	-13.0	-16.88	PASS		
7750.0	-23.47	-13.0	-10.47	PASS		
8607.0 -40.19 -13.0 -27.19 PASS						
The emissions we limits were record		MHz to 10 GHz an	d all emissions less 2	20 dB below the		

RF Input/Output Frequencies: 814.95 & 815.00 & 815.05 MHz (3 in/out channels)							
RF Power Output: 37.2 mW							
Modulation: FM modulation with 2.5 kHz sine signal, frequency deviation = ± 4 kHz							
3-signal RF LEVEL LIMIT							
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/			
(MHz)	(dBm)		(dB)	FAIL			
1714.0	-40.69	-13.0	-27.69	PASS			
2583.0	-26.50	-13.0	-13.50	PASS			
4301.0	-18.88	-13.0	-5.88	PASS			
5157.0	-27.06	-13.0	-14.06	PASS			
6014.0	-27.53	-13.0	-14.53	PASS			
6886.0	-31.00	-13.0	-18.00	PASS			
7750.0	7750.0 -27.06 -13.0 -14.06 PASS						
The emissions were scanned from 10 MHz to 10 GHz and all emissions less 20 dB below the							
limits were record	led.						

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

RF Input/Output F RF Power Output:	1	0 & 814.95 & 815.	00 & 815.05 MHz (4	in/out channels)	
Modulation: FM modulation with 2.5 kHz sine signal, frequency deviation = ± 4 kHz					
4-signal	RF LEVEL	LIMIT		_	
FREQUENCY	30 kHz BW	(dBm)	MARGIN	PASS/	
(MHz)	(dBm)		(dB)	FAIL	
1714.0	-42.25	-13.0	-29.25	PASS	
2576.0	-26.44	-13.0	-13.44	PASS	
4294.0	-15.59	-13.0	-2.59	PASS	
5157.0	-26.72	-13.0	-13.72	PASS	
6021.0	-24.91	-13.0	-11.91	PASS	
6879.0	-22.38	-13.0	-9.38	PASS	
7750.0	-24.47	-13.0	-11.47	PASS	
8607.000	-39.00	-13.0	-26.00	PASS	
The emissions were limits were record		MHz to 10 GHz an	d all emissions less 3	30 dB below the	

Please refer to plots #54 to #56 for measurement plots of the above test data.

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.8. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210

5.8.1. Limits @ FCC 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC RULES	WORST CASE EMISSIONS LIMIT	ATTENUATION LIMIT (dBc)
FCC 90.210 (b) & (g)	-13 dBm	39.3

5.8.2. Method of Measurements

Please refer to the Exhibit 7 of this test report and ANSI C63-4:1992 for radiated emissions test method.

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.989, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the Spectrum Analyzer controls set as RBW = 100 kHz minimum, VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC CFR 47, Para. 2.997 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.993 - Field Strength Spurious Emissions

- (a) Measurements was made to detect spurious emissions radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data were supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph 2.989(c) as appropriate. For equipment operating on frequencies below 1 GHz, an Open Field Test is normally required, with the measuring instrument antenna located in the far field at all test frequencies. In event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurement will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with the reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas.
- (b) Measurements specified in paragraph (a) of this section shall be made for the following equipment:
 - (1) Those in which the spurious emission are required to be 60 dB or more below the mean power of the transmitter.
 - (2) All equipment operating on frequencies higher than 25 MHz
 - (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
 - (4) Other types of equipment as required, when deemed necessary by the Commission.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

Recognized/Listed by FCC (USA), Industry Canada (Canada)

[•] All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

METHOD OF CALCULATION FOR TRANSMITTED POWER (P) FROM THE MEASURED FIELD STRENGTH LEVEL (E):

According to IEC 801-3, the power density can be calculated as follows:

- $S = P / (4xPIxD^2)$ Where: S: Power density in watts per square feet
 - P: Transmitted power in watts
 - PI: 13.1415
 - D: Distance in meters

The power density S (W/m^2) and electric field E (V/m) is related by:

$$S = E^2 / (120 x PI)$$

Accordingly, the field intensity of isotropic radiator in free space can be expressed as follows:

$$E = (30xP)^{1/2}/D = 5.5x(P)^{1/2}/D$$

For Halfwave dipole antenna or other antennas correlated to dipole in direction of maximum radiation:

