FCC PART 15 SUBPART C TEST REPORT

for

Remote Control

Model No.: CATXMLSS

FCC ID: H5OTR38

of

Applicant: Advance Security Inc. Address: 3F, 48 Ta-An Street, Hsi-Chih Taipei Hsien, Taiwan R.O.C.

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M21005-10676-P-15

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: <u>wts@wts-lab.com</u>

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

TABLE OF CONTENTS

GEN	NERAL INFORMATION	2
1.1	Notes	2
1.2	Testing laboratory	3
1.2.	1 Location	3
1.2.2	2 Details of accreditation status	3
1.3	Details of approval holder	3
1.4	Application details	4
1.5	General information of Test item	4
1.6	Test standards	5
TEC	CHNICAL TEST	6
2.1	Summary of test results	6
2.2	Test environment	6
2.3	Test Equipment List	7
2.4	General Test Procedure	.10
TES	T RESULTS (ENCLOSURE)	.12
3.1	Peak Output Power (transmitter)	.13
3.2	RF Exposure Compliance Requirements	
3.3	Out of Band Radiated Emissions	
3.4		
3.5	Spurious emissions (tx)	.17
3.6	Carrier Frequency Separation	.21
3.7	Number of Hopping Frequencies	
	J 11 8 1	
3.8		
3.9		
3.10		
3.11		
3.12	Power Line Conducted Emission	.31
	1.1 1.2 1.2.1 1.3 1.4 1.5 1.6 TEC 2.1 2.2 2.3 2.4 TES 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.7.1	1.1 Notes 1.2 Testing laboratory 1.2.1 Location 1.2.2 Details of accreditation status 1.3 Details of approval holder 1.4 Application details 1.5 General information of Test item 1.6 Test standards TECHNICAL TEST 2.1 Summary of test results 2.2 Test environment. 2.3 Test Equipment List 2.4 General Test Procedure TEST RESULTS (ENCLOSURE) 3.1 Peak Output Power (transmitter). 3.2 RF Exposure Compliance Requirements 3.3 Out of Band Radiated Emissions in restricted Bands 3.4 Transmitter Radiated Emissions in restricted Bands 3.5 Spurious emissions (tx) 3.6 Carrier Frequency Separation 3.7.1 Pseudorandom Frequency Hopping Sequence 3.7.2 Coordination of hopping sequences to other transmitters. 3.7.3 System Receiver Hopping Capability. 3.7.4 Equal Hopping Frequency Use 3.8 Time of Occupancy (Dwell Time) 3.9

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Tester:

Date

June 21, 2010

WTS-Lab. Name

Danny Sung

)ann

Signature

Technical responsibility for area of testing:

June 21, 2010		Chang Tse-Ming	Chang Tse-ny
Date	WTS	Name	Signature

1.2 Testing laboratory

1.2.1 Location

OATS No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.) Company Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C. Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd. :

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

1.3 Details of approval holder

Name	: Advance Security Inc.
Street	: 3F, 48 Ta-An Street,
Town	: Hsi-Chih, Taipei Hsien,
Country	: Taiwan R.O.C.
Telephone	: +886-2-86481688
Fax	: +886-2-86481689

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

1.4 Application details

Date of receipt of test item	: May 28, 2010
Date of test	: from May 31, 2010 to June 21, 2010

1.5 General information of Test item

Type of test item	: Remote Control
Model Number	: CATXMLSS
Multi-listing model number	: ./.
Photos	: see Appendix

Technical data

Frequency band	: 909 - 921.778 MHz
Frequency (ch A)	: 909.000 MHz
Frequency (ch B)	: 915.500 MHz
Frequency (ch C)	: 921.778 MHz

<u>Unom</u>

<u>Transmitter</u>

Power (ch A or ch 1)	: Conducted: 18.50 dBm
Power (ch B or ch 13)	: Conducted: 18.67 dBm
Power (ch C or ch 25)	: Conducted: 18.81 dBm
Power supply	: Battery: 3.7V, 170mAH Adaptor: DC 5V 500mA
Operation modes	: Half-duplex
Modulation Type	: FSK
Antenna Type	: Helical antenna
Antenna gain	: < 6 dBi

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Host device : none

Classification :

Fixed Device	
Mobile Device (Human Body distance > 20 cm)	\square
Portable Device (Human Body distance < 20cm)	

Manufacturer:

(if applicable)

Name	: ./.
Street	: ./.
Town	: ./.
Country	: ./.

1.6 Test standards

Technical standard : FCC RULES PART 15 SUBPART B/ SUBPART C § 15.247 (2009-10)

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course	×
of the tests performed.	

or

The deviations as specified in 3 were ascertained in the course of the tests performed.

2.2 Test environment

Temperature	: 23 °C
Relative humidity content	: 20 75 %
Air pressure	: 86 103 kPa
Details of power supply	: Battery: 3.7V, 170mAH Adaptor: DC 5V 500mA
Extreme conditions parameters	: test voltage : extreme min : V max : V
Description of Tested System	: ./.

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2009/9/10	2010/9/9
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2010/3/2	2011/3/1
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2009/9/9	2010/9/8
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2010/5/8	2011/5/7
ETSTW-CE 007	SPECTRUM ANALYZER 5GHz	FSB	849670/001	R&S	Pre-test	Use NCR
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010.02	844581/024	R&S	Functi	on Test
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2009/7/21	2010/7/20
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2009/9/12	2010/9/11
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2009/9/9	2010/9/8
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	Function	on Test
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2009/10/1	2010/9/30
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2009/9/18	2010/9/17
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2009/9/11	2010/9/10
ETSTW-RE 006	Attenuator 10dB	50HF-010-5N-1	None	STEP	2010/3/5	2011/3/4
ETSTW-RE 010	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2009/9/11	2010/9/10
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K&L	Function Test	
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K&L	Function Test	
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2009/10/1	2010/9/30
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Functi	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2009/8/19	2010/8/18
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	2009/8/14	2011/8/13
ETSTW-RE 028	Log-Periodic Dipole Array Antenna	3148	34429	EMCO	2010/4/14	2011/4/13
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2010/4/14	2011/4/13
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2010/3/2	2011/3/1
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2009/8/23	2010/8/22
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	Functi	on Test
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2009/8/23	2010/8/22
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2010/1/13	2011/1/12
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2010/4/29	2011/4/28
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2010/5/11	2011/5/10
ETSTW-RE 047	PSA SERIES SPECTRUM ANALYZER	E4445A	MY46181369	Agilent	Pre-test	Use NCR
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2009/8/31	2010/8/30

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2010/4/13	2011/4/12
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2010/3/5	2011/3/4
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2010/3/5	2011/3/4
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2009/6/10	2010/6/09
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	Pre-test	Use NCR
ETSTW-RE 061	Amplifier Module	CHC 1	None	ETS	2009/11/12	2010/11/11
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2009/11/12	2010/11/11
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test
ETSTW-RE 065	Amplifier	AMF-6F- 18002650-25-10P	941608	MITEQ	2010/4/13	2011/4/12
ETSTW-RE 066	Highpass Filter	H1G013G1	206015	MICROWAVE CIRCUITS, INC.	2010/3/5	2011/3/4
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2009/10/2	2010/10/1
ETSTW-RE 073	Power Meter	N1911A	MY45100769	Agilent	2010/1/7	2011/1/6
ETSTW-RE 074	Power Sensor	N1921A	MY45241198	Agilent	2010/1/7	2011/1/6
ETSTW-RE 081	Highpass Filter	H03G13G1	4260-02 DC0428	MICROWAVE CIRCUITS, INC.	2010/3/5	2011/3/4
ETSTW-RE 096	SIGNAL GENERATOR	SMIQ 03B	102274	R&S	2010/5/31	2011/5/30
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2010/3/5	2011/3/4
ETSTW-RE 105	2.4GHz Notch Filter	NO124411	39555	MICROWAVE CIRCUITS, INC.	2010/3/25	2011/3/24
ETSTW-RE 106	Humidity Temperature Meter	TES-1366	091011113	TES	2010/3/25	2011/3/24
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2009/9/22	2010/9/21
ETSTW-GSM 019	Band Reject Filter	WRCTF824/849- 822/851-40 /12+9SS	3	WI	Function Test	
ETSTW-GSM 020	Band Reject Filter	WRCD1747/1748- 1743/1752-32/58S	1	WI	Functi	on Test
ETSTW-GSM 021	Band Reject Filter	WRCD1879.5/1880 .5-1875.5/1884.5- 32/5SS	3	WI	Functi	on Test
ETSTW-GSM 022	Band Reject Filter	WRCT901.9/903.1- 904.25-50/8SS	1	WI	Functi	on Test
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2009/9/21	2010/9/20
ETSTW-Cable 002	Microwave Cable	SUCOFLEX 104 (S Cable 7)	238093	HUBER+SUHNER	2009/9/16	2010/9/15
ETSTW-Cable 003	Microwave Cable	SUCOFLEX 104 (S Cable 11)	209953	HUBER+SUHNER	2009/9/16	2010/9/15
ETSTW-Cable 006	Microwave Cable	SUCOFLEX 104 (S Cable 8)	238095	HUBER+SUHNER	2010/3/5	2011/3/4
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2010/3/5	2011/3/4
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	2009/8/20	2010/8/19
ETSTW-Cable 012	BNC Cable	BNC Cable 2	None	JYE BAO CO.,LTD.	2009/8/20	2010/8/19
ETSTW-Cable 013	Microwave Cable	SUCOFLEX 104 (S Cable 5)	232345	HUBER+SUHNER	2010/3/5	2011/3/4
ETSTW-Cable 022	N TYPE Cable	OATS Cable 3	0002	JYE BAO CO.,LTD.	2010/3/5	2011/3/4
ETSTW-Cable 039	Microwave Cable	SUCOFLEX 104 (S Cable 19)	316739	HUBER+SUHNER	2010/3/5	2011/3/4
WTSTW-SW 001	EMI TEST SOFTWARE	Harmonics-1000	None	EMC PARTNER		ersion 4.16 Version 2.18
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad		ETS-03A1

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

WTSTW-SW 003	EMS TEST SOFTWARE	i2	None	AUDIX	Version 3.2007-8-17b
WTSTW-SW 005	GSM Fading Level Correction	GSMFadLevCor	None	R&S	Version 1.66

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50μ H LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz)METER READING + ACF + CABLE LOSS (to the receiver) = FS33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m} @3m$

The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2003 Section 13.1.2. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.). The Registration Number: **930600**.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows: Average = Peak + Duty Factor Duty Factor = 20 log (dwell time/T) T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Spurious Emissions conducted – Transmitter operating	15.247			
Carrier Frequency Separation	15.247(a) (1)	×	×	
Number of Hopping Frequencies	15.247(a) (1)(i)	×	×	
Time of Occupancy (Dwell Time)	15.247(a) (1)(i)	×	×	
20 dB Bandwidth	15.247(a) (1)(i)	×	×	
Band-edge Compliance of RF Emission	15.247(c)	×	×	
Radiated Emission from Digital Part And Receiver L.O.	15.109	×	×	
Power Line Conducted Emission	15.207(a)	×	×	

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

3.1 Peak Output Power (transmitter)

FCC Rule: 15.247

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

		Conducted Power				
Test conditions	Channel A Channel B Channel					
	[dBm]	[dBm]	[dBm]			
$T_{nom} = 23^{\circ}C V_{nom} = 3.7 V$	18.50 18.67 18.81					

			Radiated Power				
Test co	onditions	Channel A	Channel B	Channel C			
		[dBm]	[dBm]	[dBm]			
$T_{nom} =^{\circ}C$	$V_{nom} = - V$						

Test conditions	Signal Field strength TX highest power mode
T_{nom} =°C, V_{nom} = V	$dB\mu V/m$
Frequency[MHz]	
Measurement uncertainty	< 3 dB

Note: The diagrams for the peak output power measurements are included in Appendix.

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Maximum Peak Output Power

Limits:

Frequency	Number of hopping channels							
MHz	MHz ≥ 75		49 ≥ 25	74 ≥ 15				
902-928		30 dBm	24 dBm					
2400-2483.5 MHz	30 dBm	-		21 dbm				
5725-5850 MHz	30 dBm	-						

In case of employing transmitter antennas having antenna gain >dBi and using fixed poin-to point operation consider §15.247 (b)(4).

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

3.2 RF Exposure Compliance Requirements

According to Supplement C, Edition 01-01 to OET Bulletin 65, Edition 97-01 this spread spectrum transmitter is categorically excluded from routine environmental evaluation because of the low power level, where there is a high likelihood of compliance with RF exposure standards.

3.3 Out of Band Radiated Emissions

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement. Limits:

For frequencies below 1GHz : Max. reading – 20 dB

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty Cycle correction = 20 log (dwell time/100ms) For frequencies above 1GHz (Peak measurements). Limit = max. aver. reading-20dB +20dB(because Peak detector is used)

For frequencies above 1GHz (Average measurements). Max. reading – 20 dB - duty cycle correction:

No duty cycle correction was added to the reading

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044, ETSTW-RE 064

3.4 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35 Radiated emission measurements were performed from 30 MHz to 26000 MHz. For radiated emission tests, the analyzer setting was as followings: RES BW VID BW Frequency <1 GHz 100 kHz 100 kHz (Peak measurements) Frequency >1 GHz 1 MHz 1 MHz (Peak measurements) 1 MHz 1 MHz (Average measurements) Limits: For frequencies below 1GHz :

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 - 88	100	40.0
88-216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continues operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty cycle correction $= 20 \log (\text{dwell time}/100 \text{ms})$

For frequencies above 1GHz (Average measurements).

Limit – duty cycle correction

No duty cycle correction was added to the reading.

