

W66 N220 Commerce Court ● Cedarburg, WI 53012 Phone: 262.375.4400 ● Fax: 262.375.4248

www.lsr.com

TEST REPORT # 315181 A LSR Job #: C-2278

Compliance Testing of:

TiWi-BLE

Test Date(s):

8/27/15 - 9/29/15

Prepared For:

Attention: Hiroshi Inaba Topcon Corporation

75-1, Hasunuma-cho, Itabashi-ku,

Tokyo, 174-8580 Japan.

This Test Report is issued under the Authority of:

Khairul Aidi Zainal, Engineering Manager-EMC test services.

Signature: Date: 10/9/15

Test Report Reviewed by:

Peter Feilen, EMC Engineer

Project Engineer:

Khairul Aidi Zainal, Engineering Manager-EMC

test services.

Signature:

Signature: leter Files

Date: 10/9/15

Date: 10/7/15

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	4
1.1 - Scope	4
1.2 – Normative References	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing	5
1.5 – Test Equipment Utilized	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description	6
2.4 - EUT'S Technical Specifications	7
2.5 - Product Description	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TEST	
3.1 - Climate Test Conditions	9
3.2 - Applicability & Summary Of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From Test Specifications	9
EXHIBIT 4. DECLARATION OF CONFORMITY	10
EXHIBIT 5. UNWANTED EMISSIONS INTO THE RESTRICTED FREQUENCY BAN	NDS11
5.1 - Test Setup	11
5.2 - Test Procedure	11
5.3 - Test Equipment Utilized	12
5.4 - Test Results	12
5.5 - Calculation of Radiated Emissions Limits and reported data	13
5.6 - Data:	14
EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE	26
6.1 Test Setup	26
6.2 Test Procedure	26
6.3 Test Equipment Utilized	26
6.4 Test Results	26
EXHIBIT 7. OCCUPIED BANDWIDTH	31
7.1 - Limits	31
7.2 - Method of Measurements	31
7.3 - Test Data	32
LS Research, LLC	Page 2 of 73

Model #: TiWi-BLE Serial #: 3-016245 Report #: 315181 A LSR Job #: C-2278

Prepared For: Topcon Corporation EUT: TiWi-BLE

7.4 – Screen Captures	33
EXHIBIT 8. BAND EDGE MEASUREMENTS	34
8.1 - Method of Measurements	34
8.2. Restricted band Band edge	35
EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)	41
9.1 - Method of Measurements	41
9.2 - Test Data	41
9.3 – Screen Captures.	44
EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)	50
10.1 - Limits	50
10.2 – Conducted Harmonic And Spurious RF Measurements	50
Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r03 section 11	50
10.3 - Test Data	51
EXHIBIT 11. POWER SPECTRAL DENSITIES: 15.247(e)	56
11.1 Limits	56
11.2 Test Data	57
11.3 Screen Captures – Power Spectral Density	58
EXHIBIT 12. FREQUENCY STABILITY OVER VOLTAGE VARIATIONS	64
EXHIBIT 13. COMPLIANCE TO KDB 594280 D01	65
APPENDIX A – Test Equipment List	71
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	72
APPENDIX C - Uncertainty Statement	73

LS Research, LLC Page 3 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 RSS GEN issue 4 and RSS 247 issue 1
Title:	FCC: Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Purpose of Test:	To gain FCC and IC Certification Authorization for Low- Power License-Exempt Transmitters.
Test Procedures:	FCC KDB 558074 D01 DTS Measurement Guidance v03r03 ANSI C63.10

1.2 - Normative References

Publication	Year	Title
FCC CFR Parts 0-15	2015	Code of Federal Regulations – Telecommunications
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
RSS-247 Issue 1	2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-GEN Issue 4	2014	General Requirements and Information for the Certification of Radio Apparatus
ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
FCC KDB 558074 D01 DTS Measurement Guidance v03r03	2015	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

LS Research, LLC Page 4 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

1.3 - LS Research, LLC Test Facility

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) as conforming to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 - Location of Testing

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Semi-Anechoic Chamber

1.5 - Test Equipment Utilized

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO/IEC 17025, and traceable to the SI standard.

LS Research, LLC Page 5 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	Topcon Corporation
Address:	75-1, Hasunam-cho, Itabashi-ku, Tokyo, 174-8580 Japan
Contact Name:	Hiroshi Inaba
E-mail:	h.inaba@topcon.jp

2.2 - Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

Product Name:	TiWi-BLE
Model Number:	TiWi-BLE
Serial Number:	3-01625

2.3 - Associated Antenna Description

The antennas associated with the EUT are:

- 1. Mitsubishi materials AM03DP-ST01 with a peak gain of 2.15dBi (0 dBd)
- 2. HOKO Electronics 1029-C17586 with a peak gain of 1.9dBi
- 3. LSR 2.4GHz dipole antenna with a peak gain of 2.0dBi
- 4. Ethertronics Prestta 1000423 2.4GHz antenna with a peak gain of -0.6dBi (at 2.4GHz)
- 5. LSR 2.4GHz waterproof Dipole Antenna, part 001-0010, with a peak gain of 2.0dBi.

LS Research, LLC Page 6 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	2412MHz – 2462MHz (WLAN)
RF Power in Watts (Conducted measurement)	
Minimum:	2.4GHz WLAN 802.11 b: 0.0447watts 802.11 g: 0.0141watts 802.11 n (HT20): 0.0074watts
Maximum:	2.4GHz WLAN 802.11 b: 0.0525watts 802.11 g: 0.0257watts 802.11 n (HT20): 0.0251watts
Conducted Output Power, average (in dBm)	2.4GHz WLAN 802.11 b: Maximum = 17.2 dBm Minimum = 16.5 dBm 802.11 g: Maximum = 14.1 dBm Minimum = 11.5 dBm 802.11 n (HT20): Maximum = 14.0 dBm Minimum = 8.7 dBm
Field Strength at 3 meters (Maximum)	Not Applicable
99% Bandwidth	2.4GHz WLAN: 802.11 b: 14.4MHz 802.11 g: 16.8MHz 802.11 n (HT20): 17.9MHz
Type of Modulation	OFDM (WLAN), DSSS(WLAN)
DTS Bandwidth (6dB BW)	2.4GHz WLAN: 802.11 b: 9.9MHz 802.11 g: 16.4MHz 802.11 n (HT20):17.3MHz
Transmitter Spurious (worst case) at 3 meters	48.5dBμV/m at 4824MHz
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Antenna Information	
Detachable/non-detachable	detachable
Туре	Sleeved dipole and SMD
Gain	Peak Gain in 2.4GHz band = 2.15dBi
EUT will be operated under FCC Rule Part(s)	Title 47 part 15.247
E]UT will be operated under RSS Rule Part(s)	RSS 247
Modular Filing	
Portable or Mobile?	Mobile

LS Research, LLC Page 7 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Χ	RF Evaluation (MPE)

Note: Refer to MPE exhibit.

2.5 - Product Description

The TiWi-BLE module is a module with support for WLAN (802.11 b/g/n)

LS Research, LLC Page 8 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	70 -71° F
Humidity:	32-42%
Pressure:	728-741mmHg

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes
FCC : 15.247 (a)(1) IC : RSS 210 A8.1 (a)	20 dB Bandwidth	Yes
FCC: 15.247(b) & 1.1310 IC: RSS 247 5.4	Maximum Output Power	Yes
FCC: 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	Yes
FCC :15.247(d) IC : RSS 247 5.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC:15.247 (a)(2) IC: RSS 247 5.2	6 dB Bandwidth of a Digital Modulation System	Yes
FCC:15.247 (d) IC: RSS 247 5.2	Power Spectral Density of a Digital Modulation System	Yes
FCC : 15.247(c), 15.209 & 15.205 IC : RSS GEN	Transmitter Radiated Emissions	Yes

3.3 - Modification	s Incorporated In The EUT For Compliance Purp	<u>oses</u>
None Non	☐ Yes (explain below)	
	,	
3.4 - Deviations &	Exclusions From Test Specifications	
None Non	Yes (explain below)	
	, ,	

LS Research, LLC Page 9 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A	
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278	

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-247, Issue 1.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

LS Research, LLC Page 10 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 5. UNWANTED EMISSIONS INTO THE RESTRICTED FREQUENCY BANDS.

<u>5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.10-2013. The EUT was placed on an 80cm high non-conductive pedestal below 1 GHz and 150cm non-conductive pedestal above 1 GHz, centered on a flush mounted turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous transmit mode for final testing using power as provided by a bench DC power supply. The unit has the capability to operate on 3 channels, controllable via LSR WLAN tool V2.1.1.

The applicable limits apply at a 3 meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels to comply with FCC Part 15.31(m).