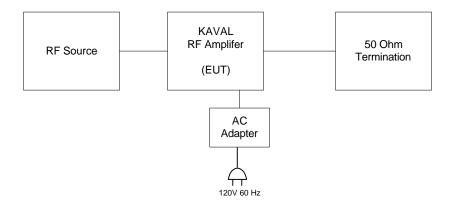
$$\begin{array}{l} S = (1.64 x P) / (4 x P I x D^2) \\ E = (49.2 x P)^{1/2} x D = 7.01 x (P)^{1/2} / D \end{array}$$

$$P = (ExD/7.01)^2$$

Calculation of transmitted power P (dBm) given a measured field intensity E (dBµV/m):

$$\begin{split} P(W) &= [E(V/m)xD/7.01]^2 \\ P(mW) &= P(W)x1000 \\ => & P(dBm) = 10logP(mW) \\ &= 20logE(V/m) + 20log(D) - 20log(7.01) + 10log1000 \\ &= E(dBV/m) + 20logD + 13 \\ &= E(dB\mu V/m) - 120 + 20log(D) + 13 \\ &= E(dB\mu V/m) + 20log(D) - 107 \end{split}$$

The Transmitted Power @ D = 3 Meters $P(dBm) = E(dB\mu V/m) - 97.5$


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.8.3. Test Arrangement

The following drawing show details of the test setup for radiated emissions measurements

5.8.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Advantest	R3271	15050203	100 Hz to 32 GHz with
EMI Receiver				external mixer for
				frequency above 32
				GHz
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz
	Packard			
Active Loop Antenna	EMCO	6507	8906-1167	1 kHz – 30 MHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09		18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10		26.5 GHz – 40 GHz
Mixer	Tektronix	118-0098-00		18 GHz – 26.5 GHz
Mixer	Tektronix	119-0098-00		26.5 GHz – 40 GHz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.8.5. Test Data

<u>Remarks</u>: According to the transmitter conducted test results, the single channel operations are worst case of spurious/harmonic RF emissions since the transmitter operated at highest rf input /output power. Therefore, the single channel input/output test configuration will be performed in the following tests, and their results shall represented the worst case of RF interference.

5.8.5.1. UPLINK BAND 806-824 MHz

Fundamental Frequency: 806 MHz							
RF Output Pow		1 Watts					
Modulation:			with 2.5 kHz S			1	
	RF Field	RF Power	DETECTOR		ENNA		
FREQUENCY	Strength Level	Level	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
1612.00	68.1	-29.4	PEAK	V	-13.0	-16.4	PASS
1612.00	56.6	-40.9	PEAK	Н	-13.0	-27.9	PASS
2418.00	67.2	-30.3	PEAK	V	-13.0	-17.3	PASS
2418.00	62.0	-35.5	PEAK	Н	-13.0	-22.5	PASS
3224.00	69.5	-28.0	PEAK	V	-13.0	-15.0	PASS
3224.00	66.4	-31.1	PEAK	Н	-13.0	-18.1	PASS
4030.00	64.8	-32.7	PEAK	V	-13.0	-19.7	PASS
4030.00	61.5	-36.0	PEAK	Н	-13.0	-23.0	PASS
4836.00	56.3	-41.2	PEAK	V	-13.0	-28.2	PASS
4836.00	55.4	-42.1	PEAK	Н	-13.0	-29.1	PASS
5642.00	61.1	-36.4	PEAK	V	-13.0	-23.4	PASS
5642.00	61.2	-36.3	PEAK	Н	-13.0	-23.3	PASS
6448.00	57.4	-40.1	PEAK	V	-13.0	-27.1	PASS
6448.00	59.1	-38.4	PEAK	Н	-13.0	-25.4	PASS
7254.00	56.2	-41.3	PEAK	V	-13.0	-28.3	PASS
7254.00	55.7	-41.8	PEAK	Н	-13.0	-28.8	PASS
8060.00	58.0	-39.5	PEAK	V	-13.0	-26.5	PASS
8060.00	58.3	-39.2	PEAK	Н	-13.0	-26.2	PASS
The emissions v recorded.	were scanned f	rom 10 MHz t	to 10 GHz and	all emissions	less 40 dB bel	low the limits	were

5.8.5.1.1. Near Lowest Frequency (806 MHz)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

F Output Pov lodulation:		3 Watts I modulation	with 9600 b/s i	nternal rando	um data		
iodulation.		urce	with 5000 0/3 1	internar rande	in data		
	RF Field	RF Power	DETECTOR	ANTENNA			
FREQUENCY	Strength Level	Level	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
1630.00	66.0	-31.5	PEAK	V	-13.0	-18.5	PASS
1630.00	57.6	-39.9	PEAK	Н	-13.0	-26.9	PASS
2445.00	64.7	-32.8	PEAK	V	-13.0	-19.8	PASS
2445.00	60.6	-36.9	PEAK	Н	-13.0	-23.9	PASS
3260.00	68.4	-29.1	PEAK	V	-13.0	-16.1	PASS
3260.00	66.5	-31.0	PEAK	Н	-13.0	-18.0	PASS
4075.00	62.5	-35.0	PEAK	V	-13.0	-22.0	PASS
4075.00	57.7	-39.8	PEAK	Н	-13.0	-26.8	PASS
4890.00	55.5	-42.0	PEAK	V	-13.0	-29.0	PASS
4890.00	53.9	-43.6	PEAK	Н	-13.0	-30.6	PASS
5705.00	62.3	-35.2	PEAK	V	-13.0	-22.2	PASS
5705.00	63.6	-33.9	PEAK	Н	-13.0	-20.9	PASS
6520.00	55.9	-41.6	PEAK	V	-13.0	-28.6	PASS
6520.00	55.6	-41.9	PEAK	Н	-13.0	-28.9	PASS
7335.00	53.3	-44.2	PEAK	V	-13.0	-31.2	PASS
7335.00	52.0	-45.5	PEAK	Н	-13.0	-32.5	PASS
8150.00	58.9	-38.6	PEAK	V	-13.0	-25.6	PASS
8150.00	60.1	-37.4	PEAK	Н	-13.0	-24.4	PASS