 $54.0 dB \mu V/m$

For frequencies above 1GHz (Peak measurements).

Limit + 20dB

 $54.0 dB\mu V/m + 20 dB = 74 dB\mu V/m$

Note: See attached diagrams.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044, ETSTW-RE 064

3.5 Spurious emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Marker-Delta-Method" or the "Duty-Cycle Correction Factor".

Model:	Model: CATXMLSS				2010/6/18			
Mode:	1ode: 909MHz				21.4	°C	Engineer:	Danny
Polarization:	Horizontal			Humidity:	60	%		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
278.8978	11.62	peak	15.67	27.29	46.00	-18.71	110	150
992.9860	11.54	peak	29.13	40.67	54.00	-13.33	120	150

Frequency	Rea	ding	Factor	Factor Result @3m		Limit @3m Margir		Margin	Table	Ant.
	(dB	uV)	(dB)	(dBuV/m)		(dBuV/m)		_	Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2727.0470	65.38	57.99	-5.44	59.94	52.55	74.00	54.00	-1.45	140	150
3635.2710	62.51	56.13	-3.92	58.59	52.21	74.00	54.00	-1.79	135	150
5454.0710	57.20	52.28	0.13	57.33	52.41	74.00	54.00	-1.59	135	150
7270.5410	49.12	44.20	2.34	51.46	46.54	74.00	54.00	-7.46	140	150
8181.1420	62.82	49.85	-2.82	60.00	47.03	74.00	54.00	-6.97	140	150

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
136.5932	9.01	peak	14.92	23.93	43.50	-19.57	115	150
1000.0000	10.96	peak	29.22	40.18	54.00	-13.82	125	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	iV/m)	(dBu	V/m)	_	Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2725.4510	64.40	57.99	-5.44	58.96	52.55	74.00	54.00	-1.45	150	150
3635.2710	62.14	55.73	-3.92	58.22	51.81	74.00	54.00	-2.19	130	150
5450.9020	55.32	45.38	0.12	55.44	45.50	74.00	54.00	-8.50	135	150
7278.5570	51.39	46.47	2.34	53.73	48.81	74.00	54.00	-5.19	130	150
8180.8620	66.74	53.63	-2.82	63.92	50.81	74.00	54.00	-3.19	140	150

Mode: Polarization:	915.5MHz Horizontal			Temperature: Humidity:		°C %	Engineer:	Danny
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
283.7675	11.39	peak	15.82	27.21	46.00	-18.79	120	150
611.4230	8.40	peak	23.69	32.09	46.00	-13.91	130	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	ıV/m)	(dBu	V/m)		Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2746.5140	64.74	57.82	-5.41	59.33	52.41	74.00	54.00	-1.59	145	150
3663.3270	59.98	53.03	-3.85	56.13	49.18	74.00	54.00	-4.82	135	150
7324.3930	53.05	38.88	2.44	55.49	41.32	74.00	54.00	-12.68	155	150
8239.5900	62.29	48.73	-2.92	59.37	45.81	74.00	54.00	-8.19	150	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
284.8497	10.68	peak	15.85	26.53	46.00	-19.47	110	150
995.7916	10.82	peak	29.17	39.99	54.00	-14.01	140	150

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Frequency	Rea (dB	0	Factor (dB)		t @3m IV/m)		@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2745.4910	65.12	58.10	-5.42	59.70	52.68	74.00	54.00	-1.32	140	150
3663.3270	55.25	48.23	-3.85	51.40	44.38	74.00	54.00	-9.62	150	150
4577.1540	57.90	52.98	-2.20	55.70	50.78	74.00	54.00	-3.22	135	150
7326.6530	64.63	49.57	2.45	67.08	52.02	74.00	54.00	-1.98	140	150
8237.9760	70.37	55.22	-2.91	67.46	52.31	74.00	54.00	-1.69	140	150
9151.8040	55.69	50.77	-1.80	53.89	48.97	74.00	54.00	-5.03	130	150

Mode:	921.778M	Hz		Temperature:	21.4	°C	Engineer:	Danny
Polarization:	Horizontal			Humidity:	60	%		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
281.6032	11.58	peak	15.77	27.35	46.00	-18.65	125	150
984.5691	10.55	peak	29.02	39.57	54.00	-14.43	135	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	ıV/m)	(dBu	V/m)		Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2765.3940	65.40	57.93	-5.39	60.01	52.54	74.00	54.00	-1.46	140	150
3687.3750	58.95	51.93	-3.78	55.17	48.15	74.00	54.00	-5.85	150	150
4609.2190	54.42	49.50	-2.09	52.33	47.41	74.00	54.00	-6.59	130	150
7374.4480	55.72	44.21	2.66	58.38	46.87	74.00	54.00	-7.13	140	150
8296.0930	67.06	54.69	-3.14	63.92	51.55	74.00	54.00	-2.45	135	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
137.1343	9.30	peak	14.96	24.26	43.50	-19.24	105	150
1000.0000	11.04	peak	29.22	40.26	54.00	-13.74	130	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	V/m)	(dBu	V/m)		Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2765.5310	65.69	57.56	-5.39	60.30	52.17	74.00	54.00	-1.83	145	150
3687.3750	60.00	51.89	-3.78	56.22	48.11	74.00	54.00	-5.89	155	150
4609.2190	59.48	54.45	-2.09	57.39	52.36	74.00	54.00	-1.64	140	150
7374.7500	60.85	49.75	2.66	63.51	52.41	74.00	54.00	-1.59	135	150
8295.0900	67.36	54.45	-3.14	64.22	51.31	74.00	54.00	-2.69	140	150

- Note 1. Correction Factor = Antenna factor + Cable loss Preamplifier
 - 2. The formula of measured value as: Test Result = Reading + Correction Factor
 - 3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
 - 4. All not in the table noted test results are more than 20 dB below the relevant limits.
 - 5. See the attached diagram as appendix.

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044, ETSTW-RE 064

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

3.6 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).

According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

Test co	nditions	Channel Separation				
		Channel 0 Channel 0+1				
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	500 kHz				

Test co	nditions	Channel Separation					
		Channel 12 Channel 12+1					
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	500 kHz					

Test co	nditions	Channel Separation				
		Channel 24 Channel 24+1				
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	500 kHz				

Limits:

Frequency Range	Lin	nits
MHz	20 dB bandwidth $<$ 25 kHz	20 dB bandwidth > 25 kHz
902-928	25 kHz	20 dB bandwidth
2400-2483.5 5725-5850.0	25 kHz	20 dB bandwidth

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Note: See attached diagram as appendix.

3.7 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies. Frequency hopping systems in 5725-5850 MHz bands shall use least 75 hopping frequencies.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Test conditions		Operating Mode	Number of Channels
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	normal transmitting	25
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	inquiry mode	

Limits:

Frequency Range	Limit		
MHz	20dB Bandwidth	Number of Channels	
002.020 MIL	Bandwidth < 250 kHz	≥ 50	
902-928 MHz	Bandwidth ≥ 250 kHz	≥ 25	
2400-2483.5	not defined	15	
5725-5850.0 MHz	1 MHz	75	

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Note: See attached diagrams as appendix.

3.7.1 Pseudorandom Frequency Hopping Sequence

This FHSS transmitter is controlled by a microchip to generate the Pseudorandom Frequency Hopping Sequence. There are three hopping sequences listed below:

- Sequence A : 915.5, 914, 912.47, 910.5, 913.45, 911.5, 910, 909, 909.5, 911, 912.96, 914.5, 916.51, 916, 915, 917.6, 919.6, 921.77, 920.29, 918.11, 919.11, 921.29, 920.8, 918.62, 917.05
- Sequence B : 921.29, 919.11, 917.6, 919.6, 918.11, 916, 914.5, 912.96, 910.5, 909, 911, 909.5, 911.5, 910, 912.47, 914, 913.45, 915, 917.05, 915.5, 916.51, 918.62, 920.8, 921.77, 920.29
- Sequence C : 913.45, 915.5, 918.11, 920.29, 920.8, 918.62, 916.51, 915, 912.96, 911, 910, 911.5, 909.5, 909, 910.5, 912.47, 914, 916, 917.6, 919.6, 921.77, 921.29, 919.11, 917.05, 914.5

3.7.2 Coordination of hopping sequences to other transmitters

This transmitter does not have the ability of being coordinated with other FHSS system for as soon as the transmitter is in operation, the hopping frequency will follow the selected hopping sequence to transmit independently and no coordination is possible. Especially, this transmitter is used as a duplex car alarm system, so no coordination of hopping frequency is required.

3.7.3 System Receiver Hopping Capability

There are two steps to make the receiver to shift the frequencies in synchronization with the transmitted signals:

First, the Transmitter will emit a preamble signal of 50 ms and the receiver will scan this signal by 2ms sweeping until the preamble signal is caught. Second, the preamble signal is coded with the information of hopping sequence and the next transmitting frequency, so the receiver will be able to shift the receiving frequencies in synchronization with the transmitted signals.

3.7.4 Equal Hopping Frequency Use

Due to each hopping frequency will be transmitted in accordance to the frequency tables described above, there is no any frequency will be able to hop more times than others. Therefore each frequency will be used equally.

3.8 Time of Occupancy (Dwell Time)

Frequency hopping systems operating in the 5725-5850 MHz band shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second period. In 2400-2483.5 MHz band the average time of occupancy on any channel shall not be greater than 0.4 seconds multiplied by the number of hopping channels employed.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second period; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Test conditions	Operating mode	Measurement period	Time of Occupancy
$T_{nom} = 23^{\circ}C$ $V_{nom} = 3.7 V$ 909MHz	normal transmitting	10 s	395.584 ms

Test conditions	Operating mode	Measurement period	Time of Occupancy
$T_{nom} = 23^{\circ}C$ $V_{nom} = 3.7 V$ 915.5MHz	normal transmitting	10 s	395.584 ms

Test conditions	Operating mode	Measurement period	Time of Occupancy
$\begin{array}{c} T_{nom} = 23^{\circ}C \\ V_{nom} = 3.7 V \\ 921.778 MHz \end{array}$	normal transmitting	10 s	395.584 ms

Limits and measurement periods:

Frequency MHz	Number of channels	Measurement Period	Limit
902 - 928	≥50	20 s	0.4 s
902 - 928	49 ≥ 25	10 s	0.4 s
2400 - 2483.5	≥ 15	0.4 s * number of used channels	0.4 s
5725- 5850	≥ 75	30 s	0.4s

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Note: See attached diagrams as appendix, which show the On-time and the number of counted events during the measurement period

3.9 20dB Bandwidth

Frequency hopping systems operating in the 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz.

The 20dB bandwidth is measured on the lowest, middle and highest hopping channel.

For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

Test conditions 20 dB Bandwidth Channel A Channel B Channel		20 dB Bandwidth		
		Channel C		
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	344.68937876 kHz	348.69739479 kHz	332.66533066 kHz

Limits:

Frequency Range / MHz	Limit
902-928	\leq 500 kHz
2400-2483.5	not defined
5725-5850	$\leq 1 \text{ MHz}$

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Note: See attached diagram as appendix.

3.10 Band-edge Compliance of RF Emissions

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

Test conditions		Attenuation at or outside band-edges Single Frequency	
		Lower Band-edge	Upper Band-edge
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	65.74 dB	63.14 dB

Test conditions		Attenuation at or outside band-edges Hopping Frequency	
		Lower Band-edge	Upper Band-edge
$T_{nom} = 23^{\circ}C$	$V_{nom} = 3.7 V$	58.79 dB	54.10 dB

Limits:

Frequency Range / MHz	Limit
902 –928	
2400 - 2483.5	- 20 dB
5725 - 5850	

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Note: See attached diagrams as appendix.

3.11 Radiated Emissions from Receiver Section of Transceiver

FCC Rule: 15.109

Receiver part

I	Model: Mode: Polarization:	CATXMLS 909MHz Horizontal	S		Date: Temperature: Humidity:			Engineer: Danny		
	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)	
ſ	199.8998	12.57	peak	11.97	24.54	43.50	-18.96	110	150	
	298.9178	12.21	peak	16.20	28.41	46.00	-17.59	115	150	
	907.4148	8.55	peak	27.78	36.33	46.00	-9.67	120	150	
	994.3888	10.73	peak	29.15	39.88	54.00	-14.12	130	150	

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	V/m)	(dBu	(dBuV/m)		Degree	High
(MHz)	Peak	Ave.	Corr.	, , , ,		Peak	Ave.	(dB)	(Deg.)	(cm)
2154.3090	54.77		-6.78	47.99		74.00	54.00	-26.01	140	150
7831.6630	47.14		2.50	49.64		74.00	54.00	-24.36	140	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
50.0201	8.46	peak	14.33	22.79	40.00	-17.21	120	150
160.4010	8.54	peak	15.48	24.02	43.50	-19.48	110	150
908.8176	7.26	peak	27.80	35.06	46.00	-10.94	125	150
987.3748	10.44	peak	29.06	39.50	54.00	-14.50	120	150

Frequency	Rea	ding	Factor (dB)		t @3m	Limit	<u> </u>	Margin	Table	Ant.
	(dB	(dBuV)		dBu	ıV/m)	(dBuV/m)			Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
2154.3090	54.62		-6.78	47.84		74.00	54.00	-26.16	140	150
7358.7180	45.50		2.59	48.09		74.00	54.00	-25.91	145	150