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 200 MHz, and a Log Periodic Antenna was used to measure emissions from 200 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz while a standard gain horn antenna was used in the 18 GHz to 25 GHz range. The maximum radiated RF emissions between 30MHz to 25 GHz were found by raising and lowering the sense antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The radiated RF measurements of the EUT were **cabinet radiation** measurements which are measurements of radiated emissions while the antenna port of the EUT properly terminated. According to the procedure of **KDB 558074 D01 DTS Meas Guidance v03r03 section 12.2**, antenna port conducted measurements shall supplement cabinet radiation measurements and is included in this section.

The EUT was positioned in 3 orthogonal orientations.

LS Research, LLC Page 11 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at a calibration laboratory accredited to ISO 17025, and are traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 300 kHz), and a bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 1 MHz).

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-247, Issue 1, for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

LS Research, LLC Page 12 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

5.5 - Calculation of Radiated Emissions Limits and reported data.

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement ($dB\mu V/m$) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) - amplification factor when applicable (dB).

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

As specified in 15.247 (d), radiated emissions that fall within the restricted band described in 15.205(c), must comply with the general emissions limit.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS GEN.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBμV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-40,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m): dB μ V/m = 20 log ₁₀ (100)= 40 dB μ V/m (from 30-88 MHz)

Per KDB 558074 section 10, an EIRP measurement can be converted to field strength using this relationship:

EIRP = E (electric field strength in dBµV/m) + 20log(d)-104.8

E = EIRP - 20log(d) + 104.8

Sample conversion:

For $\dot{E}IRP = -56.6 \text{ dBm}$,

 $E (dB\mu V/m) = -56.6 - 20log(3m) + 104.8 = 38.7 dB\mu V/m$

For EIRP = -60.9 dBm,

 $E (dB\mu V/m) = -60.9 - 20log(3m) + 104.8 = 34.4 dB\mu V/m$

Above 1 GHz Peak and average limit for RF conducted measurements

Peak limit : EIRP = $74.0 \text{ dBuV/m} + 20\log(3m) - 104.8 = -21.2dBm$ Average limit : EIRP = $54.0 \text{ dBuV/m} + 20\log(3m) - 104.8 = -41.2dBm$

LS Research, LLC Page 13 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

<u>5.6 - Data:</u>

Manufacturer:	Topcon corporation						
Date(s) of Test:	9/1/	9/1/15-9/15/15					
Project Engineer(s):	Kha	irul Aidi Zainal					
Test Engineer(s):	Ada	m Alger, Khairul Aidi Zaina	al, P	eter	Feilen		
Voltage:	3.3\	DC (Via bench DC supply	<u>')</u>				
Operation Mode:	cont	tinuous transmit, modulate	d				
Environmental	Tem	nperature: 70°F					
Conditions in the	Rela	ative Humidity: 32%					
Lab:							
EUT Power:	Χ	Single Phase 120VAC			3 Phase	_VA	C
LOT FOWEI.		Battery			Other: Bench DC Supply		
EUT Placement:	Χ	80cm non-conductive		Χ	150cm non-	150cm non-conductive pedestal	
EGT Flageriicht.		pedestal					
EUT Test Location:	Х	3 Meter Semi-Anechoic			3/10m OAT	S	
LOT TOST LOCATION.	^	FCC Listed Chamber			3/10111 0/41		
Measurements:		Pre-Compliance			Preliminary	Х	Final
Detectors Used:	Χ	Peak	Χ		Quasi-Peak	Х	Average

LS Research, LLC Page 14 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

5.6.1 Cabinet radiation:

Emissions below 1GHz

Frequency (MHz)	EUT orientation	Antenna Polarity	Height (cm)	Azimuth (degrees)	Q. Peak Reading (dBμV/m)	Q. Peak limit(dBμV/ m)	Q. Peak Margin (dB)	Notes
50.0	Vertical	Horizontal	100.0	0	11.2	40.0	28.8	1.0
100.0	Vertical	Horizontal	100.0	0	10.6	43.0	32.4	1.0
80.0	Vertical	Vertical	100.0	0	10.1	40.0	29.9	1.0
394.0	Vertical	Horizontal	100.0	271	29.3	46.0	16.7	
401.3	Vertical	Vertical	160.8	290	26.1	47.0	20.9	

Notes:

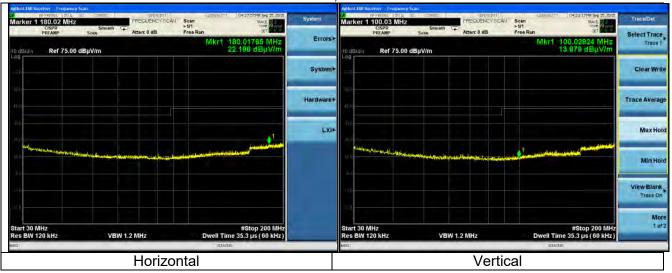
- 1. Measurement of system noise floor.
- H: Horizontal, V: Vertical, S: Side, F: Flat.
 Refer to exhibit 5.5 on explanation of how data is reported.

Emissions above 1GHz

Frequency (MHz)	EUT orientation	Antenna Polarity	Height (cm)	Azimuth (degrees)	Peak Reading (dBµV/m)	Average Reading (dBμV/m)	Peak Margin (dB)	Average Margin (dB)
	Vertical	Vertical	197.0	197	48.3	45.0	25.7	9.0
	Vertical	Horizontal	170.0	263	48.0	44.2	26.0	9.8
4824	Horizontal	Vertical	197.0	252	47.7	43.0	26.3	11.0
4024	Tiorizontai	Horizontal	189.0	178	51.0	48.5	23.0	5.5
	Flat	Vertical	214.0	138	49.6	46.4	24.4	7.6
	ridi	Horizontal	215.0	273	47.8	43.9	26.2	10.1
	Vertical	Vertical	115.0	186	49.2	45.5	24.8	8.6
	Horizontal	Horizontal	118.0	261	48.7	44.4	25.3	9.6
4874		Vertical	178.0	279	45.8	40.4	28.2	13.6
4074	Tiorizontai	Horizontal	170.0	247	50.0	46.9	24.0	7.1
	Flat	Vertical	192.0	152	50.9	47.5	23.1	6.6
	ridi	Horizontal	235.0	265	48.7	45.1	25.3	8.9
	Vertical	Vertical	100.0	185	48.9	44.6	25.1	9.4
	Vertical	Horizontal	152.0	255	48.2	43.6	25.9	10.4
4924	Horizontal	Vertical	158.0	263	45.3	38.8	28.7	15.2
4924	HOHZOHILAI	Horizontal	196.0	180	48.8	45.1	25.2	8.9
	Elat	Vertical	230.0	216	50.0	46.4	24.0	7.7
	Flat	Horizontal	219.0	272	47.3	42.7	26.7	11.3

Notes:

- Measurement of system noise floor.
 H: Horizontal, V: Vertical, S: Side, F: Flat.
- 3. Refer to exhibit 5.5 on explanation of how data is reported.

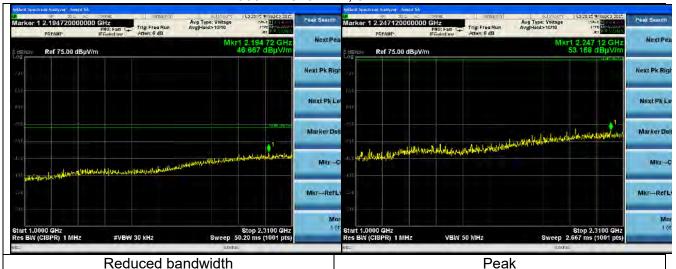

LS Research, LLC Page 15 of 73

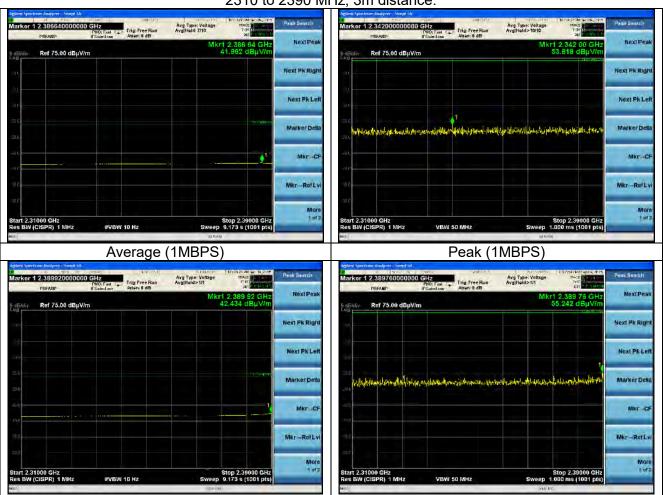
Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

Screen Captures.

The screen captures below are those using the Peak detector of the analyzer. In addition, the screen captures presented are those which were deemed to be an appropriate representation of the spectrum scan. In addition, the plots shown below are not plots of peaked emissions.