5.8.5.1.2. Near Middle Frequency (815 MHz)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada) .

•

Fundamental Fi							
RF Output Pow		4 Watts		· • • • • • • • • • • • • • • • • • • •			
Modulation:	FN RF Field	1 modulation v	with 2.5 kHz S				
EDEQUENCY				ANTENNA			D AGG/
FREQUENCY	Strength Level	Level	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
1648.00	62.6	-34.9	PEAK	V	-13.0	-21.9	PASS
1648.00	54.4	-43.1	PEAK	Н	-13.0	-30.1	PASS
2472.00	60.6	-36.9	PEAK	V	-13.0	-23.9	PASS
2472.00	58.4	-39.1	PEAK	Н	-13.0	-26.1	PASS
3296.00	62.5	-35.0	PEAK	V	-13.0	-22.0	PASS
3296.00	61.8	-35.7	PEAK	Н	-13.0	-22.7	PASS
4120.00	57.1	-40.4	PEAK	V	-13.0	-27.4	PASS
4120.00	57.2	-40.3	PEAK	Н	-13.0	-27.3	PASS
4944.00	54.5	-43.0	PEAK	V	-13.0	-30.0	PASS
4944.00	55.3	-42.2	PEAK	Н	-13.0	-29.2	PASS
5768.00	56.2	-41.3	PEAK	V	-13.0	-28.3	PASS
5768.00	58.3	-39.2	PEAK	Н	-13.0	-26.2	PASS
6592.00	52.3	-45.2	PEAK	V	-13.0	-32.2	PASS
6592.00	54.9	-42.6	PEAK	Н	-13.0	-29.6	PASS
7416.00	53.8	-43.7	PEAK	V	-13.0	-30.7	PASS
7416.00	56.7	-40.8	PEAK	Н	-13.0	-27.8	PASS
8240.00	56.5	-41.0	PEAK	V	-13.0	-28.0	PASS
8240.00	56.5	-41.0	PEAK	Н	-13.0	-28.0	PASS
The emissions v recorded.	were scanned fi	rom 10 MHz t	to 10 GHz and	all emissions	less 40 dB bel	ow the limits	were

5.8.5.1.3. Near Highest Frequency (824 MHz)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada) .

•

5.8.5.2. DOWNLINK BAND 851-869 MHz

F Output Pow		6 Watts		·			
Aodulation:	FM modulation		DETECTOR		inal ENNA	1	Т
FREQUENCY	Strength Level	Level	USED	PLANE LIMIT		MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
1702.00	60.8	-36.7	PEAK	V	-13.0	-23.7	PASS
1702.00	50.3	-47.2	PEAK	Н	-13.0	-34.2	PASS
2553.00	71.9	-25.6	PEAK	V	-13.0	-12.6	PASS
2553.00	68.1	-29.4	PEAK	Н	-13.0	-16.4	PASS
3404.00	70.8	-26.7	PEAK	V	-13.0	-13.7	PASS
3404.00	71.1	-26.4	PEAK	Н	-13.0	-13.4	PASS
4255.00	51.3	-46.2	PEAK	V	-13.0	-33.2	PASS
4255.00	50.7	-46.8	PEAK	Н	-13.0	-33.8	PASS
5106.00	57.2	-40.3	PEAK	V	-13.0	-27.3	PASS
5106.00	61.0	-36.5	PEAK	Н	-13.0	-23.5	PASS
5957.00	61.5	-36.0	PEAK	V	-13.0	-23.0	PASS
5957.00	62.9	-34.6	PEAK	Н	-13.0	-21.6	PASS
6808.00	53.1	-44.4	PEAK	V	-13.0	-31.4	PASS
6808.00	53.5	-44.0	PEAK	Н	-13.0	-31.0	PASS
7659.00	56.7	-40.8	PEAK	V	-13.0	-27.8	PASS
7659.00	58.5	-39.0	PEAK	Н	-13.0	-26.0	PASS
8510.00	59.8	-37.7	PEAK	V	-13.0	-24.7	PASS
8510.00	60.5	-37.0	PEAK	Н	-13.0	-24.0	PASS