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Mode: Polarization:	915.5MHz Horizontal			Temperature: Humidity:		°C %	Engineer:	Danny
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
199.3588	12.61	peak	12.00	24.61	43.50	-18.89	120	150
297.2946	11.73	peak	16.16	27.89	46.00	-18.11	110	150
928.4570	7.17	peak	28.17	35.34	46.00	-10.66	130	150
997.1944	11.05	peak	29.18	40.23	54.00	-13.77	130	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	V/m)	(dBuV/m)		_	Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
3963.9280	49.55		-2.45	47.10		74.00	54.00	-26.90	135	150
7975.9520	45.46		2.91	48.37		74.00	54.00	-25.63	150	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
51.1023	8.69	peak	14.24	22.93	40.00	-17.07	130	150
134.9700	9.81	peak	14.82	24.63	43.50	-18.87	120	150
934.0681	7.13	peak	28.27	35.40	46.00	-10.60	130	150
997.1944	12.11	peak	29.18	41.29	54.00	-12.71	120	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dB) (dBuV/m)		(dBuV/m)			Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
3951.9040	49.27		-2.48	46.79		74.00	54.00	-27.21	150	150
7847.6950	46.79		2.51	49.30		74.00	54.00	-24.70	135	150

Mode: Polarization:	921.778M Horizontal	Hz		Temperature: Humidity:		°C %	Engineer:	Danny
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
212.8858	10.97	peak	12.83	23.80	43.50	-19.70	110	150
299.4590	11.97	peak	16.22	28.19	46.00	-17.81	105	150
915.8317	6.80	peak	27.93	34.73	46.00	-11.27	120	150
998.5972	9.13	peak	29.20	38.33	54.00	-15.67	125	150

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Frequency		ding uV)	Factor (dB)	Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Áve.	Corr.	Peak	Áve.	Peak	Áve.	(dB)	(Deg.)	(cm)
3981.9640	50.23		-2.41	47.82		74.00	54.00	-26.18	130	150
7583.1660	46.47		2.62	49.09		74.00	54.00	-24.91	145	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
51.6434	8.70	peak	14.20	22.90	40.00	-17.10	110	150
156.0722	8.65	peak	15.46	24.11	43.50	-19.39	115	150
907.4148	7.43	peak	27.78	35.21	46.00	-10.79	130	150
997.1944	9.80	peak	29.18	38.98	54.00	-15.02	120	150

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	(dBuV/m) (dBuV/m		V/m)		Degree	High
(MHz)	Peak	Ave.	Corr.	· /		Peak	Ave.	(dB)	(Deg.)	(cm)
1901.8040	55.03		-7.65	47.38		74.00	54.00	-26.62	135	150
7679.3590	45.91		2.65	48.56		74.00	54.00	-25.44	140	150

Digital part

Model:	CATXMLS	S		Date:	2010/6/18			
Mode:				Temperature:	21.4	°C	Engineer:	Danny
Polarization:	Horizontal			Humidity:	60	%	-	
Eroquonov	Deading		Factor	Result	Limit	Margin	Table	Ant.
Frequency (MHz)	Reading (dBuV)	Detector	(dB)	(dBuV/m)	(dBuV/m)		Degree	High
	(ubuv)		(ub)	(ubu v/iii)	(ubuv/iii)	(ub)	(Deg.)	(cm)
199.3588	12.61	peak	12.00	24.61	43.50	-18.89	100	305
297.2946	11.73	peak	16.16	27.89	46.00	-18.11	110	255
928.4570	7.17	peak	28.17	35.34	46.00	-10.66	120	115
997.1944	11.05	peak	29.18	40.23	54.00	-13.77	125	105

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	(dBu	V/m)	(dBu	V/m)	_	Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
3963.9280	49.55		-2.45	47.10		74.00	54.00	-26.90	135	150
7975.9520	45.46		2.91	48.37		74.00	54.00	-25.63	150	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
51.1023	8.69	peak	14.24	22.93	40.00	-17.07	115	110
134.9700	9.81	peak	14.82	24.63	43.50	-18.87	105	155
934.0681	7.13	peak	28.27	35.40	46.00	-10.60	120	385
997.1944	12.11	peak	29.18	41.29	54.00	-12.71	130	395

Frequency	Rea	ding	Factor	Resul	t @3m	Limit	@3m	Margin	Table	Ant.
	(dB	uV)	(dB)	dBu (dBu	V/m)	(dBu	V/m)		Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
3951.9040	49.27		-2.48	46.79		74.00	54.00	-27.21	150	150
7847.6950	46.79		2.51	49.30		74.00	54.00	-24.70	135	150

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. See the attached diagram as appendix.

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission (MHz)	Field Strength (microvolts/meter)	Field Strength (dBmicrovolts/meter)
30-88	100	40.0
88-216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044, ETSTW-RE 064

3.12 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency		Level (dBµV)							
			quasi-pea	k		average			
150 kHz		lo	wer limit	line			Lower	limit line	
Model:	CATXMLS		ate:	2010/					
Mode:			mperature:		°C	En	gineer:	Danny	
Polarization:	N	ŀ	lumidity:	60	%				
Frequency	Rea		Factor		sult		nit	Margin	
	(dB		(dB)		uV)		uV)		
(MHz)	QP	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)	
0.3010	39.19	29.02	10.72	49.91	39.74	60.22	50.22	-10.31	
0.3610	38.90	30.41	10.70	49.60	41.11	58.71	48.71	-7.60	
0.6630	35.17	27.08	10.58	45.75	37.66	56.00	46.00	-8.34	
1.1440	33.95	26.86	10.34	44.29	37.20	56.00	46.00	-8.80	
2.1670	33.41	25.33	10.09	43.50	35.42	56.00	46.00	-10.58	
6.9800	23.06	10.13	10.23	33.29	20.36	60.00	50.00	-26.71	
Polarization:	L1								
Frequency	Rea	dina	Factor	Re	sult	Lir	nit	Margin	
ricquericy	(dB		(dB)		Sull SuV)		uV)	Margin	
(MHz)	QP	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)	
0.3010	38.39	26.43	10.72	49.11	37.15	60.22	50.22	-11.11	
0.3610	38.80	28.00	10.70	49.50	38.70	58.71	48.71	-9.21	
0.7220	35.20	25.36	10.55	45.75	35.91	56.00	46.00	-10.09	
1.1430	34.59	24.81	10.35	44.94	35.16	56.00	46.00	-10.84	
2.1060	34.23	24.64	10.10	44.33	34.74	56.00	46.00	-11.26	
6.9200	20.57	8.18	10.28	30.85	18.46	60.00	50.00	-29.15	

1. The formula of measured value as: Test Result = Reading + Correction Factor

2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss

3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average

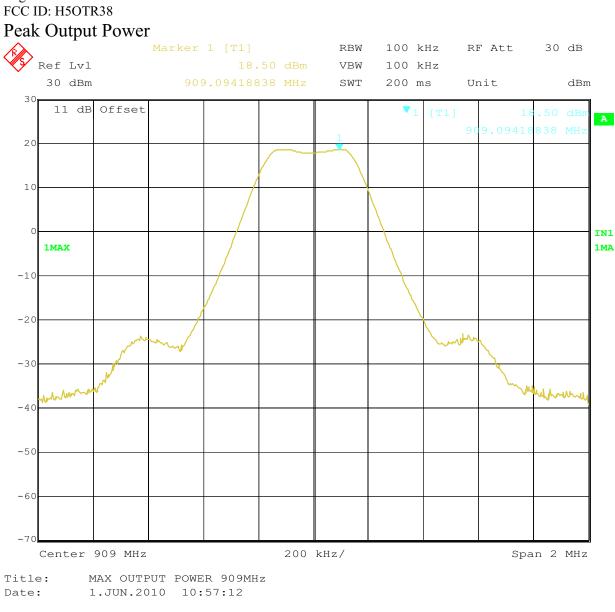
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty = ± 1.30 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams as appendix.

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Limits:

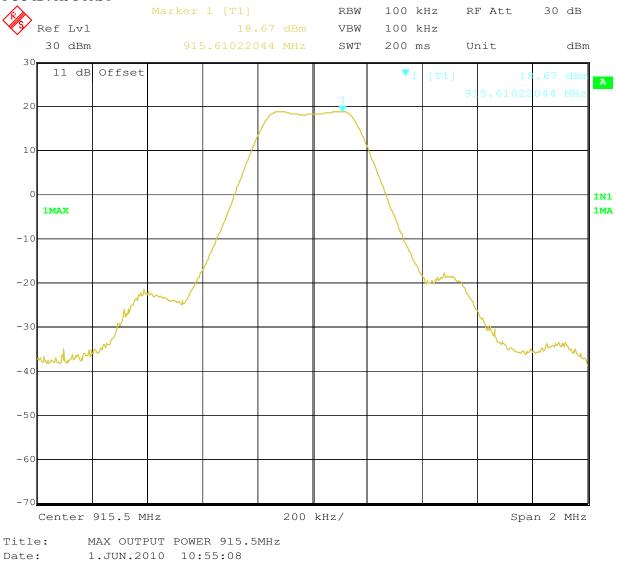
Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi Peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

Test equipment used: ETSTW-CE 001, ETSTW-CE 004, ETSTW-CE 006, ETSTW-RE 064

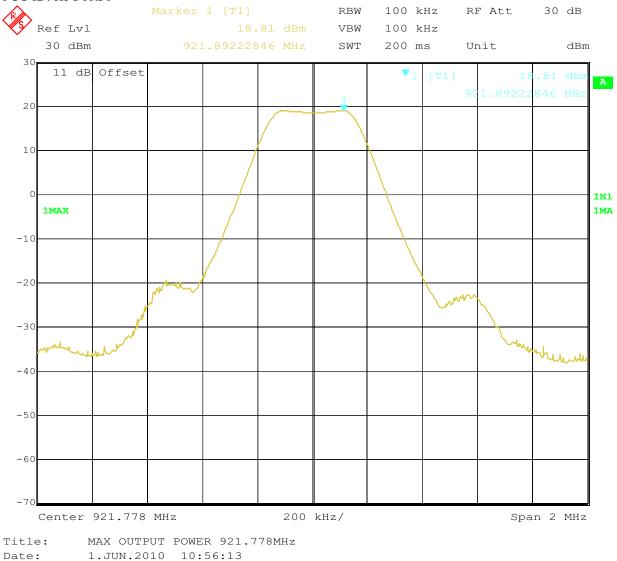


<u>Appendix</u>

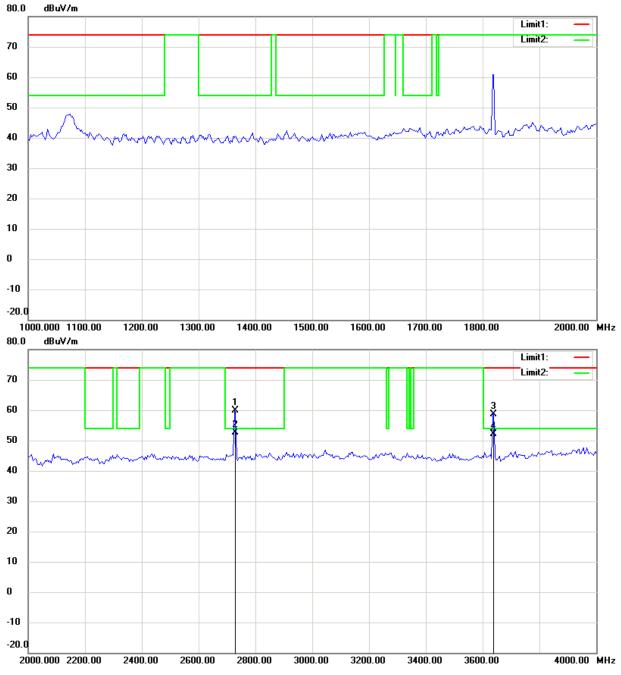
- A Measurement diagrams
- 1. Peak Output Power
- 2. Spurious Emissions radiated
- 3. Carrier Frequency Separation
- 4. Number of Hopping Frequencies
- 5. Time of Occupancy (Dwell Time)
- 6. 20dB Bandwidth
- 7. Band-edge Compliance of RF Conducted Emissions
- 8. Radiated Emissions from Receiver Section of Transceiver
- 9. Power Line Conducted Emission
- B Photos
- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photo of Radiated Emission
- 4. Set Up Photo of Power Line Conducted Emission



Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

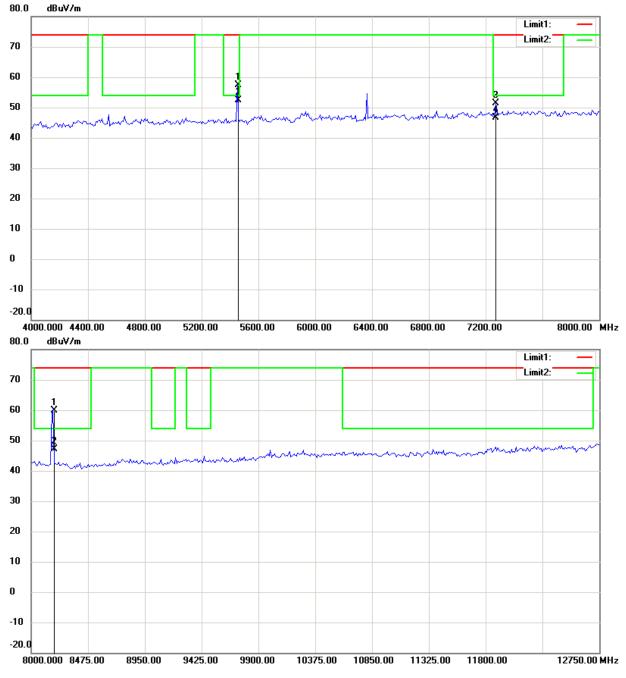


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

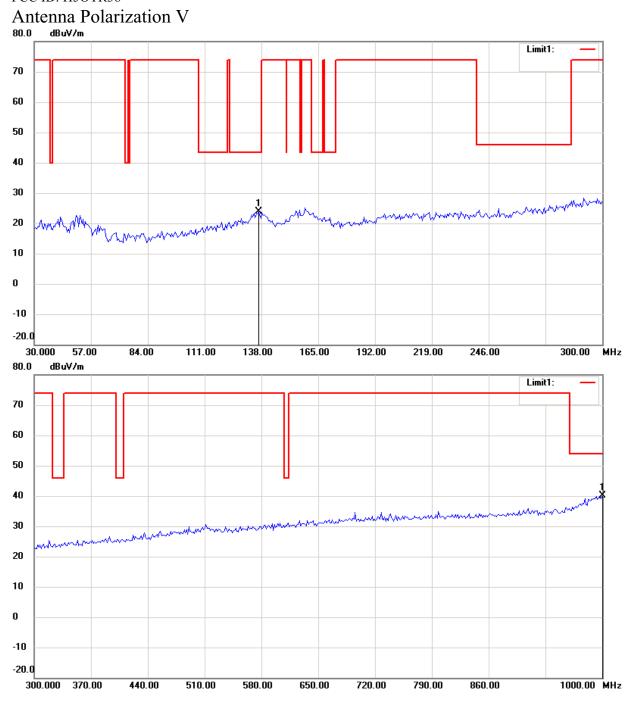


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 Spurious Emission Radiated ch 1 Antenna Polarization H 80.0 dBu∀/m Limit1: 70 60 50 40 30 20 10 0 -10 -20.0 30.000 57.00 84.00 111.00 138.00 165.00 192.00 219.00 246.00 300.00 MHz 80.0 dBuV/m Limit1: 70 60 50 40 30 20 10 0 -10 -20.0 300.000 370.00 510.00 580.00 650.00 1000.00 MHz 440.00 720.00 790.00 860.00