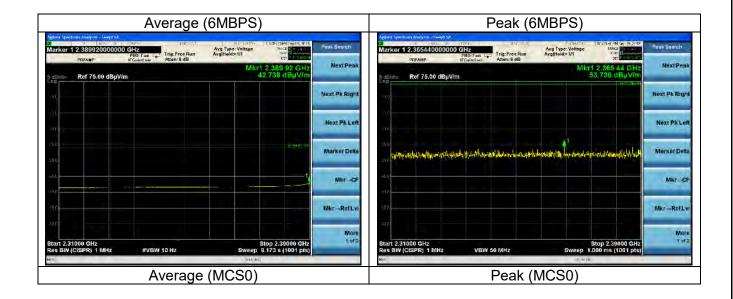
30 to 300 MHz, 3m distance.


200 to 1000 MHz, 3m distance.

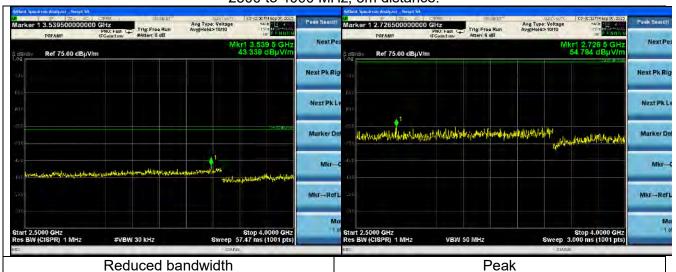

LS Research, LLC Page 16 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

1000 to 2310 MHz, 3m distance.

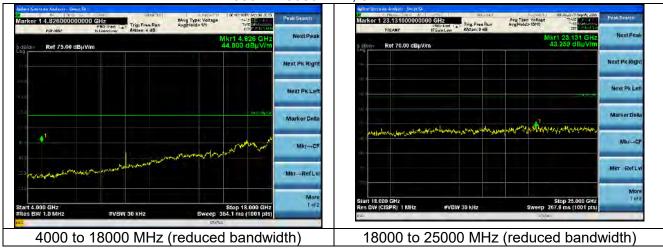


2310 to 2390 MHz, 3m distance.



LS Research, LLC Page 17 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278



Note: The range 2483.5 to 2500 MHz is in section 8 of this report (Band-edges).

LS Research, LLC Page 18 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

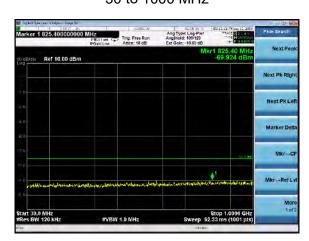
4000 to 25000 MHz, 3m distance.

LS Research, LLC Page 19 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

5.6.2 Antenna port conducted measurements:

(Data to complement cabinet radiation measurements)

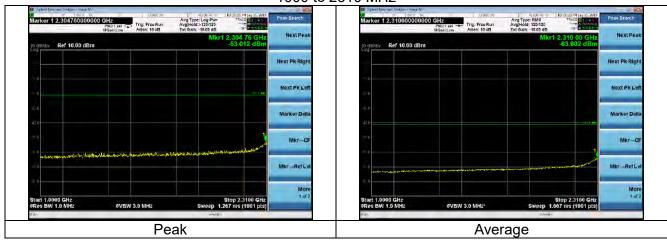

Restricted band emission frequency (MHz)	Peak (dBm)	Average (dBm)	Ground Reflection factor (dB)	antenna gain correction (dBi)	Final peak emission (dBm)	Peak Limit (dBm)	Peak Margin (dB)	Final average emission (dBm)	Average Limit (dBm)	Average Margin (dB)
2813.5	-55.8	-60.8	0.0	2.2	-53.7	-21.2	32.4	-58.7	-41.2	17.4
2732.5	-52.4	-68.7	0.0	2.2	-50.3	-21.2	29.1	-66.5	-41.2	25.3
19294.0	-54.0	-64.7	0.0	2.2	-51.8	-21.2	30.6	-62.6	-41.2	21.4
2844.0	-56.1	-63.7	0.0	2.2	-54.0	-21.2	32.7	-61.6	-41.2	20.3
4868.0	-55.0	-66.0	0.0	2.2	-52.9	-21.2	31.7	-63.9	-41.2	22.6
2872.5	-60.0	-71.6	0.0	2.2	-57.8	-21.2	36.6	-69.4	-41.2	28.2
4928.0	-56.4	-74.1	0.0	2.2	-54.3	-21.2	33.1	-72.0	-41.2	30.7

Note:

- 1. Example calculation:
 - Measurement (dBm) + ground reflection factor + antenna correction (dBi) = -55.8 + 0 + 2.2 = -53.7 dBm (Peak data at 2813.5MHz)
- 2. Data above are those when the EUT was in 802.11 b mode with 1 MBPS since it was determined to have the worst case emissions.

Screen Captures.

The screen captures presented are those which were deemed to be an appropriate representation of the spectrum scan.



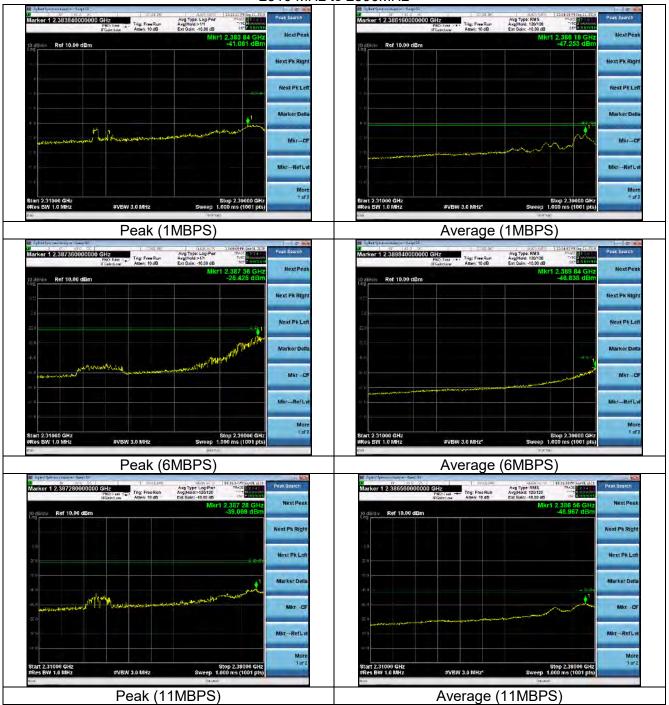
30 to 1000 MHz

LS Research, LLC Page 20 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

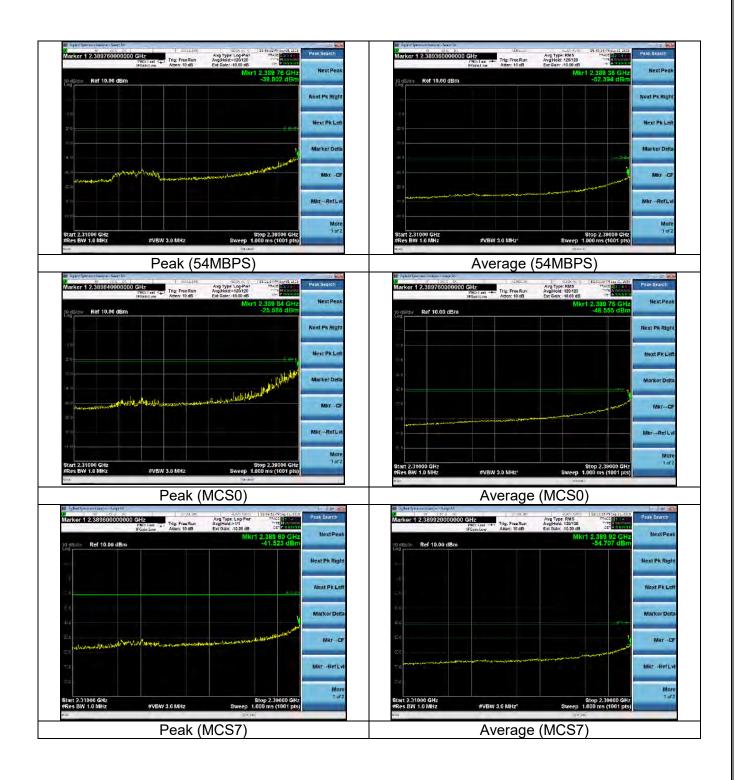
1000 to 2310 MHz

802.11 Standard	Data Rate (MBPS)	Peak data Frequency (MHz)	Restricted band emission: Peak (dBm)	Average data Frequency (MHz)	band emission: Avg	Duty Cycle correction for average measurement (dB)	Antenna gain (dBi)	Final peak emission (dBm)	Peak Limit (dBm)	Peak Margin (dB)	Final average emission (dBm)	Average Limit (dBm)	Average Margin (dB)
b	1	2383.8	-41.1	2386.2	-47.3	0.0	2.2	-38.9	-21.2	17.7	-45.1	-41.2	3.8
a,g	6	2387.4	-25.4	2389.8	-46.8	0.1	2.2	-23.2	-21.2	2.0	-44.5	-41.2	3.3
a,g	11	2386.6	-39.1	2387.3	-49.0	0.2	2.2	-36.9	-21.2	15.7	-46.6	-41.2	5.3
a,g	54	2389.4	-39.8	2389.8	-52.4	1.0	2.2	-37.6	-21.2	16.4	-49.2	-41.2	8.0
n	MCS0	2389.8	-25.6	2389.6	-45.8	0.1	2.2	-23.4	-21.2	2.2	-43.5	-41.2	2.2
n	MCS7	2389.6	-41.5	2389.9	-54.7	1.1	2.2	-39.3	-21.2	18.1	-51.4	-41.2	10.2