5.8.5.2.1. Near Lowest Frequency (851 MHz)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

RF Output Pow Modulation:		0 Watts		ina Waxa Sia	mal		
viodulation.	RF Field	RF Power	with 2.5 kHz Sine Wave Signal DETECTOR ANTENNA				1
FREQUENCY	Strength Level	Level	USED	PLANE LIMIT		MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
1720.00	60.3	-37.2	PEAK	V	-13.0	-24.2	PASS
1720.00	55.3	-42.2	PEAK	Н	-13.0	-29.2	PASS
2580.00	69.1	-28.4	PEAK	V	-13.0	-15.4	PASS
2580.00	66.2	-31.3	PEAK	Н	-13.0	-18.3	PASS
3440.00	71.8	-25.7	PEAK	V	-13.0	-12.7	PASS
3440.00	72.2	-25.3	PEAK	Н	-13.0	-12.3	PASS
4300.00	52.4	-45.1	PEAK	V	-13.0	-32.1	PASS
4300.00	53.9	-43.6	PEAK	Н	-13.0	-30.6	PASS
5160.00	55.3	-42.2	PEAK	V	-13.0	-29.2	PASS
5160.00	59.1	-38.4	PEAK	Н	-13.0	-25.4	PASS
6020.00	60.8	-36.7	PEAK	V	-13.0	-23.7	PASS
6020.00	61.4	-36.1	PEAK	Н	-13.0	-23.1	PASS
6880.00	50.4	-47.1	PEAK	V	-13.0	-34.1	PASS
6880.00	52.7	-44.8	PEAK	Н	-13.0	-31.8	PASS
7740.00	60.1	-37.4	PEAK	V	-13.0	-24.4	PASS
7740.00	61.6	-35.9	PEAK	Н	-13.0	-22.9	PASS
8600.00	60.9	-36.6	PEAK	V	-13.0	-23.6	PASS
8600.00	63.0	-34.5	PEAK	Н	-13.0	-21.5	PASS

5.8.5.2.2. Near Middle Frequency (860 MHz)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada) .

•

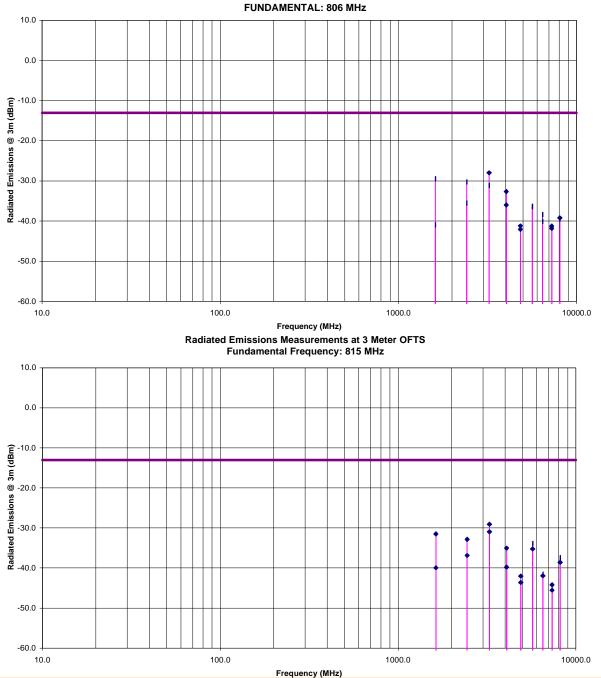
Fundamental Fi RF Output Pow		5 Watts					
Modulation:			with 2.5 kHz S				
	RF Field	RF Power	RF Power DETECTOR ANTENNA				
FREQUENCY	Strength Level	Level	USED	PLANE	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
1738.00	64.6	-32.9	PEAK	V	-13.0	-19.9	PASS
1738.00	57.4	-40.1	PEAK	Н	-13.0	-27.1	PASS
2607.00	67.2	-30.3	PEAK	V	-13.0	-17.3	PASS
2607.00	63.1	-34.4	PEAK	Н	-13.0	-21.4	PASS
3476.00	65.9	-31.6	PEAK	V	-13.0	-18.6	PASS
3476.00	66.2	-31.3	PEAK	Н	-13.0	-18.3	PASS
4345.00	51.8	-45.7	PEAK	V	-13.0	-32.7	PASS
4345.00	50.0	-47.5	PEAK	Н	-13.0	-34.5	PASS
5214.00	52.1	-45.4	PEAK	V	-13.0	-32.4	PASS
5214.00	54.9	-42.6	PEAK	Н	-13.0	-29.6	PASS
6083.00	57.4	-40.1	PEAK	V	-13.0	-27.1	PASS
6083.00	59.2	-38.3	PEAK	Н	-13.0	-25.3	PASS
6952.00	51.7	-45.8	PEAK	V	-13.0	-32.8	PASS
6952.00	50.4	-47.1	PEAK	Н	-13.0	-34.1	PASS
7821.00	58.0	-39.5	PEAK	V	-13.0	-26.5	PASS
7821.00	59.4	-38.1	PEAK	Н	-13.0	-25.1	PASS
8690.00	57.1	-40.4	PEAK	V	-13.0	-27.4	PASS
8690.00	57.2	-40.3	PEAK	Н	-13.0	-27.3	PASS
The emissions v recorded.	were scanned fi	rom 10 MHz	to 10 GHz and	all emissions	less 40 dB bel	ow the limits v	were