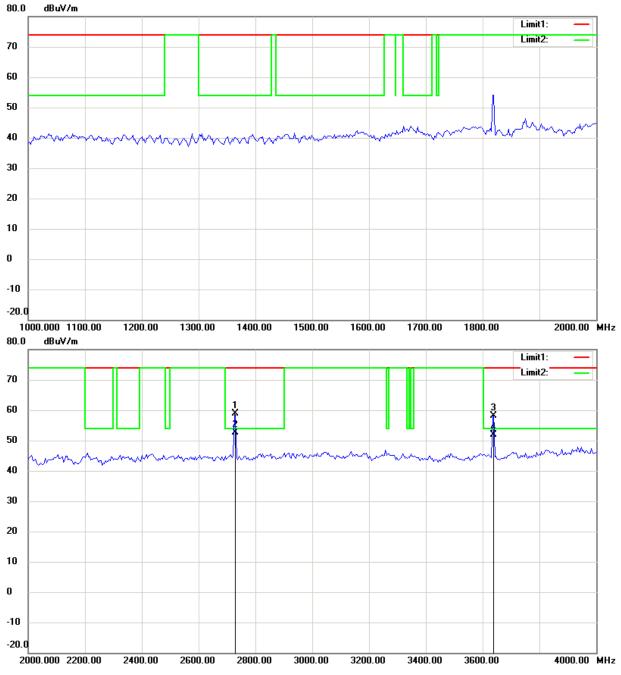
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

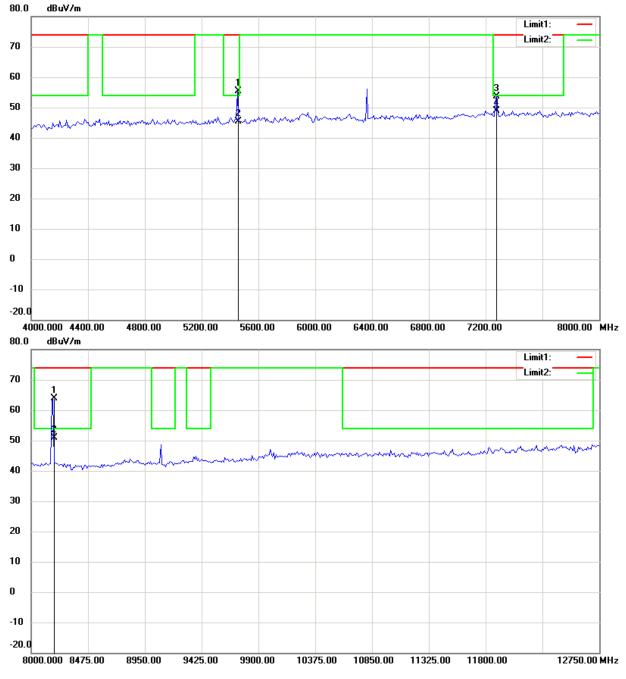
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

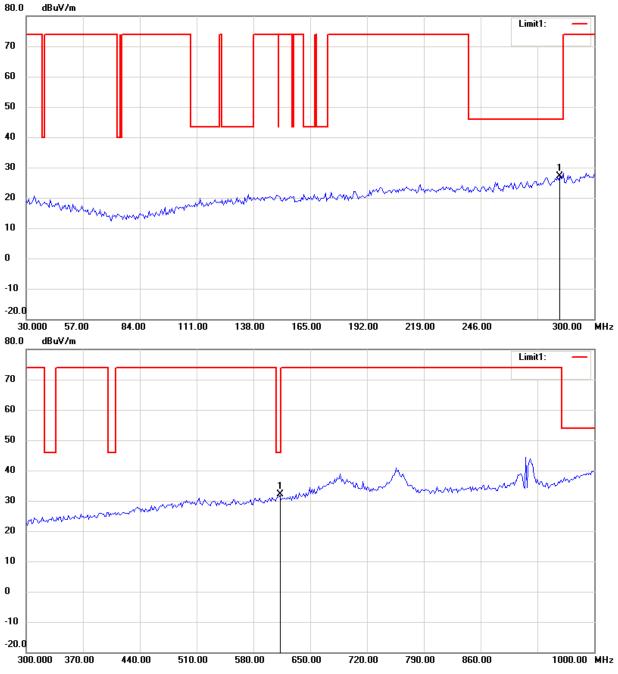
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

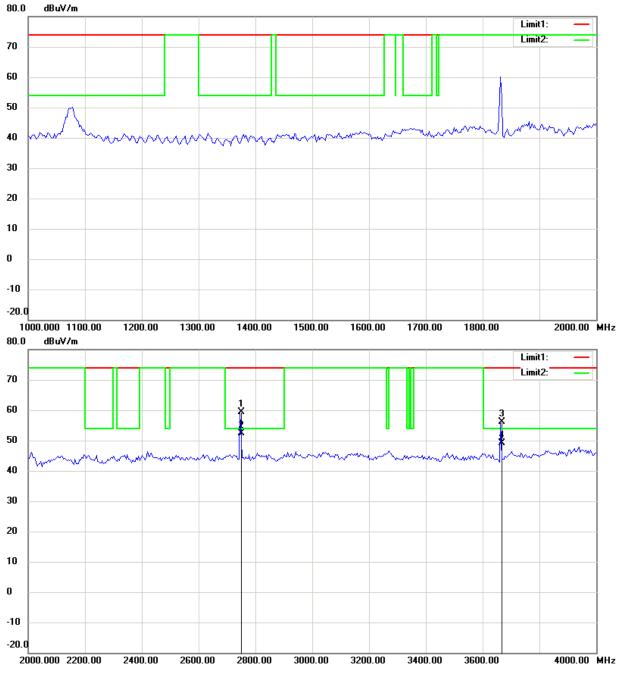
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

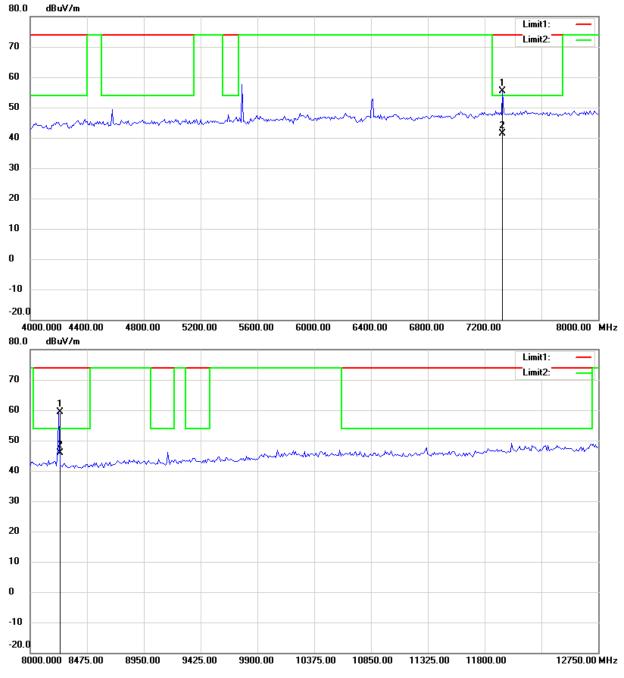
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 ch 13 Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

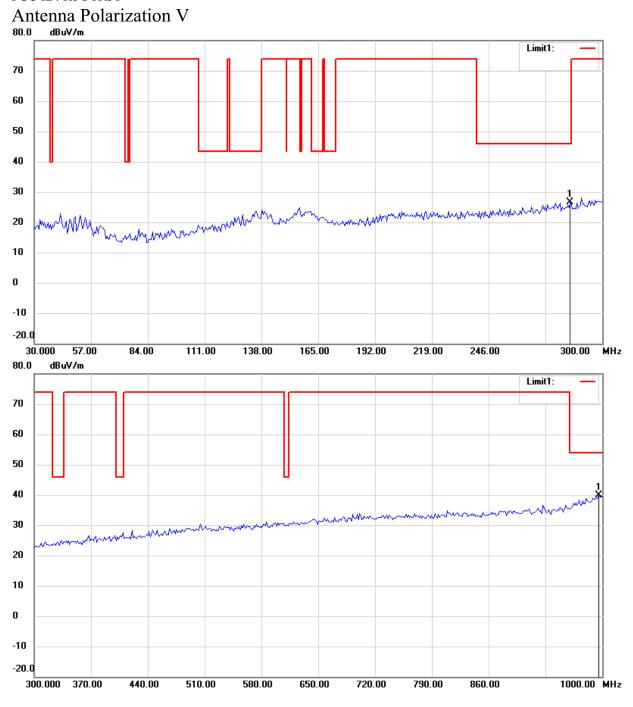

3. For corrected test results are listed in the relevant table of radiated test data of this test report.

^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

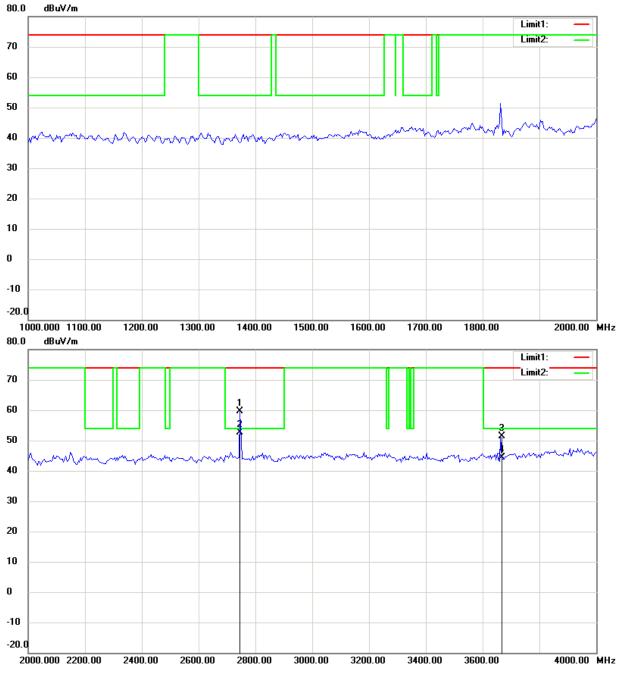
^{2.} The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

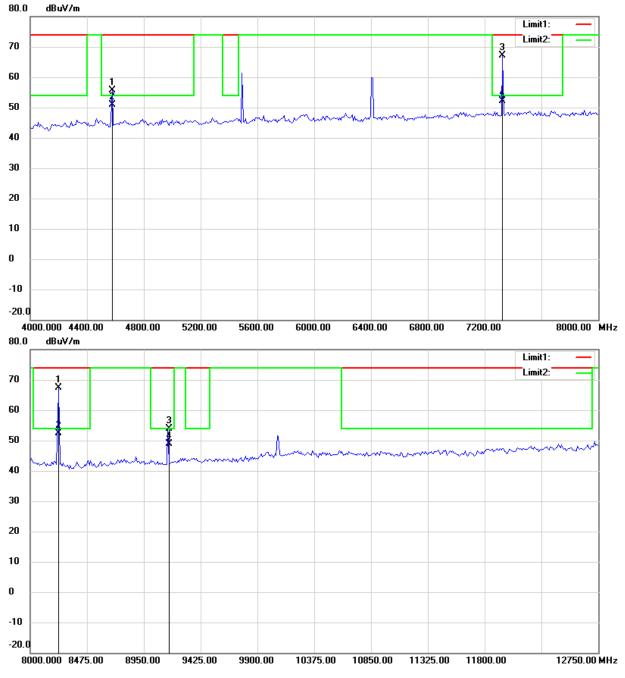
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