Note:

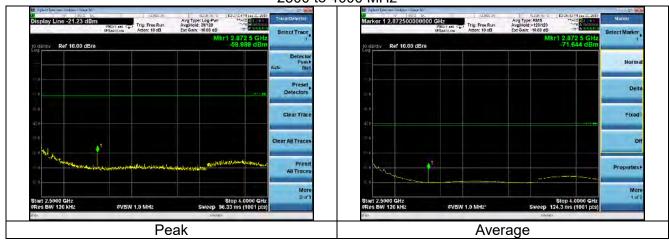
1. This table corresponds to the proceeding plots of the range 2310MHz to 2390MHz.

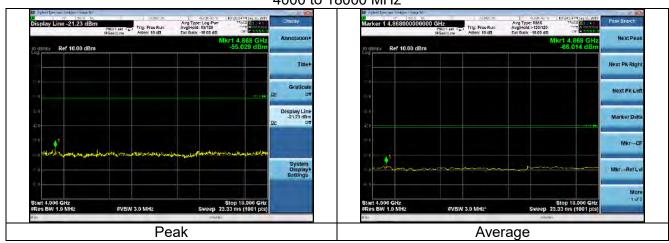
LS Research, LLC Page 21 of 73


Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

2310 MHz to 2390MHz

LS Research, LLC Page 22 of 73


Prepared For: Topcon Corporation N	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE S	Serial #: 3-016245	LSR Job #: C-2278


LS Research, LLC Page 23 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

2500 to 4000 MHz

4000 to 18000 MHz



The range of 2483.5 to 2500 MHz is in exhibit 8 (band-edges)

LS Research, LLC Page 24 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

18000 to 25000 MHz

LS Research, LLC Page 25 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15, Industry Canada RSS GEN. The EUT was placed on a non-conductive table, with a height of 80 cm above the reference ground plane. The power supply was then plugged into a 50Ω (ohm), Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the EMI receiver System. The LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

A generic AC/DC adapter was used to supply power to the module.

6.2 Test Procedure

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 <u>Test Equipment Utilized</u>

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 <u>Test Results</u>

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 and RSS GEN 7.2.4 for Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

LS Research, LLC Page 26 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range					
(MHz)	Quasi-Peak	Average	Bandwidth		
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz		
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP		
5.0 – 30	60	50	VBW = 1 Hz for Average		
* The limit decrea					
logarithm of the fre	logarithm of the frequency in this range.				

LS Research, LLC Page 27 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

6.6 <u>CONDUCTED EMISSIONS TEST DATA CHART</u>

Frequency Range inspected: 150 KHz to 30 MHz

Manufacturer:	Тор	con				
Date(s) of Test:	9/29	9/15				
Project Engineer:	Kha	airul Aidi Zainal				
Test Engineer:	Kha	airul Aidi Zainal				
Voltage:	120	VAC				
Operation Mode:	Cor	ntinuous transmit, m	odula	ited		
Environmental	Ten	Temperature: 71°F				
Conditions in the Lab:	Rela	Relative Humidity: 40%				
Test Location:	Χ	AC Mains Test area Chamber			Chamber	
EUT Placed On:	Χ	40cm from Vertical Ground Plane			10cm Spacers	
EOT Flaced Off.	Χ	80cm above Ground Plane Other:			Other:	
Measurements:		Pre-Compliance		Preliminary	Χ	Final
Detectors Used:		Peak	Χ	Quasi-Peak	X	Average

120VAC, 60Hz

		<u>Quasi-Peak</u>				<u>Average</u>	
Frequency (MHz)	Line	Q-Peak Reading (dBμV)	Q-Peak Limit (dBμV)	Quasi-Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dΒμV)	Average Margin (dB)
0.154	2	28.4	65.8	37.4	21.2	55.8	34.6
0.604	2	28.9	56.0	27.1	22.6	46.0	23.4
1.293	2	23.3	56.0	32.7	16.3	46.0	29.7
11.169	2	18.9	60.0	41.1	11.6	50.0	38.4
0.150	1	42.8	66.0	23.2	32.4	56.0	23.6
0.608	1	29.4	56.0	26.6	23.0	46.0	23.0
1.180	1	22.0	56.0	34.0	15.1	46.0	30.9
12.029	1	18.9	60.0	41.1	11.6	50.0	38.4

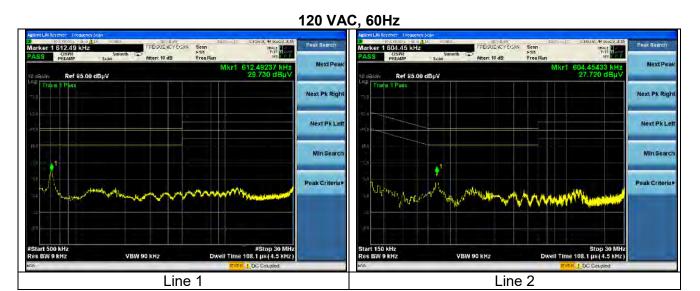
Notes:

1) The emissions listed are characteristic of the power supply used and not that of the transmitter. Changing transmit channels did not change the emissions.

LS Research, LLC Page 28 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

6.7 <u>Test Setup Photo(s) – Conducted Emissions Test</u>



LS Research, LLC Page 29 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

6.8 <u>Screen Captures – Conducted Emissions Test</u>

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized.

LS Research, LLC Page 30 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 7. OCCUPIED BANDWIDTH

Test Engineer(s): Khairul Aidi Zainal

7.1 - Limits

For a DTS system operating in the 2400 to 2483.5 MHz band, the 6dB emission bandwidth limit is 500 kHz.

7.2 - Method of Measurements

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings there by allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. A bandwidth measurement function that is built into the spectrum analyzer was used to measure the 20dB/emission bandwidth while the 6dB bandwidth was measured using **FCC OET KDB 558074 section 8 option2.**

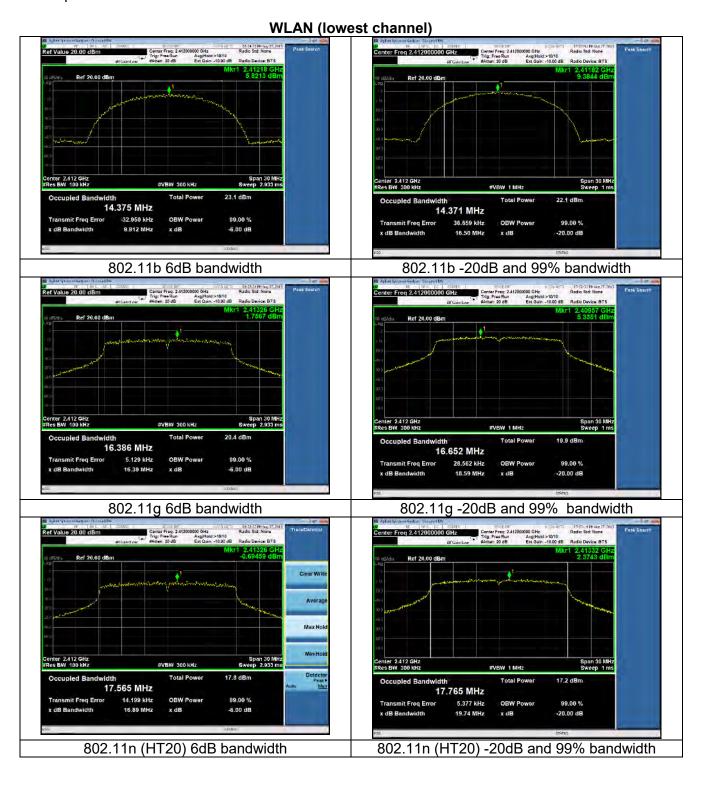
Note:

The 20dB bandwidth was measured for use with the measurement method prescribed in FCC OET KDB 558074 for maximum conducted power.