5.8.5.2.3.	Near	Highest	Frequency	(869 MHz)
------------	------	---------	-----------	-----------

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

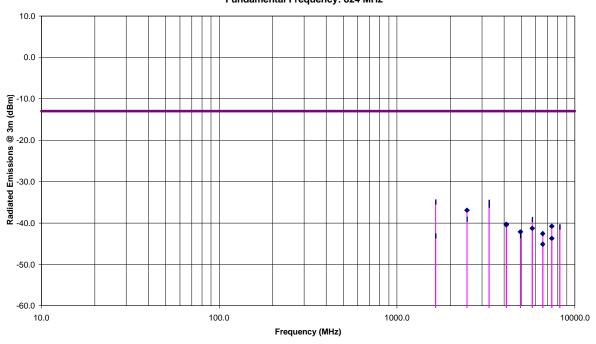
Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia) Recognized/Listed by FCC (USA), Industry Canada (Canada) •


•

5.8.6. Plots

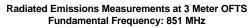
The following plots graphically represent the test results recorded in the above Test Data Table.

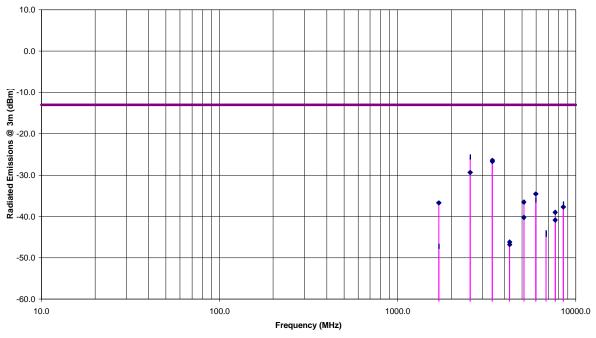
UPLINK BAND 806-824 MHz



ULTRATECH GROUP OF LABS

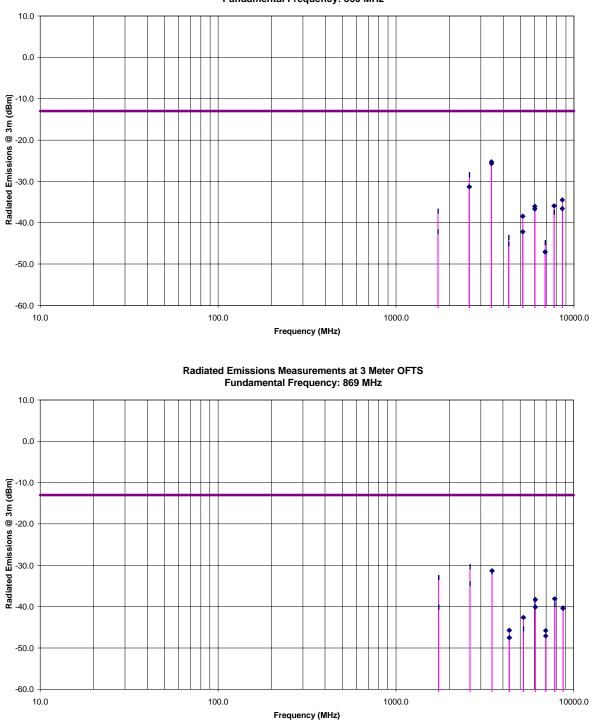
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000


Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)


Assessed by Th (OK) Completent Body, NVLAP (OSA) Accredit
 Recognized/Listed by FCC (USA), Industry Canada (Canada)