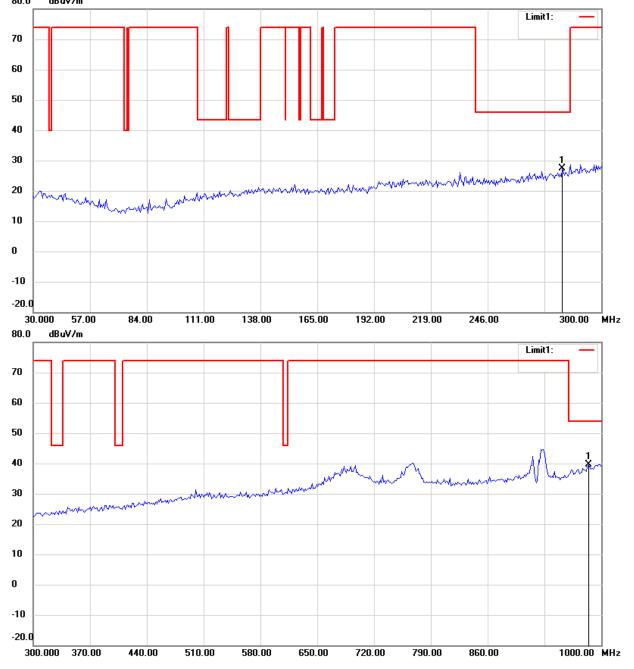

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

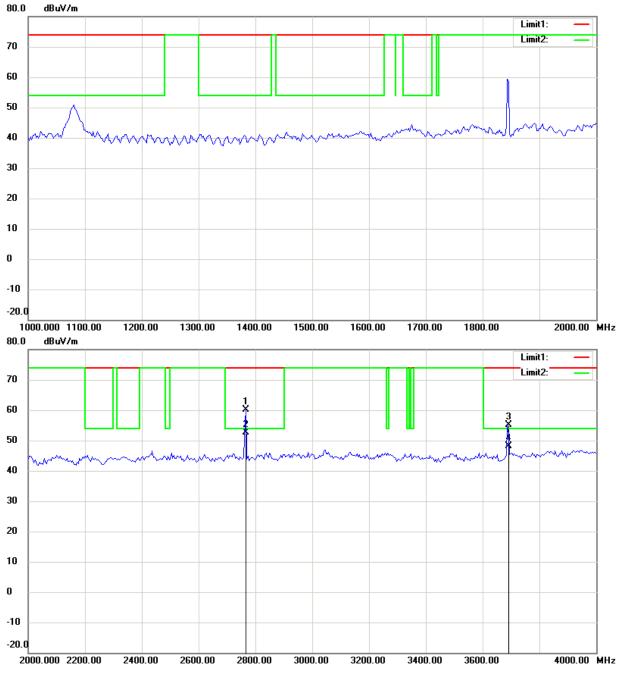
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38



- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

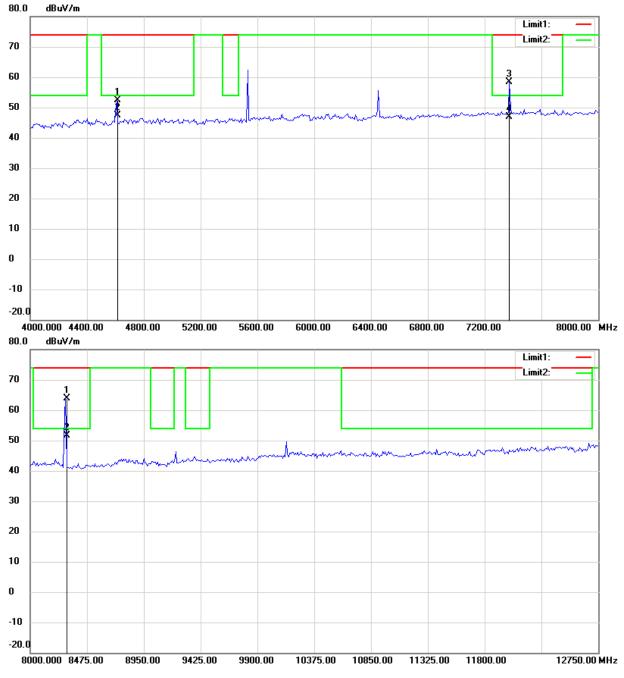
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 ch 25

Antenna Polarization H

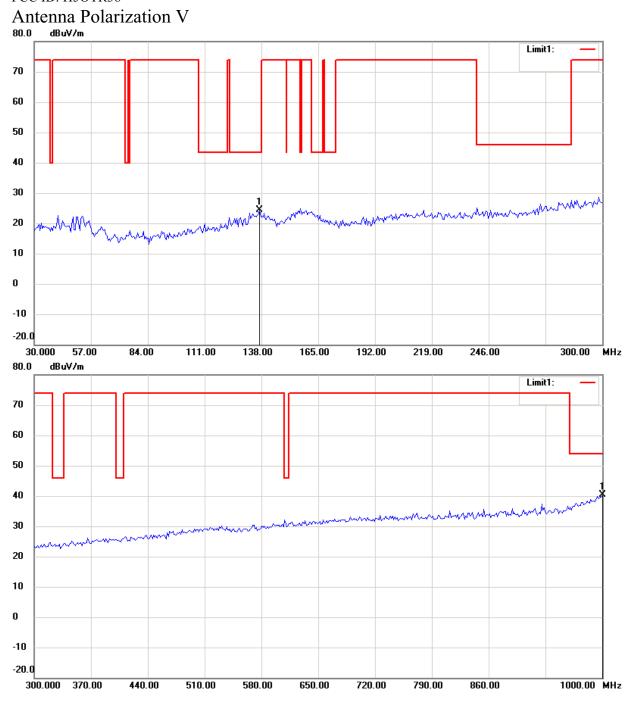


- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

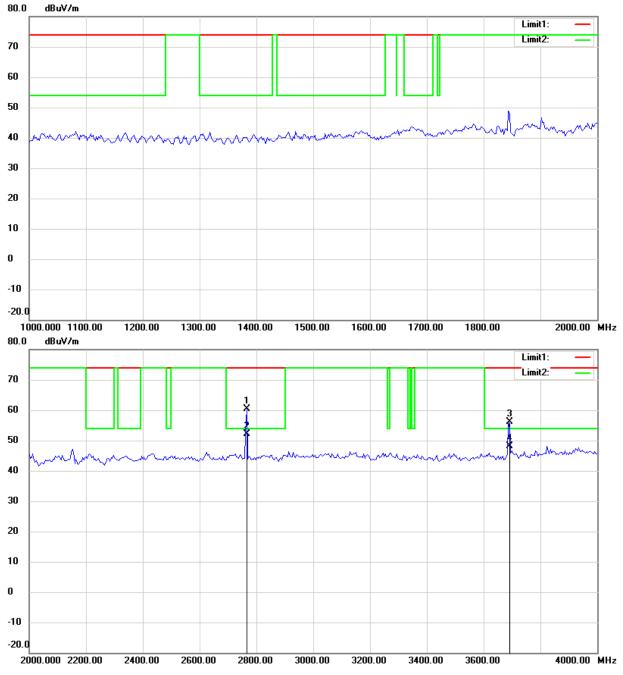
^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

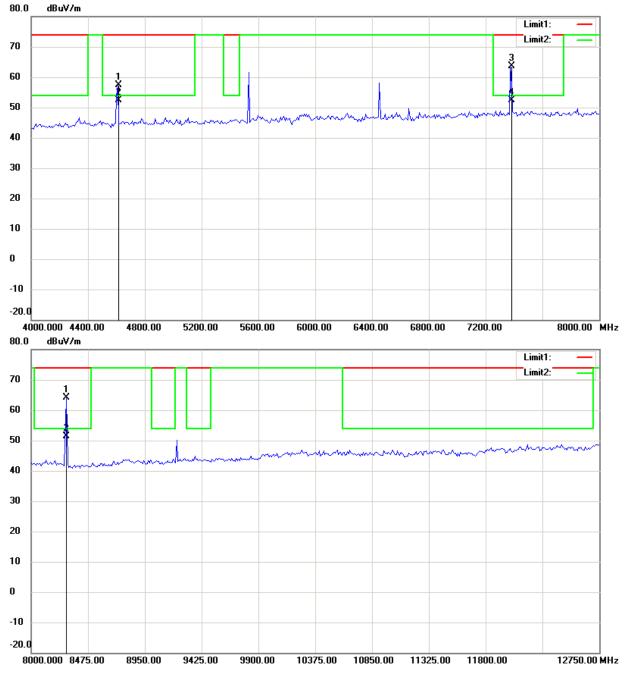
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

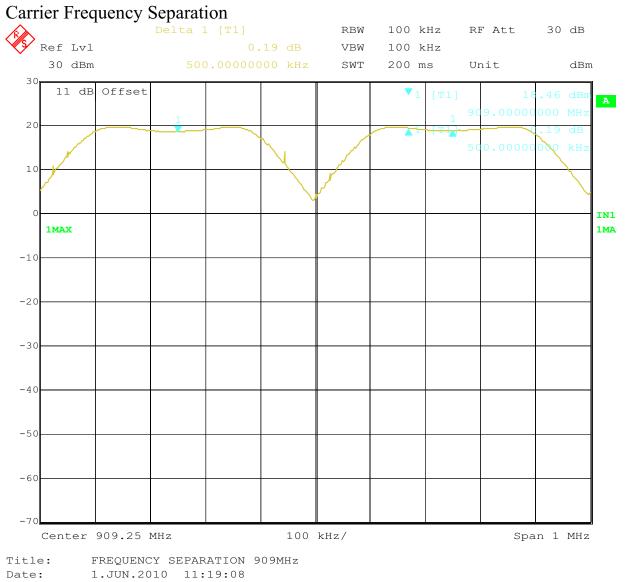
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

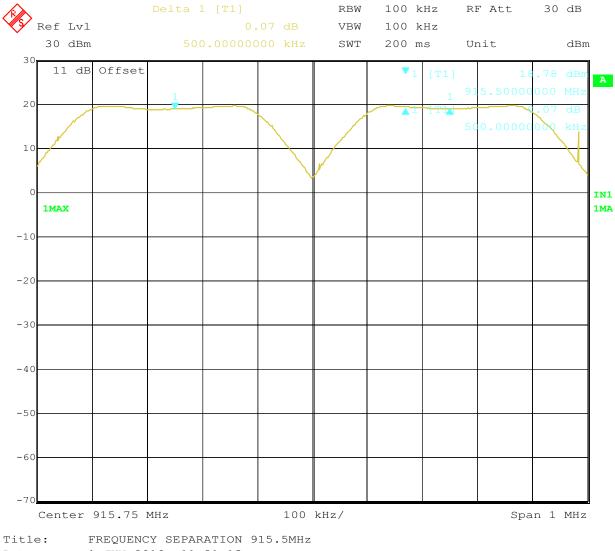
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