LS Research, LLC Page 31 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

<u>7.3 - Test Data</u>


802.11 Standard	Data Rate (MBPS)	Channel	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	20dB Bandwidth (MHz)	6dB Bandwidth minimum Iimit (MHz)
		1	9.1	13.9	16.2	0.5
b	1 (DBPSK)	6	9.1	13.9	16.2	0.5
		11	9.1	13.9	16.2	0.5
		1	15.5	16.8	19.7	0.5
g	6 (BPSK)	6	15.7	16.8	19.3	0.5
		11	15.4	16.8	19.4	0.5
	n MCSO (BPSK)	1	15.3	17.9	20.8	0.5
n		6	15.2	17.9	20.7	0.5
		11	15.2	17.9	20.8	0.5
		1	9.9	14.4	16.5	0.5
b	11 (8QPSK)	6	9.7	14.4	16.6	0.5
		11	9.7	14.4	16.6	0.5
g 54 (64QAM)	1	16.4	16.7	18.6	0.5	
	6	16.4	16.6	18.7	0.5	
	11	16.4	16.6	18.6	0.5	
		1	16.9	17.8	19.7	0.5
n	MCS7 (64QAM)	6	17.3	17.8	19.9	0.5
	(0402/11/1)	11	17.0	17.8	20.1	0.5

LS Research, LLC Page 32 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

7.4 - Screen Captures

Examples of bandwidth measurements:

LS Research, LLC Page 33 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 8. BAND EDGE MEASUREMENTS

Test Engineer(s): Aidi Zainal, Peter Feilen

8.1 - Method of Measurements

FCC 15.247 require a measurement of spurious emission levels at the restricted band to be compliant to the general emissions limit, in particular at the Band-Edges where the intentional radiator operates. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

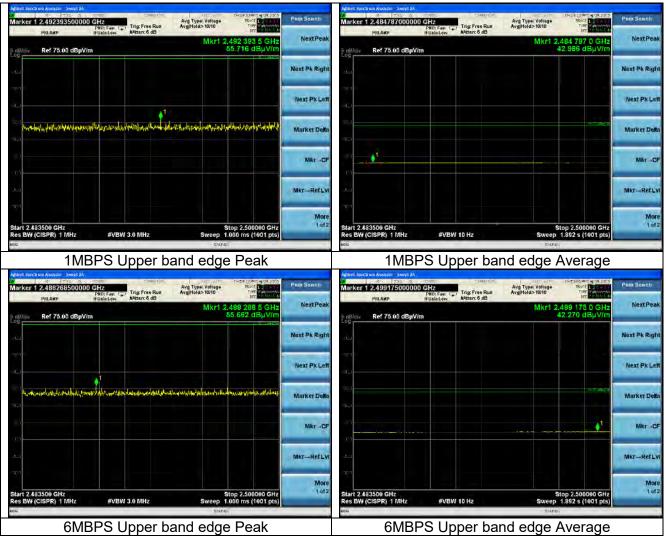
The Band-edge measurements were performed conducted (100kHz) and cabinet radiated (with the addition of antenna port conducted measurement). The measurement of radiated band-edge was performed to satisfy FCC 15.247(d).

Per FCC KDB 558074 D01 Measurement Guidance v03r03 section 11, conducted measurements were performed with 100 kHz bandwidth for all emissions outside of the band of operation. Emissions in the restricted band, a bandwidth of 120kHz (below 1000MHz) and 1MHz (above 1000MHz) were used in accordance with C63.4 and was performed radiated.

Since the radiated measurements were performed as a cabinet radiation measurement, antenna port conducted measurement per FCC KDB 558074 D01 Measurement Guidance v03r03 section 12 was also performed.

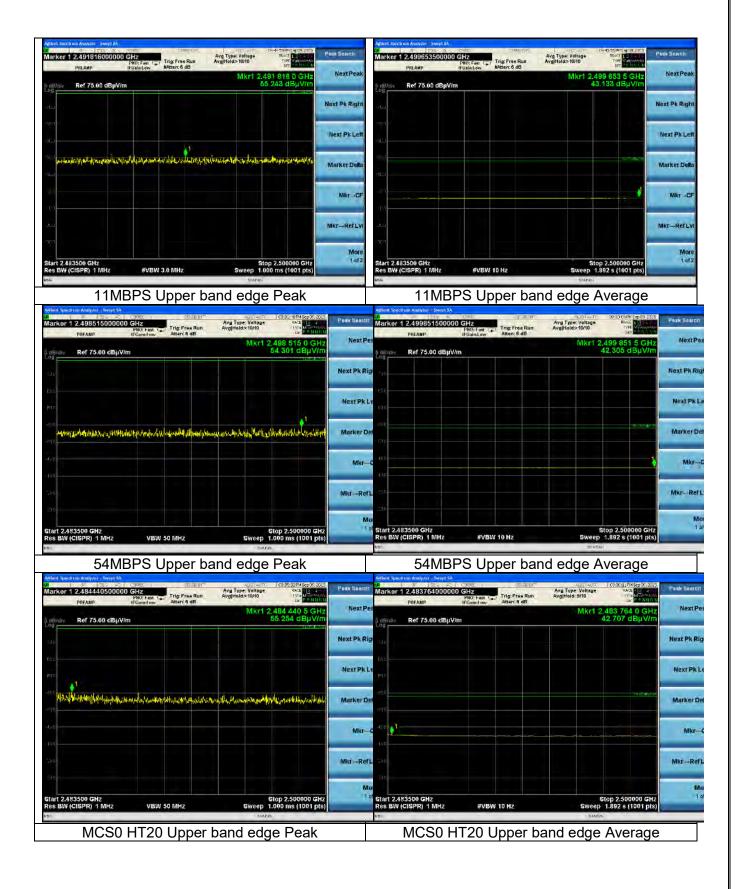
For both conducted and radiated measurements, correction factors and the cable loss factors were entered into the EMI Receiver database. As a result, the plots taken from the EMI Receiver accounts for all applicable correction factor as well as cable loss, and can therefore be entered into the database as a corrected meter reading.

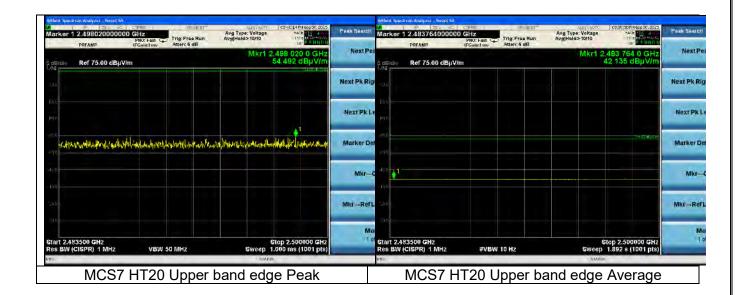
LS Research, LLC Page 34 of 73


Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

8.2. Restricted band Band edge

The data presented below are samples selected from the various data rates and channels tested.


A. Cabinet radiation:


LS Research, LLC Page 35 of 73

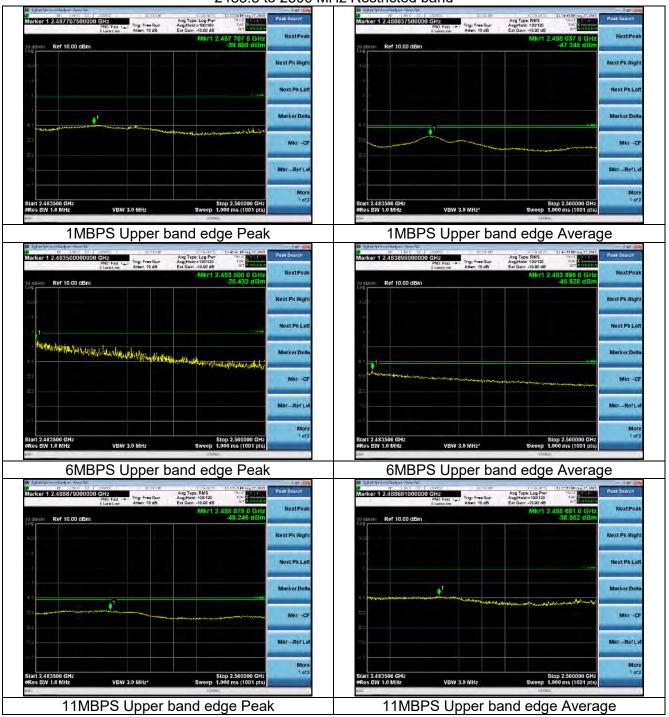
Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