Radiated Emissions Measurements at 3 Meter OFTS Fundamental Frequency: 824 MHz

DOWNLINK BAND 851-869 MHz


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

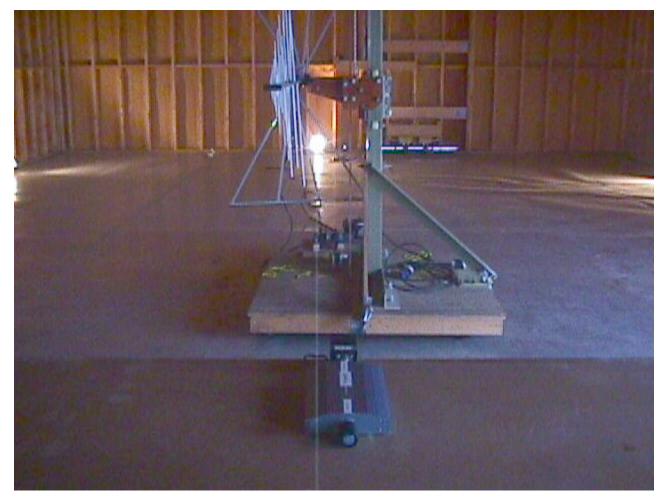
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: whttp://www.ultratech-labs.com

File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)

Radiated Emissions Measurements at 3 Meter OFTS Fundamental Frequency: 860 MHz

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

5.8.7. Photographs of Test Setup

The following is a photograph of the test setup for radiated emissions measurements

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

$$u_{c}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$$

 $U = 2u_c(y) = + 2.6 \text{ dB}$

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

ULTRATECH GROUP OF LABS

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)	
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivity	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits $20Log(1 \pm \Gamma_1 \Gamma_R)$	U-Shaped	+1.1 -1.25	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$ And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

EXHIBIT 7. MEASUREMENT METHODS

7.1. GENERAL TEST CONDITIONS

7.1.1. Test Conditions

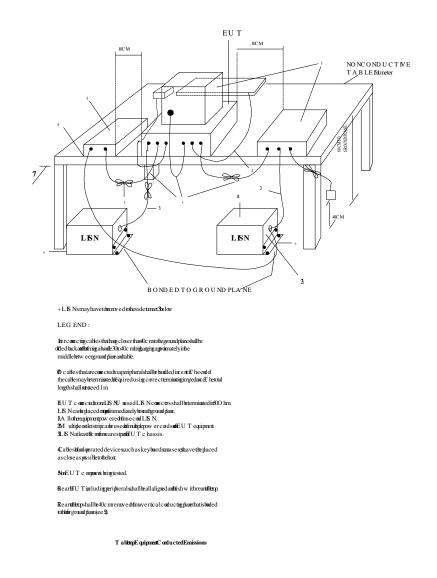
- The measurement shall be made in the operational mode producing the largest emission in the frequency band being investigated consistent with normal applications.
- An attempt shall be made to maximize the detected radiated emissions, for example moving cables of the equipment, rotating the equipment by 360° and moving the measuring receiving antenna up and down within 1 to 4 meters high.
- Where appropriate, a single tone or a bit stream shall be used to modulate the transmitter. The manufacturer shall define the modulation with the highest emission in transmit mode.

7.1.2. Method of Measurements - AC Mains Conducted Emissions

- AC Mains conducted emissions measurements were performed in accordance with the standard against appropriate limits for each detector function.
- The test was performed in the shielded room, 16'(L) by 16'(W) by 12'(H).
- The test was performed were made over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio noise voltage which was conducted from the EUT power-input terminals that were directly connected to a public power network.
- The EUT normally received power from another device that connects to the public utility ac power lines, measurements would be made on that device with the EUT in operation to ensure that the device continues to comply with the appropriate limits while providing the EUT with power.
- If the EUT operates only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines, AC Mains conducted measurements are not required.
- Table-top devices were placed on a platform of nominal size 1 m by 1.5m raised 80 cm above the conducting ground plane.
- The EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the power source. All unused 50-Ohm connectors of the LISN was terminated in 50-ohm when not connected to the measuring instruments.
- The line cord of the EUT connected to one LISN which was connected to the measuring instrument. Those power cords for the units of devices not under measurement were connected to a separate multiple ac outlet through a second LISN. Drawings and photographs of typically conducted emission test setups were shown in the Test Report. Each current-carrying conductor of the EUT shall be individually tested.
- The EUT was normally operated with a ground (safety) connection, the EUT was connected to the ground at the LISN through a conductor provided in the lead from the ac power mains to the LISN.
- The excess length of the power cord was folded back and forth in an 8-shape on a wooden strip with a vertical prong located on the top of the LISN case.
- The EUT was set-up in its typical configuration and operated in its various modes as described in 3.2 of the test report.
- A preliminary scan was made by using spectrum analyzer system with the detector function set to PEAK mode (9 <u>kHz</u> <u>RBW, VBW > RBW</u>), frequency span 150 kHz 30MHz.
- The maximum conducted emission for a given mode of operation was found by using the following step-by-step procedure:

Step1. Monitor the frequency range of interest at a fixed EUT azimuth.