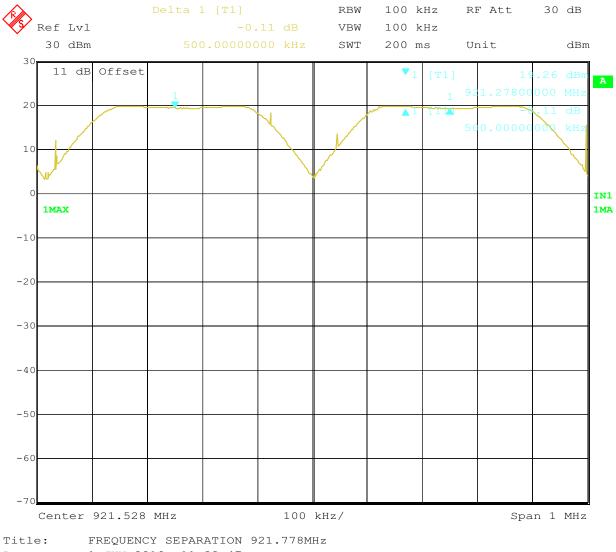

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

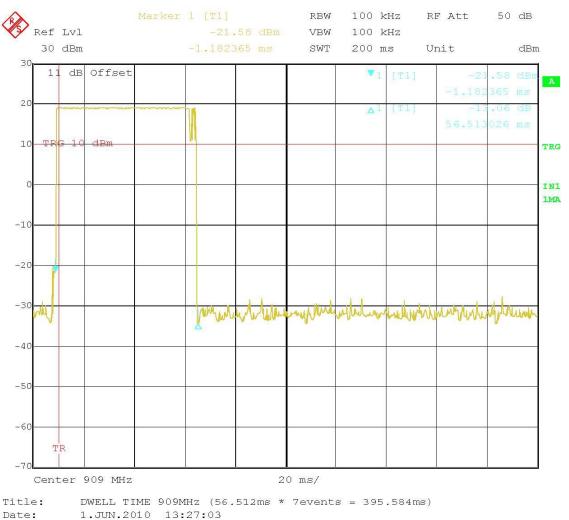

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

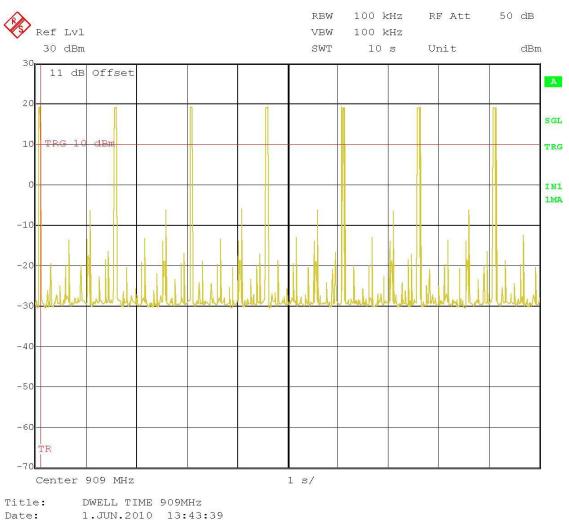

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Date: 1.JUN.2010 11:21:13

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

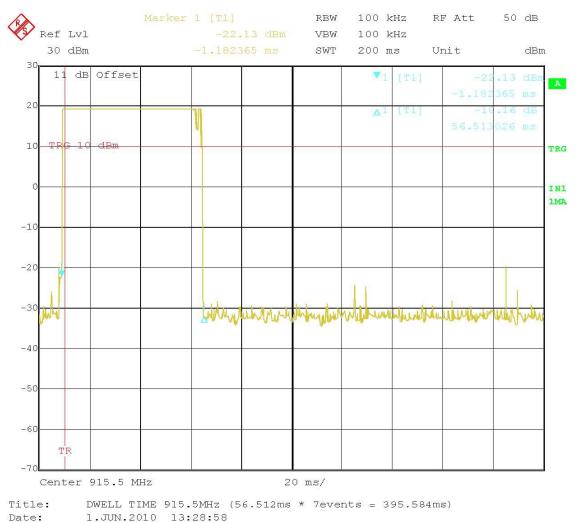
Date: 1.JUN.2010 11:22:47

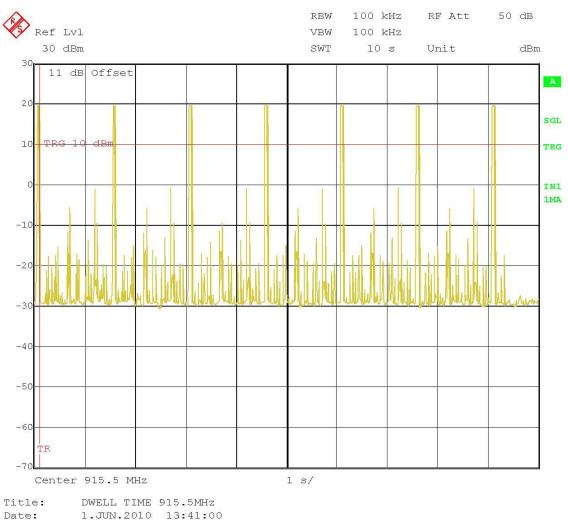




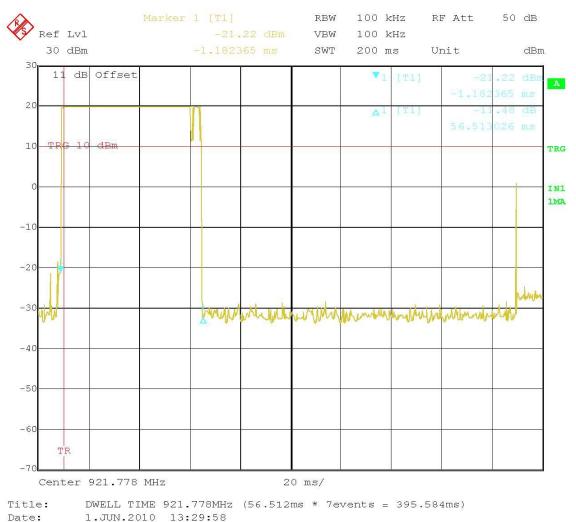
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Time of Occupancy (Dwell Time)

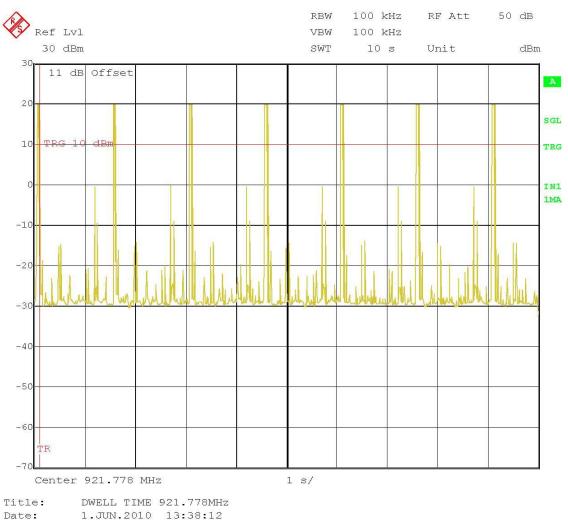


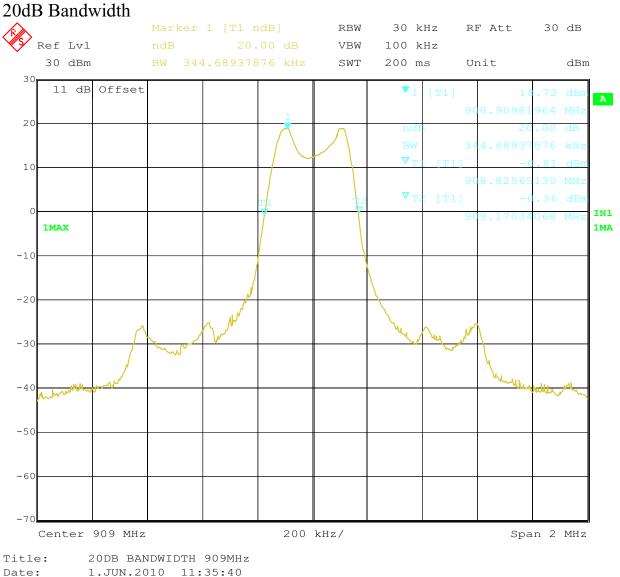


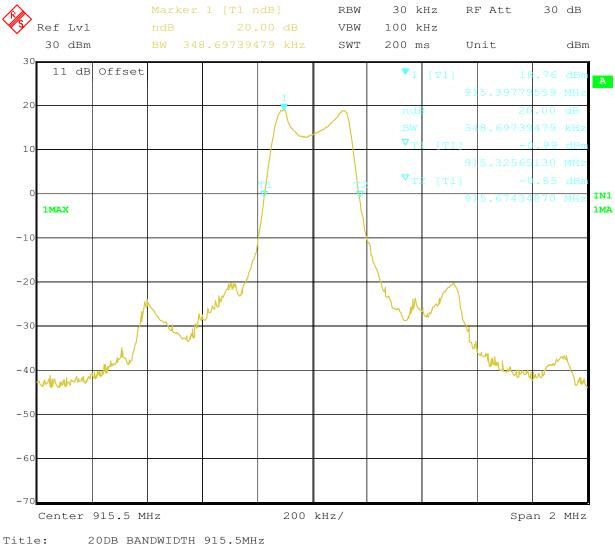
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

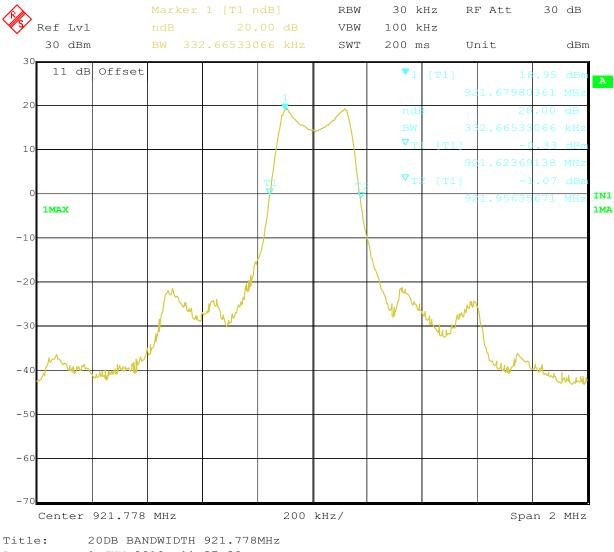


Worldwide Testing Services(Taiwan) Co., Ltd.

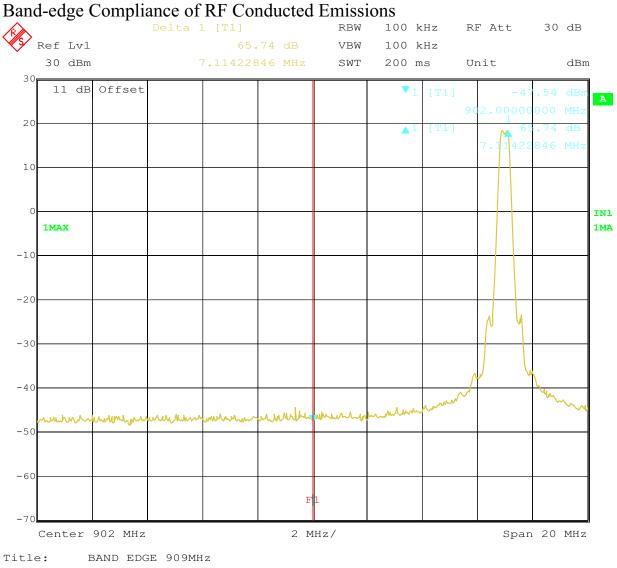




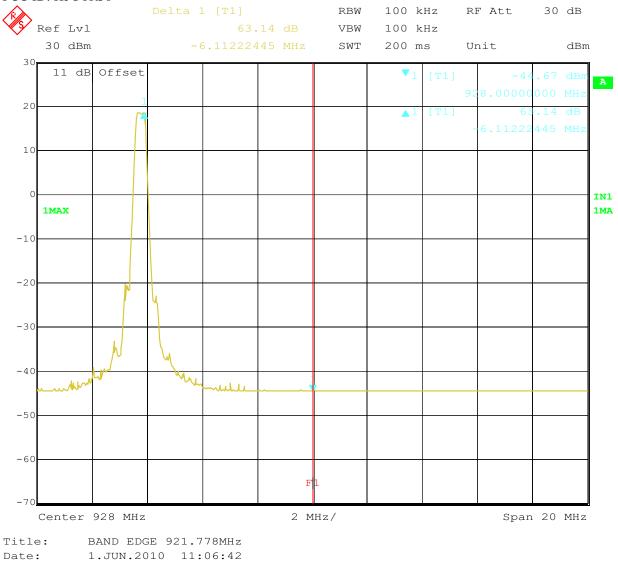



Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

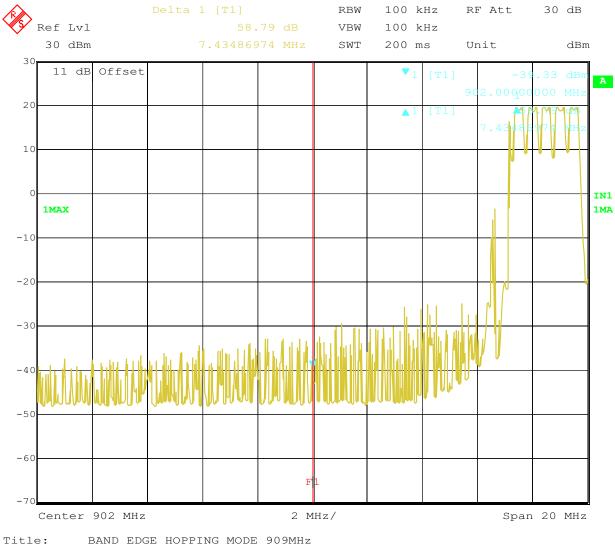
Date: 1.JUN.2010 11:36:39

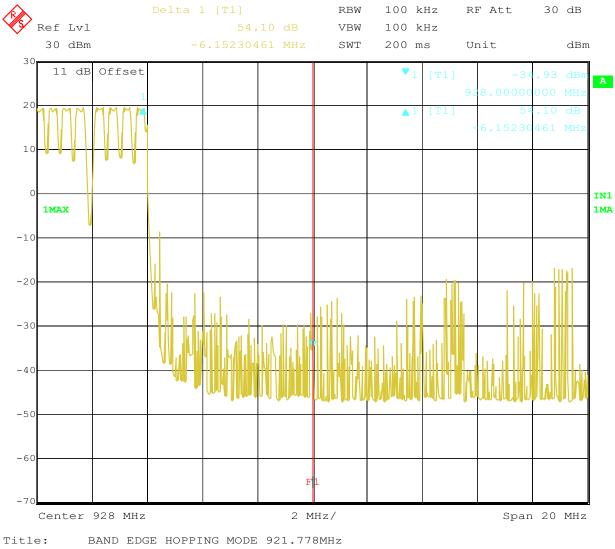

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Date: 1.JUN.2010 11:37:32



Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38


Date: 1.JUN.2010 11:04:45


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Date: 1.JUN.2010 11:14:51

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Date: 1.JUN.2010 11:12:48

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 Radiated Emissions from Receiver Section of Transceiver Receiver part-ch 1 Antenna Polarization H 70.0 dBu∀/m Limit1: 60 50 40 30 20 10 0 -10 -20 -30.0 30.000 57.00 84.00 111.00 138.00 165.00 192.00 219.00 246.00 300.00 70.0 dBuV/m Limit1: 60 50 40 30 20 10 0