LS Research, LLC Page 36 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

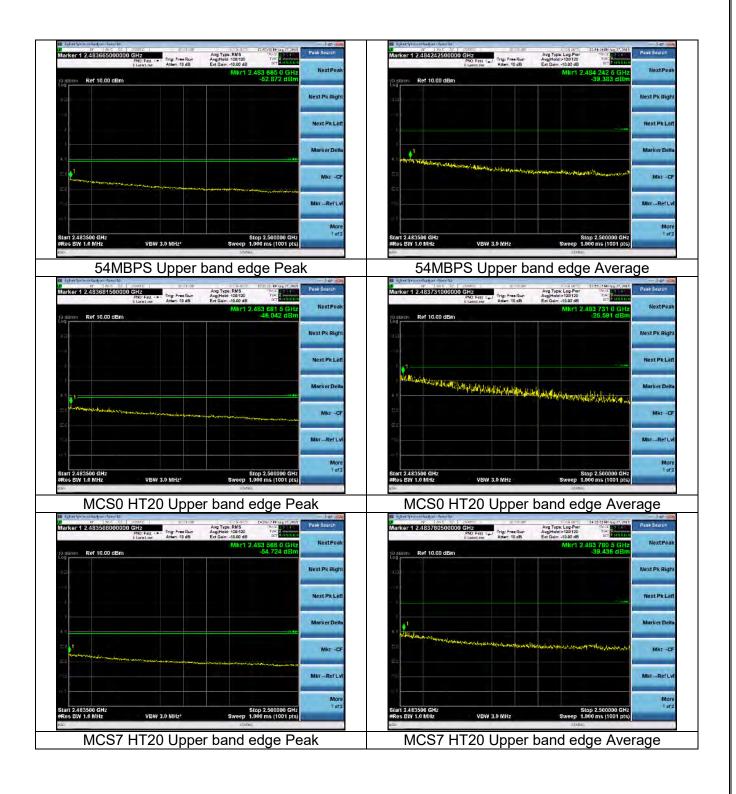
B. Antenna port conducted measurement:

Data Rate (MBPS)	Peak data Frequency (MHz)	Restricted band Band- edge: Peak (dBm)	Average data Frequency (MHz)	Restricted band Band- edge: Avg (dBm)	Duty Cycle correction for average measurement (dB)	Antenna gain (dBi)	Final peak Band-edge (dBm)	Peak Limit (dBm)	Peak Margin (dB)	Final average Band-edge (dBm)	Average Limit (dBm)	Average Margin (dB)
1	2487.7	-39.7	2488.0	-47.2	0.0	2.2	-37.5	-21.2	16.3	-45.1	-41.2	3.9
11	2488.7	-38.6	2488.9	-48.2	0.2	2.2	-36.4	-21.2	15.2	-45.9	-41.2	4.7
6	2483.5	-25.4	2483.9	-45.6	0.1	2.2	-23.3	-21.2	2.1	-43.4	-41.2	2.1
54	2484.2	-39.4	2483.7	-52.9	1.0	2.2	-37.2	-21.2	16.0	-49.7	-41.2	8.5
MCS0	2483.7	-25.6	2483.7	-46.0	0.1	2.2	-23.4	-21.2	2.2	-43.8	-41.2	2.6
MCS7	2483.8	-39.4	2483.6	-54.7	1.1	2.2	-37.3	-21.2	16.1	-51.5	-41.2	10.2


Note:

LS Research, LLC Page 37 of 73

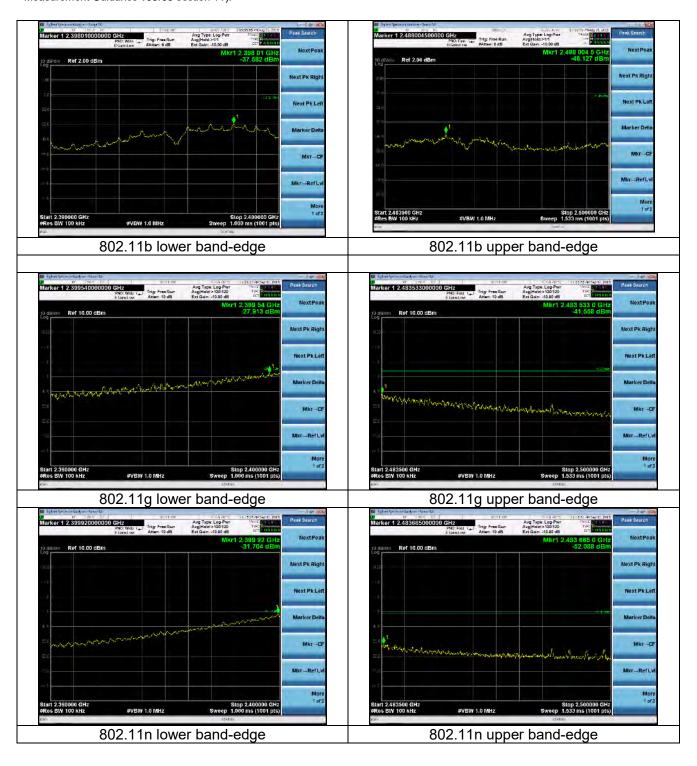
Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


^{1.} Section 12.2.5.2 of KDB 558074 v03r03 was used for average measurements while section 12.2.4 of KDB 558074 v03r03 was used for Peak measurements.

2483.5 to 2500 MHz Restricted band

LS Research, LLC Page 38 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278



LS Research, LLC Page 39 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

C. Band-edge in 100kHz bandwidth:

Note: The limits in the plots below are based on 30dB below the measured fundamental (using the procedure of FCC KDB 558074 D01 Measurement Guidance v03r03 section 11).

LS Research, LLC Page 40 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

Test Engineer(s): Peter Feilen

9.1 - Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings there by allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source.

Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r03 section 9.2.2.4

9.2 - Test Data

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

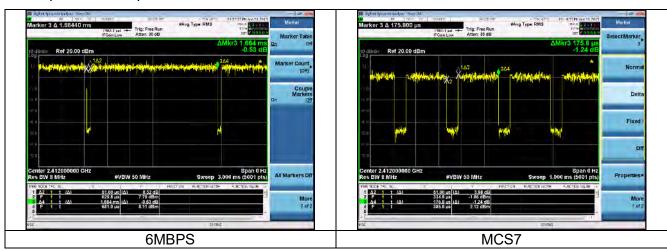
Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

LS Research, LLC Page 41 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


9.2.1. WLAN Maximum conducted average power:

9.2.1.1 Duty cycle:

Measurement procedure: FCC OET KDB 558074 D01 Measurement Guidance v03r03 section 6

Data Rate (MBPS)	TX on time (ms)	TX off time (ms)	Duty Cycle	Duty cycle correction factor (dB)
1.0	10.010	0.046	1.00	0.0
6.0	1.664	0.051	0.97	0.1
11.0	1.085	0.046	0.96	0.2
54.0	0.203	0.051	0.80	1.0
MCS0	1.540	0.051	0.97	0.1
MCS7	0.176	0.051	0.78	1.1
MCS1	0.783	0.052	0.94	0.3
MCS5	0.216	0.052	0.81	0.9
MCS3	0.404	0.051	0.89	0.5

Example screen captures:

LS Research, LLC Page 42 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

9.2.1.2 WLAN Maximum conducted (average) output power:

802.11 Standard	Data Rate (MBPS)	Channel	Maximum Conducted Power (dBm)	D.C correction (dB)	Corrected Maximum Conducted Power (dBm)	Power Limit (dBm)	Power margin (dB)
		1	17.2	0.0	17.2	30.0	12.8
b	1 (DBPSK)	6	17.0	0.0	17.0	30.0	13.0
		11	16.5	0.0	16.5	30.0	13.5
		1	14.0	0.1	14.1	30.0	16.0
g	6 (BPSK)	6	13.8	0.1	13.9	30.0	16.2
		11	14.0	0.1	14.1	30.0	16.0
		1	13.9	0.1	14.0	30.0	16.1
n (HT20)	MCSO (BPSK)	6	13.9	0.1	14.0	30.0	16.1
		11	13.9	0.1	14.0	30.0	16.1
		1	16.8	0.2	17.0	30.0	13.2
b	11 (8QPSK)	6	16.9	0.2	17.1	30.0	13.1
		11	16.8	0.2	17.0	30.0	13.2
		1	11.1	1.0	12.1	30.0	18.9
g	54 (64QAM)	6	10.6	1.0	11.6	30.0	19.4
		11	10.5	1.0	11.5	30.0	19.5
		1	7.8	1.1	8.9	30.0	22.2
n (HT20)	MCS7 (64QAM)	6	7.6	1.1	8.7	30.0	22.4
	(U4QAIVI)	11	7.8	1.1	8.9	30.0	22.2

LS Research, LLC Page 43 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

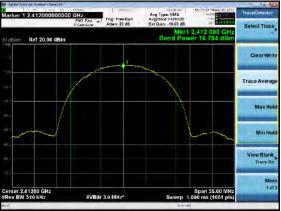
9.3 - Screen Captures.

9.3.1 WLAN:

1MBPS

Middle Channel

High Channel



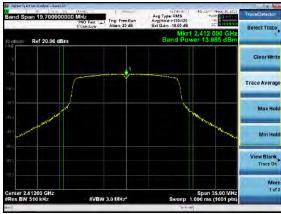
LS Research, LLC Page 44 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

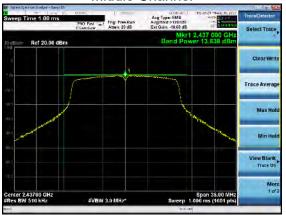
11MBPS

Middle Channel

High Channel



LS Research, LLC Page 45 of 73


Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

6MBPS



Middle Channel



LS Research, LLC Page 46 of 73


Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

54MBPS

Middle Channel



LS Research, LLC Page 47 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

MCS0 HT20

Middle Channel



LS Research, LLC Page 48 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

MCS7 HT20

Middle Channel

LS Research, LLC Page 49 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

Test Engineer(s): Peter Feilen

10.1 - Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.2 - Conducted Harmonic And Spurious RF Measurements

FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r03 section 11.