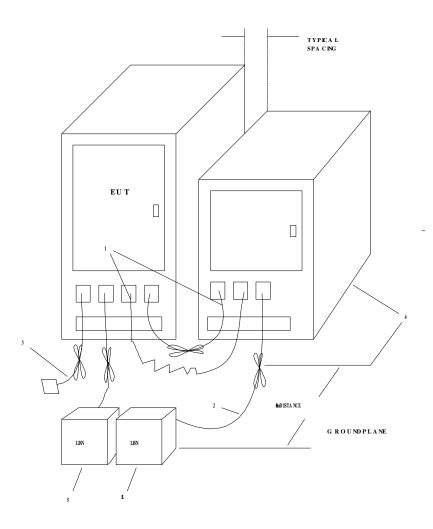
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com


File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

Recognized/Listed by FCC (USA), Industry Canada (Canada)

[•] All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


- Step2. Manipulate the system cables and peripheral devices to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3. The effects of various modes of operation is examined. This is done by varying equipment operation modes as step 2 is being performed.
- Step4. After completing step 1 through 3, record EUT and peripheral device configuration, mode of operation, cable configuration, signal levels and frequencies for final test.
- Each highest signal level at the maximized test configuration was zoomed in a small frequency span on the spectrum analyzer's display (the manipulation of cables and peripheral devices and EUT operation modes might have to be repeated to obtain the highest signal level with the spectrum analyzer set to PEAK detector mode 9 KHz RBW and VBW > RBW). The spectrum analyzer was then set to CISPR QUASI-PEAK detector mode (9 KHz RBW, 1 MHz VBW) and AVERAGE detector mode (9 kHz RBW, 1 MHz VBW). The final highest RF signal levels and frequencies were record.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

<u>LEG ENEND</u>:

 $\label{eq:second} E\alpha ess @ c all esshall be undled in central in utiling is maximized by a calless shall be arranged in serpen in a shall not exceed 40c minlength.$

 $\mathbf{E} \boldsymbol{\alpha}$ ess pow er cords shall be bundled in he center or shortened to appropriate dlength.

 $\label{eq:barrenew} D\ c\ ahes\ hatarenew one cted to a peripheral shall be bundled in the center The early field and the calle may be terminated if equived using correct terminating impedance in ruling is repossible to calle shall be arranged in server in the binom of the context of the$

EUT and all cables shall be insulated for ground plane by 3to 12mm infsulating material.

 $E\,U\,T\,$ connected to one LIS NLIS Ncarbe placed or pairmediately breathground plane. SA licher equipmentpow erectfors econd LIS N.

 $F \mbox{ for } S \mbox{ tanding } E \mbox{ quipment} C \mbox{ ord } u \mbox{ c ted } E \mbox{ missions}$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

7.1.3. Method of Measurements - Electric Field Radiated Disturbance

- The radiated emission measurements were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
 - 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
 - 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz 40 GHz).
 - 3. Calibrated Advantest spectrum analyzer and pre-selector. In general, the spectrum analyzer would be used as follows:
 - The rf electric field levels were measured with the spectrum analyzer set to PEAK detector (120 KHz VBW and VBW \geq RBW).
 - If any rf emission was observed to be a broadband noise, the spectrum analyzer's CISPR QUASI-PEAK detector (120 KHz RBW and VBW > RBW) was then set to measure the signal level.
 - If the signal being measured was narrowband and the ambient field was broadband, the bandwidth of the spectrum analyzer was reduced.
- The EUT was set-up in its typical configuration and operated in its various modes as described in 3.2 of the test report.
- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.
- For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-by-step procedure:

- Step1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- Step2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- Step4: Move the antenna over its full allowed range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

[•] Recognized/Listed by FCC (USA), Industry Canada (Canada)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

- Step5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- Step6: The effects of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.
- Step7: After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.

Calculation of Field Strength:

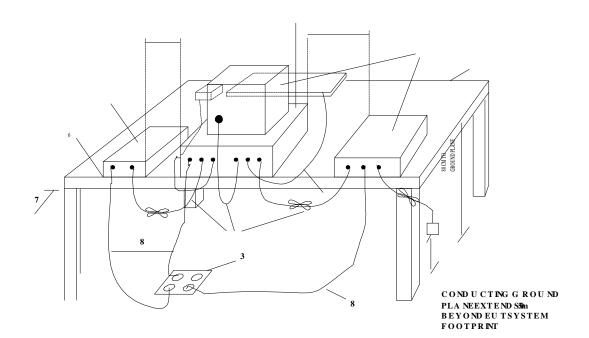
The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where	FS	=	Field Strength
	RA	=	Receiver/Analyzer Reading
	AF	=	Antenna Factor
	CF	=	Cable Attenuation Factor
	AG	=	Amplifier Gain

Example: If a receiver reading of 60.0 dBuV is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be:.