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

510.00

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

650.00

720.00

790.00

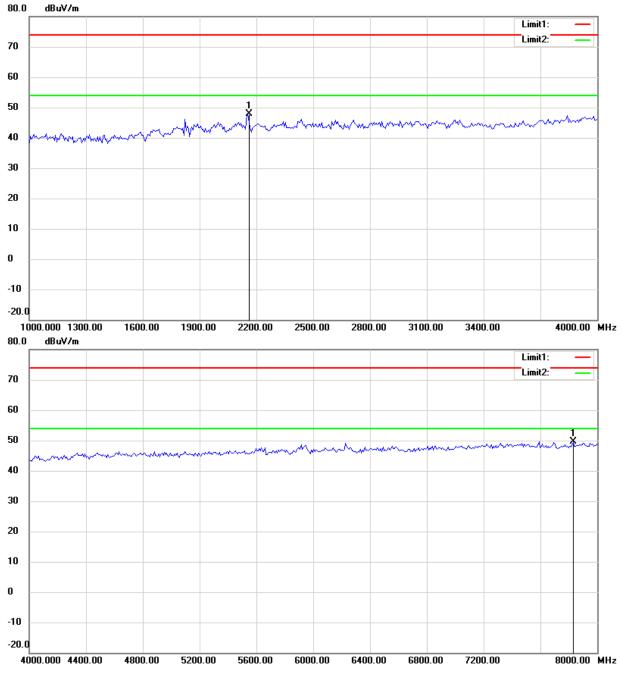
860.00

- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

580.00

440.00

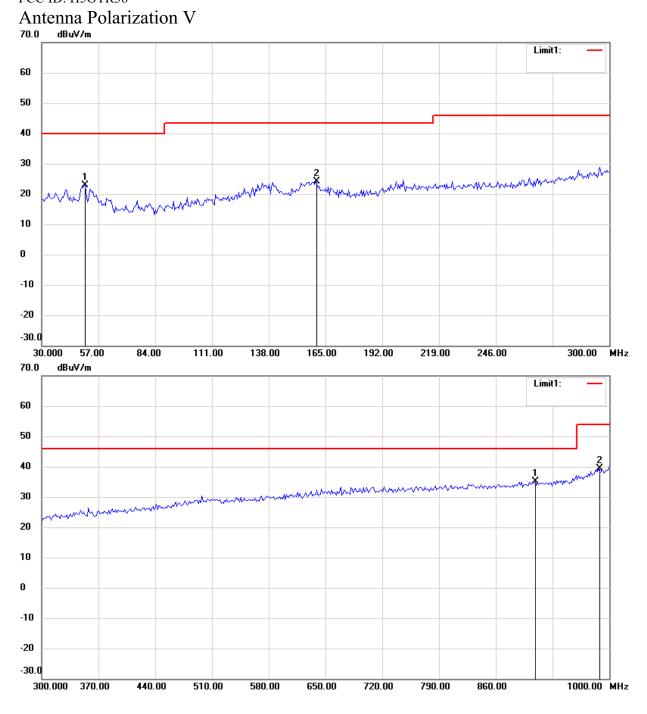
-10


-20 -30.0

300.000 370.00

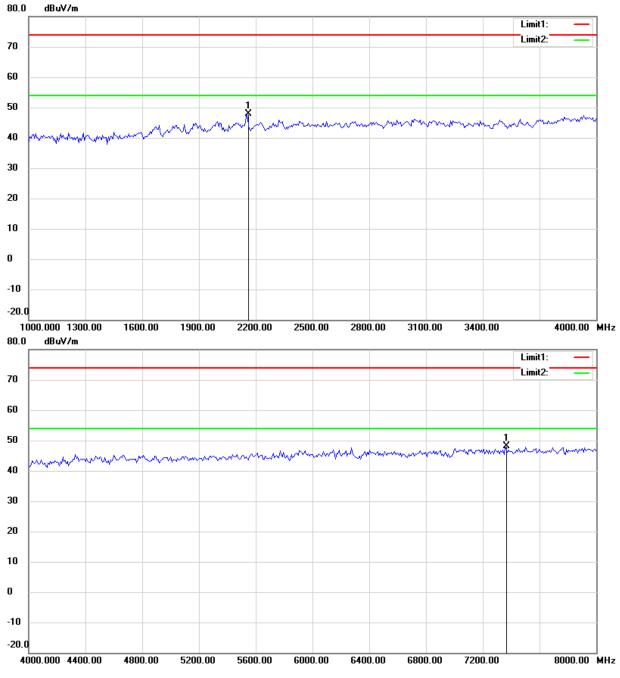
1000.00 MHz

MHz



- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

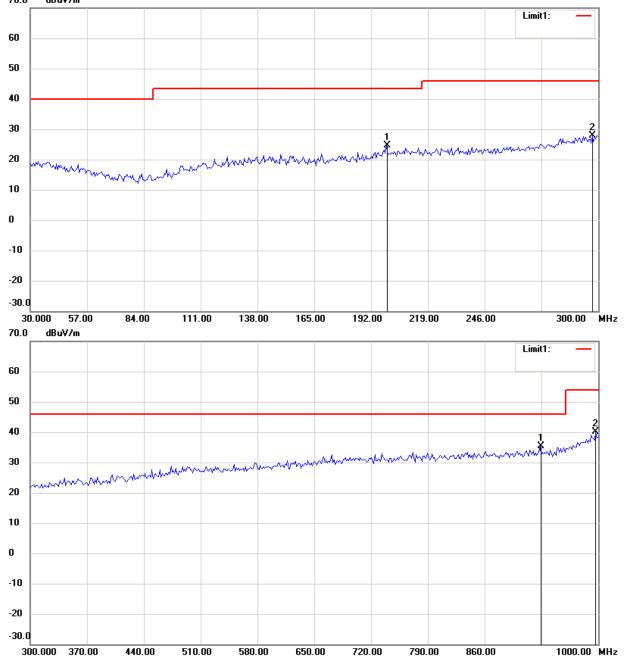
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38


Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

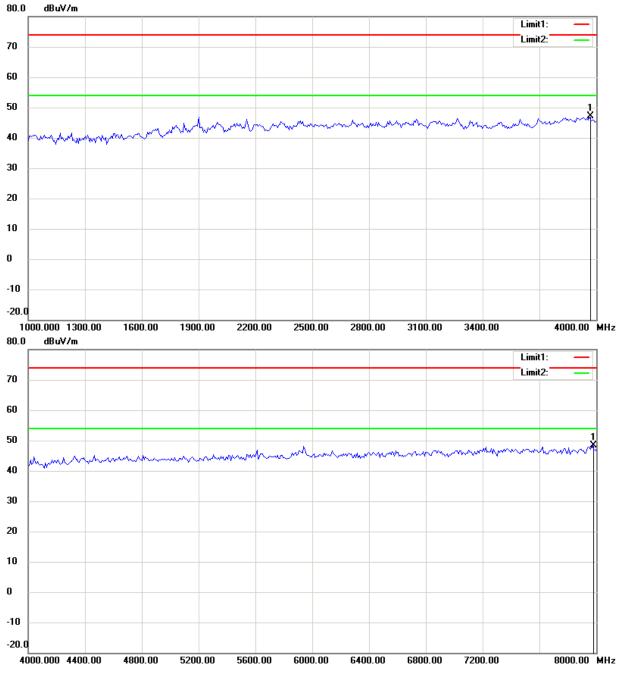
3. For corrected test results are listed in the relevant table of radiated test data of this test report.

^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

^{2.} The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.

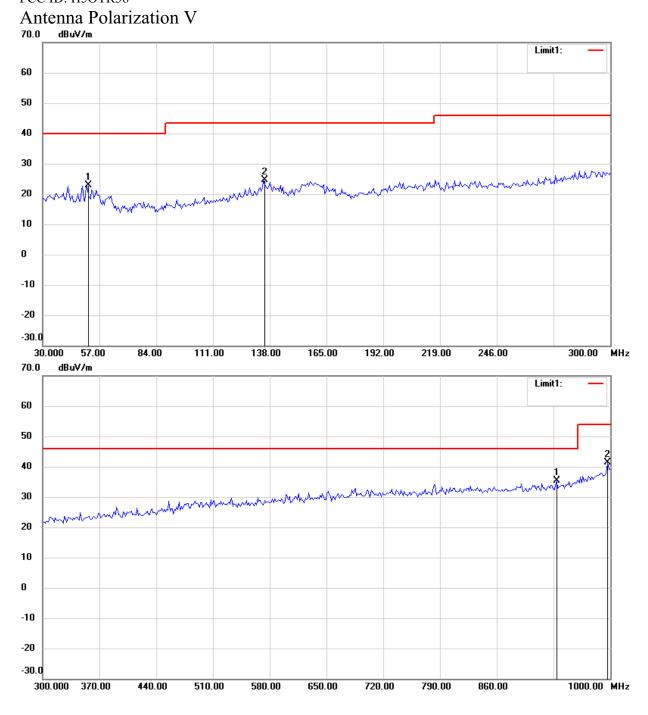


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



Antenna Polarization H

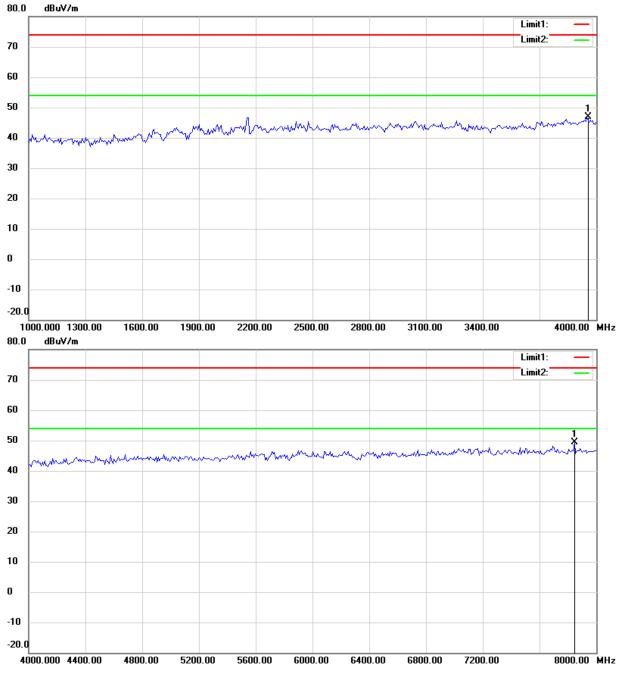
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

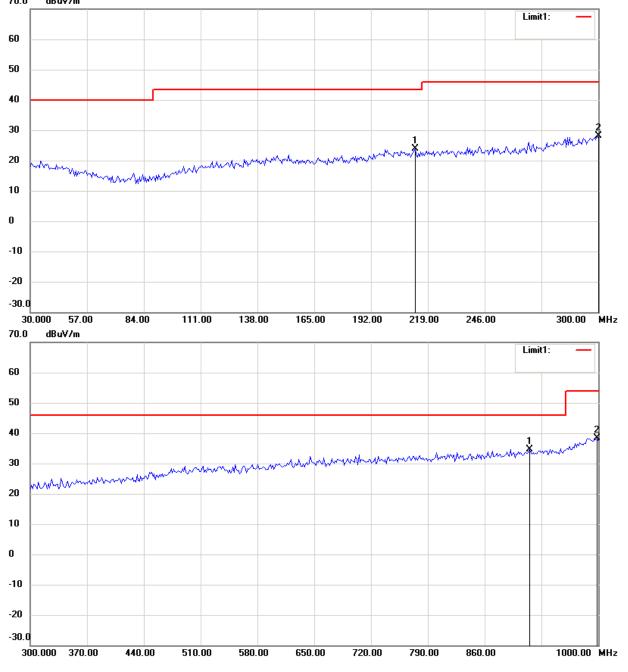
Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:


3. For corrected test results are listed in the relevant table of radiated test data of this test report.

^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

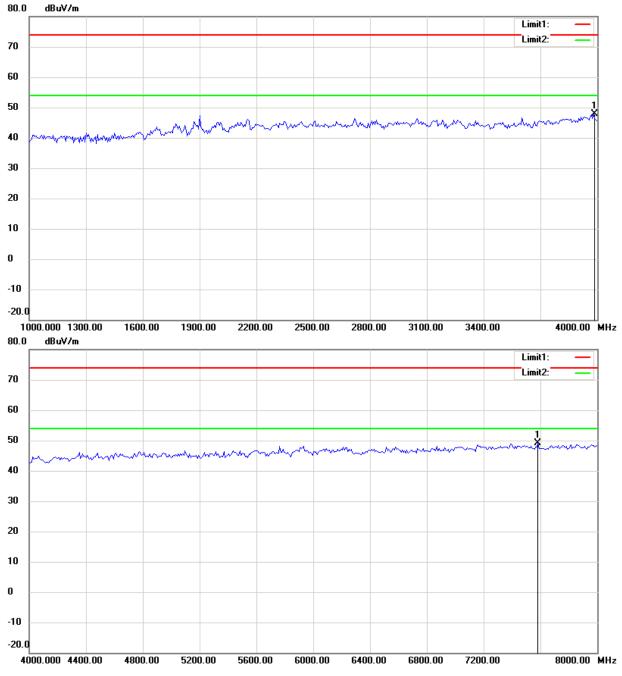
^{2.} The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

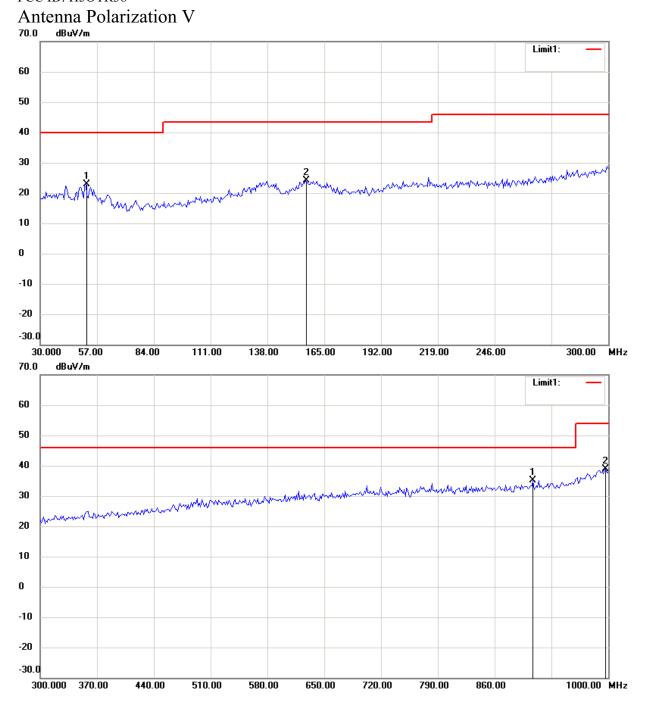
Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

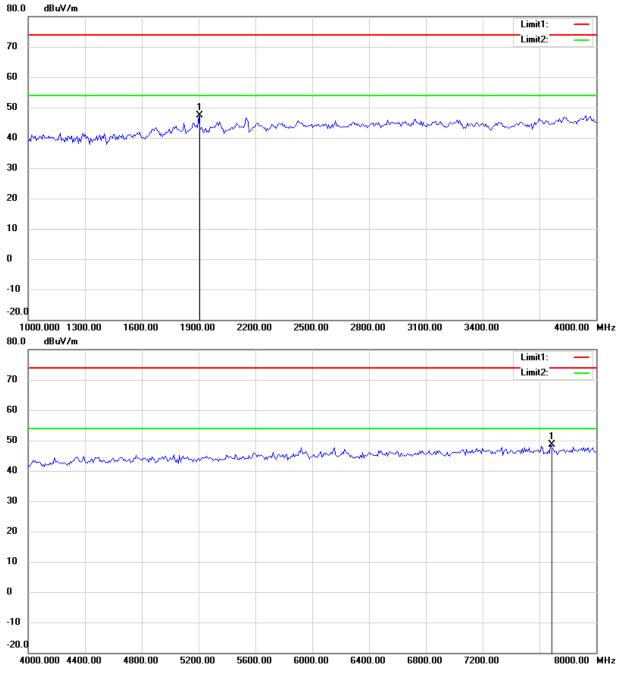

3. For corrected test results are listed in the relevant table of radiated test data of this test report.

^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

^{2.} The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.