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

LS Research, LLC Page 50 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

10.3 - Test Data

The data presented below are samples selected from the various data rates and channels tested.

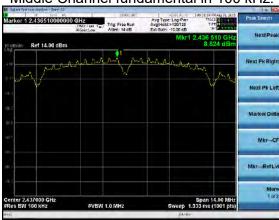
10.3.1 2.4GHz WLAN

Low Channel fundamental in 100 kHz:

30MHz to 1000MHz

LS Research, LLC Page 51 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


1000MHz to 10000MHz

10000 to 25000MHz

Middle Channel fundamental in 100 kHz:

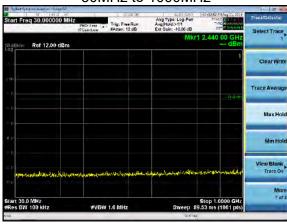
LS Research, LLC Page 52 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

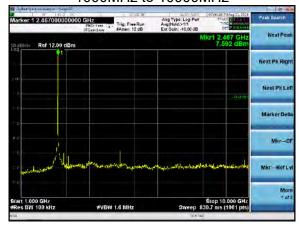

30MHz to 1000MHz

1000MHz to 10000MHz

10000MHz to 25000MHz


LS Research, LLC Page 53 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


High Channel fundamental in 100 kHz:

30MHz to 1000MHz

1000MHz to 10000MHz

LS Research, LLC Page 54 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

10000MHz to 25000MHz

LS Research, LLC Page 55 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 11. POWER SPECTRAL DENSITIES: 15.247(e)

11.1 Limits

For digitally modulate systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e) and RSS 210 A8.2(b), the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings performed as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed.

Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r03 section 10.2 for WLAN.

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

LS Research, LLC Page 56 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.2 Test Data

802.11 Standard	Data Rate (MBPS)	Channel	Peak PSD (dBm)	PSD in 3kHz limit(dBm)	PSD margin (dBm)
		1	4.7	8.0	3.3
b	1 (DBPSK)	6	5.2	8.0	2.8
		11	5.1	8.0	2.9
		1	3.9	8.0	4.1
g	6 (BPSK)	6	3.7	8.0	4.3
		11	3.7	8.0	4.3
		1	3.8	8.0	4.2
n (HT20)	MCSO (BPSK)	6	3.9	8.0	4.1
		11	3.9	8.0	4.1
		1	3.3	8.0	4.7
b	11 (8QPSK)	6	3.2	8.0	4.8
		11	3.2	8.0	4.8
		1	1.4	8.0	6.6
g	54 (64QAM)	6	1.3	8.0	6.7
		11	1.2	8.0	6.8
		1	-1.1	8.0	9.1
n (HT20)	MCS7 (64QAM)	6	-1.3	8.0	9.3
	(11	-1.5	8.0	9.5

LS Research, LLC Page 57 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.3 Screen Captures - Power Spectral Density

11.3.1 2.4GHz WLAN

11.3.1.1 1MBPS

Middle Channel

High Channel

LS Research, LLC Page 58 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.3.1.2 6MBPS

Low Channel

Middle Channel

High Channel

LS Research, LLC Page 59 of 73

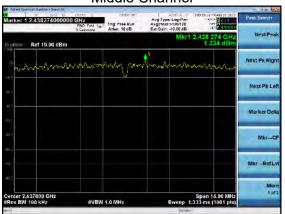
Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.3.1.3 11MBPS

Low Channel

Middle Channel

LS Research, LLC Page 60 of 73


Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.3.1.4 54MBPS

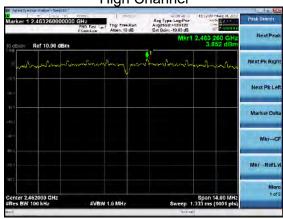
Middle Channel

High Channel

LS Research, LLC Page 61 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.3.1.5 MCS0 HT20


Low Channel

Middle Channel

LS Research, LLC Page 62 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

11.3.1.6 MCS7 HT20

Low Channel

Middle Channel

High Channel

LS Research, LLC Page 63 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

EXHIBIT 12. FREQUENCY STABILITY OVER VOLTAGE VARIATIONS

Test Engineer(s): Khairul Aidi Zainal

The frequency stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the RF output power and frequency at the appropriate frequency markers. Power was supplied by an external bench-type DC power supply and was varied ±10% from the nominal.

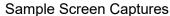
The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle.

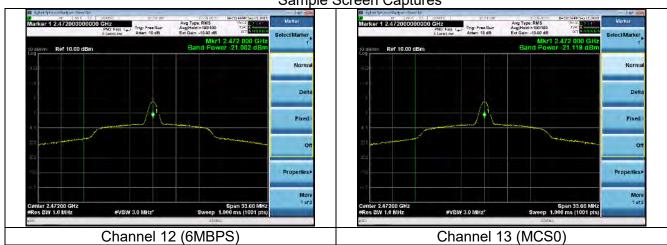
WLAN 2.4 GHZ

	13.5VDC	15.0VDC	16.5VDC	
	FREQUENCY (Hz)	FREQUENCY (Hz)	FREQUENCY (Hz)	FREQ DRIFT (Hz)
LOW CHANNEL	2412000969	2412000990	2412000990	21
MID CHANNEL	2437000920	2437000940	2437000960	40
HIGH CHANNEL	2462000939	2462000960	2462000960	21

LS Research, LLC Page 64 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


EXHIBIT 13. COMPLIANCE TO KDB 594280 D01


In this exhibit, data is presented showing WLAN channel 12 and 13 compliance to the technical requirements for DTS operations in the band 2400 to 2483.5MHz.

Measurements were performed conducted at the antenna port using measurement methods presented in KDB 558074

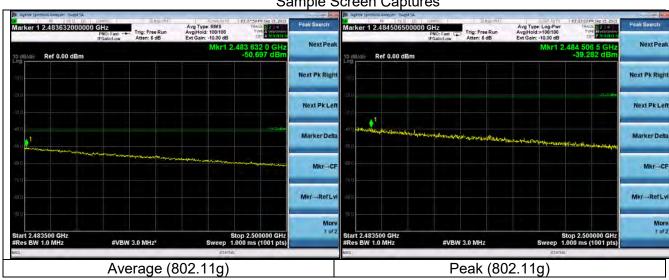
A. Maximum Conducted Power (FCC OET KDB 558074 v03r02 section 9.2.2.4)

802.11 Standard	Data Rate (MBPS)	Channel	Maximum Conducted (average) Power (dBm)	Duty Cycle correction for average measurement (dB)	Corrected Maximum Conducted Power (dBm)	Power Limit (dBm)
b	1	12	-21.8	0.0	-21.8	30.0
D		1	13	-21.7	0.0	-21.7
σ	6	12	-21.1	0.1	-21.0	30.0
g	U	13	-21.1	0.1	-21.0	30.0
n	n MCS0	12	-21.2	0.1	-21.1	30.0
11	IVICSU	13	-21.1	0.1	-21.0	30.0

LS Research, LLC Page 65 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

B. Restricted band Band-edge (FCC OET KDB 558074 v03r03 section 12)


1. Channel 12

802.11 Standard	Data Rate (MBPS)	Peak data Frequency (MHz)	Restricted band Band- edge: Peak (dBm)	Average data Frequency (MHz)	band Band- edge: Avg	Duty Cycle correction for average measurement (dB)	Antenna gain (dBi)	Final peak Band-edge (dBm)	Peak Limit (dBm)	Peak Margin (dB)	Final average Band-edge (dBm)	Average Limit (dBm)	Average Margin (dB)
b	1	2484.8	-51.4	2484.4	-57.0	0.0	2.2	-49.2	-21.2	28.0	-54.8	-41.2	13.6
a,g	6	2484.5	-39.3	2483.6	-50.7	0.1	2.2	-37.1	-21.2	15.9	-48.4	-41.2	7.2
n	MCS0	2484.0	-39.4	2483.6	-50.8	0.1	2.2	-37.2	-21.2	16.0	-48.5	-41.2	7.3

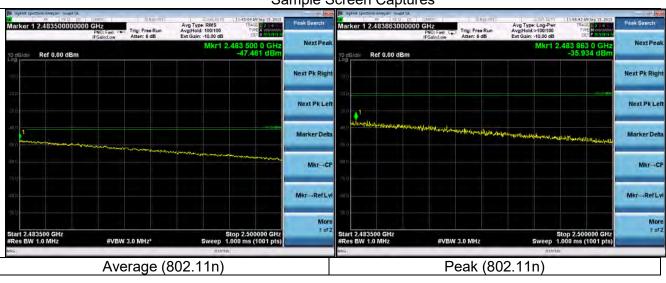
Note:

- a. Final Peak band-edge = Peak data + antenna gain
- b. Final Average band-edge = Average data + DC correction + antenna gain
- Peak data and average data includes all applicable equipment factors (i.e. cable factor)
- d. Peak and average limit was converted from field strength to dBm using equation from C63.10

Sample Screen Captures

LS Research, LLC Page 66 of 73

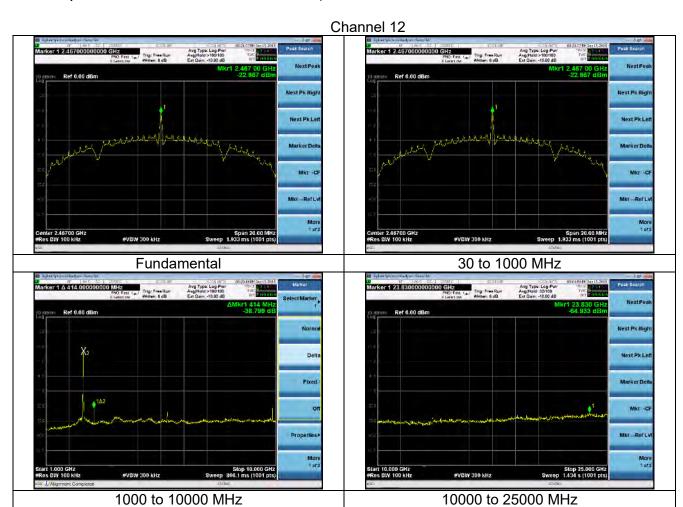
Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


2. Channel 13

802.11 Standard	Data Rate (MBPS)	Peak data Frequency (MHz)	Restricted band Band- edge: Peak (dBm)	Average data Frequency (MHz)	Restricted band Band- edge: Avg (dBm)	Duty Cycle correction for average measurement (dB)	Antenna gain (dBi)	Final peak Band-edge (dBm)	Peak Limit (dBm)	Peak Margin (dB)	Final average Band-edge (dBm)	Average Limit (dBm)	Average Margin (dB)
b	1	2483.6	-49.6	2489.4	-57.0	0.0	2.2	-47.4	-21.2	26.1	-54.8	-41.2	13.5
a,g	6	2483.5	-35.3	2483.5	-47.2	0.1	2.2	-33.1	-21.2	11.9	-44.9	-41.2	3.7
n	MCS0	2483.9	-35.9	2483.5	-47.5	0.1	2.2	-33.7	-21.2	12.5	-45.2	-41.2	3.9

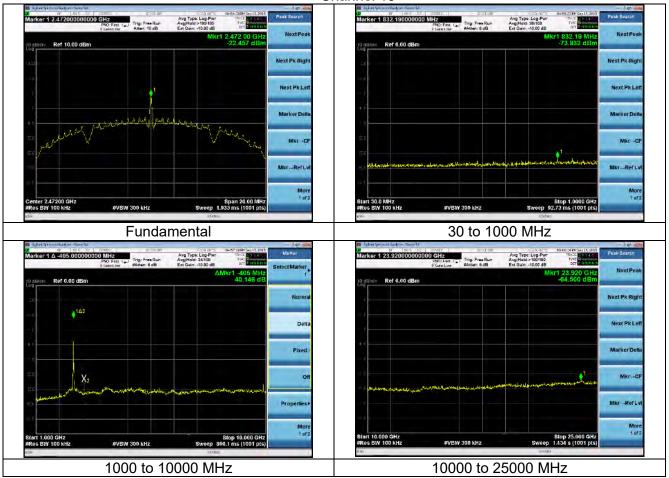
Note:

- Final Peak band-edge = Peak data + antenna gain
- Final Average band-edge = Average data + DC correction + antenna gain
- Peak data and average data includes all applicable equipment factors (i.e. cable factor)
- Peak and average limit was converted from field strength to dBm using equation from C63.10



LS Research, LLC Page 67 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278


C. Transmitter spurious emissions (100 kHz bandwidth) (FCC OET KDB 558074 v03r02 section 11)

LS Research, LLC Page 68 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

Channel 13

LS Research, LLC Page 69 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

The EUT does NOT have the ability to operate at different power levels. The power levels are set via firmware. This firmware is installed onto the radio module at the factory. The user has no access to any power level control.

In addition, the module EEPROM will be programmed at the factory to only operate and actively scan on these specific channels:

```
Channels 1 – 11, 2412-2462 MHz 802.11b mode
Channels 1 – 11, 2412-2462 MHz 802.11g mode
Channels 1 – 11, 2412-2462 MHz 802.11n mode (20 MHz channel)
```

The following channels will be programmed at the factory to passively scan and will only listen and cannot send a probe request to initiate communication on these specific channels. Ad-hoc mode is always disabled on these passive channels.

```
Channels 12 & 13, 2467 & 2472 MHz 802.11b mode
Channels 12 & 13, 2467 & 2472 MHz 802.11g mode
Channels 12 & 13, 2467 & 2472 MHz 802.11n mode (20MHz channel)
```

LS Research, LLC Page 70 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

APPENDIX A - Test Equipment List

 Date : 27-Aug-2015
 Type Test : TX and RX AC mains
 Job #: C-2278

 Prepared By: Aidi
 Customer:
 Topcon Positioning Systems
 Quote #: 315181

No. Asset # Manufacturer Model # Serial # Cal Due Date Equipment Status Description Cal Date N9038A MXE 26.5GHz Receiver 1 EE 960085 MY51210148 5/6/2015 Active Calibration N9038A 5/6/2016 COM-POWER LI-215A 191969 7/24/2015 7/24/2016 Active Calibration

LS RESEARCH LLC
Wireless Product Development
Equipment Calibration

 Date : 27-Aug-2015
 Type Test : Conducted measurements
 Job # : C-2278

 Prepared By: Aidi
 Customer:
 Topcon Positioning Systems
 Quote #: 315181

 No.
 Asset #
 Description
 Manufacturer
 Model #
 Serial #
 Cal Date
 Cal Due Date
 Equipment Status

 1
 EE 960087
 44GHz EXA Spectrum Analyzer
 Agilent
 N9010A
 MY53400296
 12/11/2014
 12/11/2015
 Active Calibration

 2
 AA 960144
 Phaseflex
 Gore
 EKD01D010720
 5800373
 Verification
 Verification
 System

 Date: 27-Aug-2015
 Type Test: Radiated measurements
 Job #: C-2278

 Prepared By: Aidi
 Customer:
 Topcon Positioning Systems
 Quote #: 315181

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960085	N9038A MXE 26.5GHz Receiver	Agilent	N9038A	MY51210148	5/6/2015	5/6/2016	Active Calibration
2	EE 960125	SMA Cable	MegaPhase	NC19-S1S1-236	1GVT4 14032106 001	3/6/2015	3/6/2016	Active Verification
3	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	7/9/2015	7/9/2016	Active Calibration
4	AA 960158	Double Ridge Horn Antenna	ETS Lindgren	3117	109300	7/9/2015	7/9/2016	Active Calibration
5	AA 960154	2.4GHz High Pass Filter	KWM	HPF-L-14186	7272-02	8/4/2015	8/4/2016	Active Calibration
6	EE 960088	8GHz MXE Spectrum Analyzer	Agilent	N9038A	MY51210138	1/9/2015	1/9/2016	Active Calibration
7	EE 960087	44GHz EXA Spectrum Analyzer	Agilent	N9010A	MY53400296	12/11/2014	12/11/2015	Active Calibration
8	AA 960005	Biconical Antenna	EMCO	93110B	9601-2280	8/6/2015	8/6/2016	Active Calibration
9	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	1/19/2015	1/19/2016	Active Calibration
10	EE 960146	Std. Gain Horn Ant. w/preamp	Adv. Micro / EMCC	WLA622-4 / 3160-09	123001	8/19/2015	8/19/2016	Active Calibration

LS Research, LLC Page 71 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

<u>APPENDIX B - Test Standards: CURRENT PUBLICATION DATES RADIO</u>

STANDARD#	DATE	Am. 1	Am. 2
ANSI C63.4	2014		
ANSI C63.10	2013		
FCC 47 CFR, Parts 0-15, 18,			
90, 95	2015		
RSS GEN	2014		
RSS 247	2015		

LS Research, LLC Page 72 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278

APPENDIX C - Uncertainty Statement

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64° / 2.88 %RH

LS Research, LLC Page 73 of 73

Prepared For: Topcon Corporation	Model #: TiWi-BLE	Report #: 315181 A
EUT: TiWi-BLE	Serial #: 3-016245	LSR Job #: C-2278