Field Level = 60 + 7.0 + 1.0 - 30 = 38.0 dBuV/m.


Field Level = $10^{(38/20)} = 79.43 \text{ uV/m}$.

<u>NOTE:</u> The frequency and amplitude of at least six highest conducted emissions relative to the limit are recorded unless such emissions are more than 20 dB below the limit. If less than six emissions are within 20dB of the limit, the background or receiver noise level shall be reported at representative frequencies.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)

LEGEND:

lite r cone c tinge ables that hange loser than 40c miche ground plane shall belied back and with of ming a bundle 30x40c m loggbarging approximately in the middle between ground plane and table.

 $\label{eq:constraint} {\bf D} \ c \ abes hat are c \ one c \ t \ d \ aperipheral shall \ b \ unded incereif \ he \ end \ t \ e \ c \ abes and \ t \ e \ abes and \ t \ abes and \ abes and$

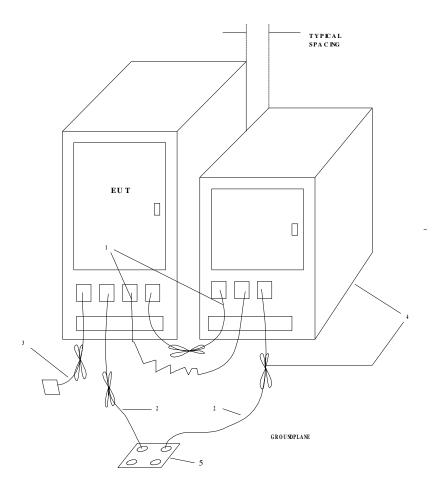
 $I\!ES$ Ns are keptimbetes to superior the test set optimalized emission is perfect that here the test set of the test of test

€ alles bland gerated devices such as key bards muses etbave the placed as close as possible the cordler.

NonEUT components BfUT systembeing tested.

To he rear affic on powerts the system under test shall be loc at edits hwith the rear the table.

Novertic alconductingw allused.


180w er cords drape toheldør and are routed over treceptacle.

Tabletop Equipment Radiated Emissions

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)

<u>LEGEND</u>:

 $E \, {\rm sess} \, 0$ cables shall be builded incertable alling is repeated by the cables shall be arranged in serperimets him

 ${\tt E}\,{\tt cess}\,{\tt pow}\,\,{\rm er}\,{\rm cord}{\rm sshall}\,{\tt be}\,{\tt bundled}\,{\tt inflecting}\,{\rm cord}\,{\rm rot}\,{\tt ord}\,{\tt tagge}\,{\tt qpi}$

D c alles hatarente one e ted tageripheral shall be builled in he certe IT he end bie cable may be terminated if qui red using correcterminating impedate di ulling is upssible he cable shall be arranged inserperimation

 $4\!E\,U\,T\,$ and all c ables shall be installated timg round plane by 3 to 12 mmini su lating material.

IES Ns are kepinhetestseu opfradiated emissionitis **pef**red hatthey beinstalled under the ground plane with there ceptic labsh with the ground plane.

 $F \mbox{ for } S \mbox{ tand ing} E \mbox{ qu ipment} R \mbox{ adiated } E \mbox{ missions}$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 8. PLOTS OF MEASUREMENT DATA

Plot number written on each data plot are referenced in order of test data appearance within this report as follows:

Plots #1 to #6

- & #9 to #14: Amplifier Gain Frequency Response, Single and multiple input signals (Uplink and Downlink Bands) and Gain Vs. Frequency Response Graphs
- Plots #7 and 8: 20 dB Bandwidth
- Plots #15 to 26 Emission Masks B (Uplink and Downlink Bands)
- Plots #27 to 38 Emission Masks G (Uplink and Downlink Bands)
- Plots #39 to 50: Transmitter Conducted Emissions (Voice and Data)
- Plots #51 to 56: Transmitter Spurious Emissions, Multiple input signals
- Plots #57 to 58: Receiver Radiated Emissions

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 9. FCC FORM 731, APPLICANT'S LETTERS & STATEMENT

- 9.1. FCC FORM 731
- 9.2. APPLICANT'S AUTHORIZATION TO APPOINT ULTRATECH ENGINEERING LABS INC. TO ACT AS AN AGENT
- 9.3. LETTER REQUEST FOR FCC CONFIDENTIALITY FILING

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 10. FCC ID LABEL & SKETCH OF LABEL LOCATION

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 11. "FCC INFORMATION TO USER"

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 12. PHOTOGRAPHS OF EQUIPMENT UNDER TEST

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 13. SYSTEM BLOCK DIAGRAM(S) & SCHEMATIC DIAGRAMS

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: KTI04_F90 January 11, 2000

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)

EXHIBIT 14. USER'S MANUAL

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

• Recognized/Listed by FCC (USA), Industry Canada (Canada)