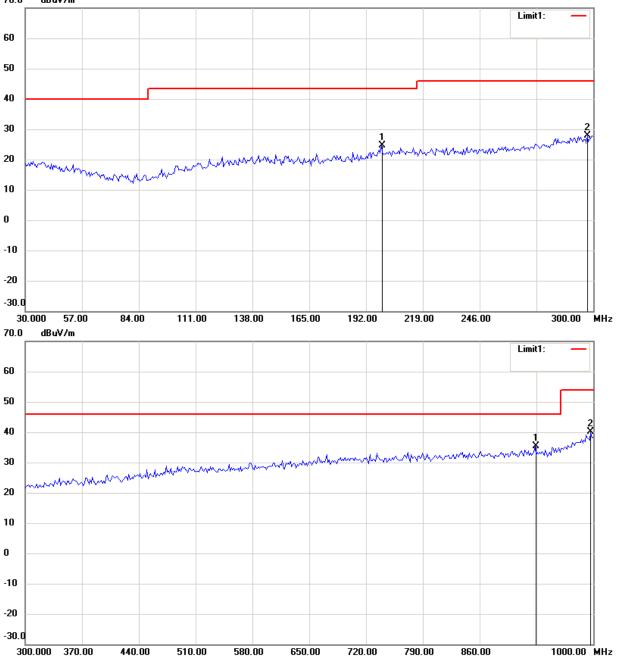

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

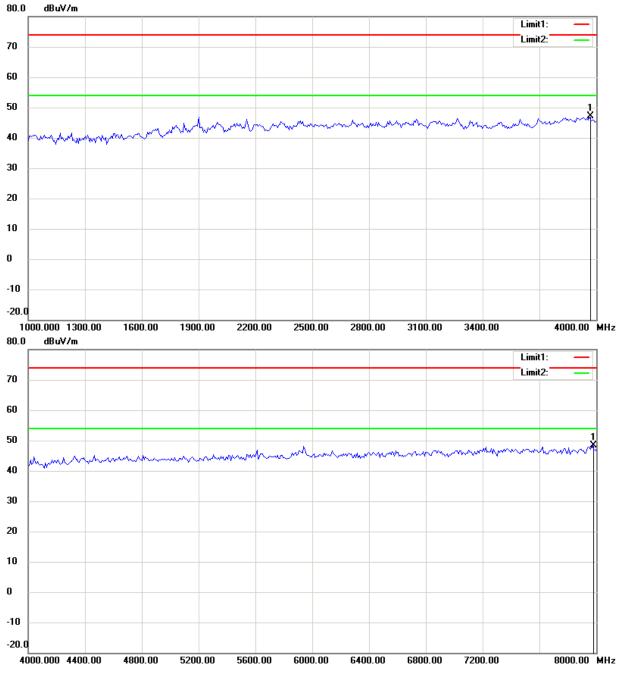


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

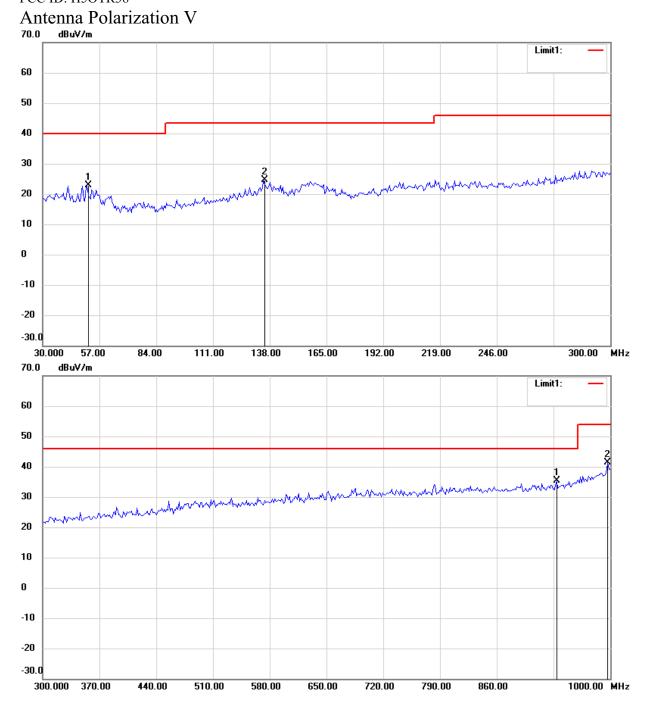


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 Digital part Antenna Polarization H 70.0 dBuV/m

- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

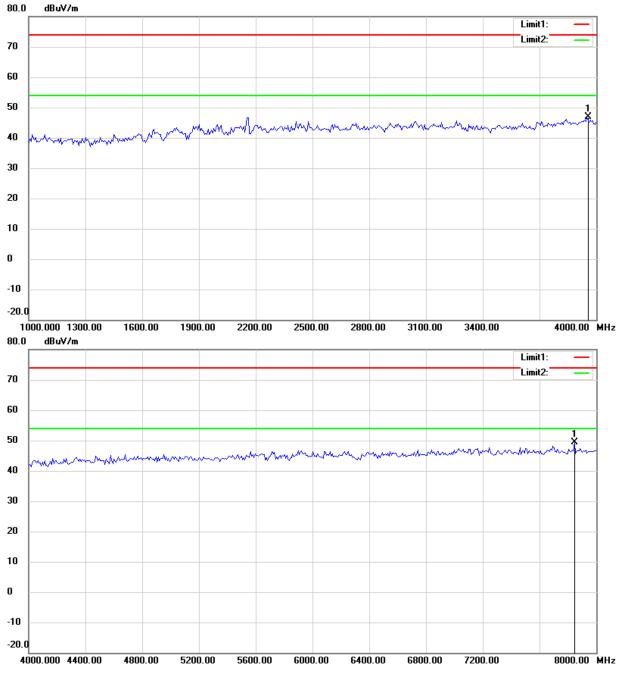
^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.



- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38

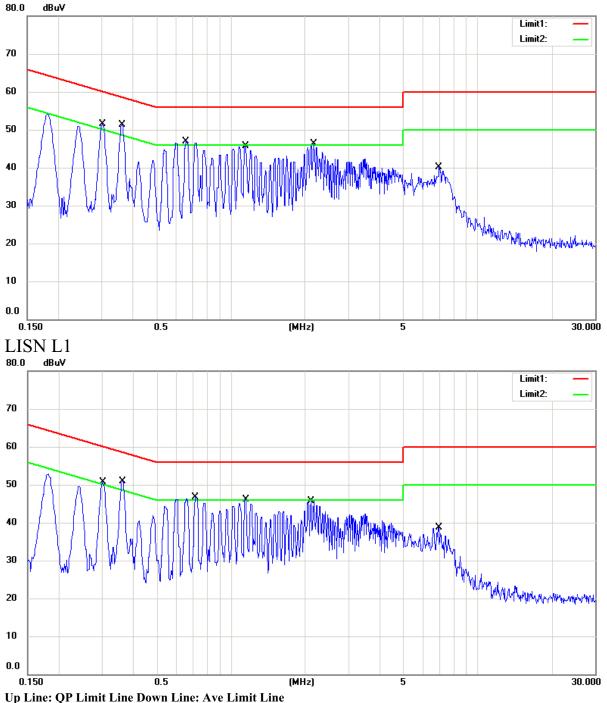
Up Line: Peak Limit Line Down Line: Ave Limit Line Note:


3. For corrected test results are listed in the relevant table of radiated test data of this test report.

^{1.} The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

^{2.} The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38



- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Power Line Conducted Emission

LISN N 80.0 dBuV

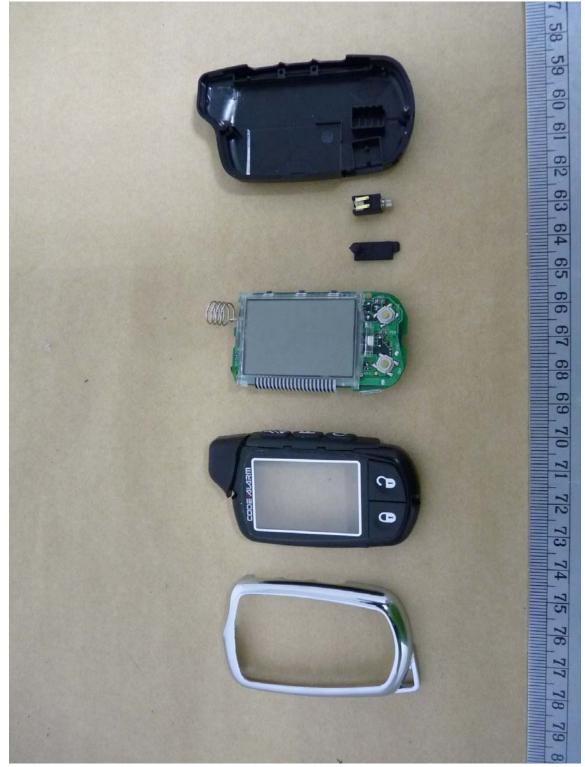
Note:

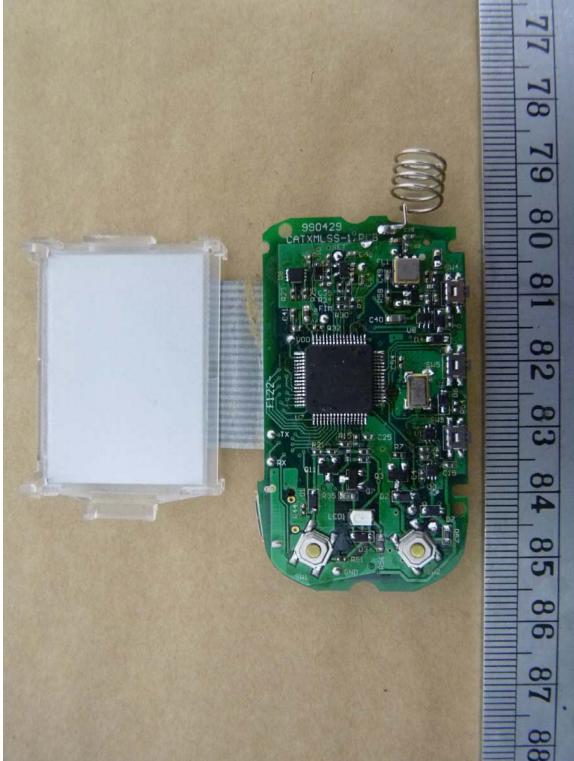
1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.

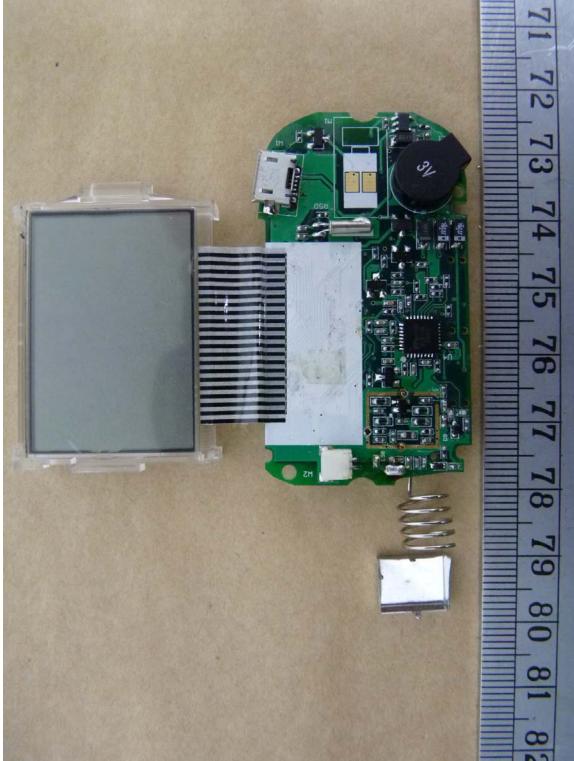
3. For corrected test results are listed in the relevant table of AC conducted test data of this test report.

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 External Photos





Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 Internal Photos



Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 Set Up Photo of Radiated Emission EMI

Registration number: W6M21005-10676-P-15 FCC ID: H5OTR38 Set Up Photo of Conducted Emission

