ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT CERTIFICATION TO FCC PART 15 REQUIREMENTS

> for

INTENTIONAL RADIATOR
433.92 MHz CAR ALARM TRANSMITTER

MODEL NAME: TX220
TRADE NAME: ADVANCE
FCC ID NO: H5OT17
REPORT NO: 02T1157-1
ISSUE DATE: FEBRUARY 20, 2002
Prepared for
ADVANCE SECURITY INC.
3F, 48 TA AN STREET
HIS-CHIH, TAIPEI HSIEN
TAIWAN, R. O.C.
Prepared by
COMPLIANCE ENGINEERING SERVICES, INC. d.b.a.

COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

TABLE OF CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE 3
2. Product Description 3
3. Test Facility 4
4. Measurement Standards 4
5. Test Methodology 4
6. Measurement Equipment Used 4
7. POWERLINE RFI LIMIT 5
8. RADIATED EMISSION LIMITS 5
9. SYSTEM TEST CONFIGURATION 6
10. Test Procedure 7
11. Equipment Modifications 8
12. TEST RESULT 9
12.1 Maximum Modulation Percentage (M\%) 9
12.2 The Emissions Bandwidth 9

TEST DATA

- Maximum Modulation Percentage Plot
- Emission Bandwidth Plot
- Radiated Emission Worksheet for Peak Measurement
- Radiated Emission Worksheet for Average Measurement

1. VERIFICATION OF COMPLIANCE

COMPANY NAME:	ADVANCE SECURITY INC. 3F, 48 TA AN STREET
	HIS-CHIH, TAIPEI HSIEN, TAIWAN
R. O. C.	

TYPE OF EQUIPMENT	SECURITY EQUIPMENT (INTENTIONAL RADIATOR)
EQUIPMENT TYPE	433.92 MHz CAR ALARM TRANSMITTER
MEASUREMENT PROCEDURE	ANSI C63.4 / 1992
LIMIT TYPE	CERTIFICATION
FCC RULE	CFR 47, PART 15

The above equipment was tested by Compliance Certification Services for compliance with the requirements set forth in the FCC CFR 47, PART 15. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Warning : This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification will constitute fraud and shall nullify the document.

Tested By:

CHIN PANG
EMO TECHNICIAN
COMPLIANCE CERTIFICATION SERVICES
Approved \& Released By:

THU CHAN
SENIOR EMO ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. PRODUCT DESCRIPTION

Fundamental Frequency	433.92 MHz
Power Source	12V Battery
Transmitting Time	Periodic ≤ 5 seconds
Associated Receiver	Advance Security FCC ID: H5OR36

3. TEST FACILITY

The $3 / 10 / 30$ meter open area test site and conducted measurement facility used to collect the radiated data is located at 561F Monterey Road, Morgan Hill, California, U.S.A. A detailed description of the test facility was submitted to the Commission on May 27,1994.

4. MEASUREMENT STANDARD

The site is constructed and calibrated in conformance with the requirements of ANSI C63.4/1992.

5. TEST METHODOLOGY

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 KHz , up to at least the tenth harmonic of the highest fundamental frequency or to 40 GHz , whichever is lower. (CFR 47 Section 15.33)

6. MEASUREMENT EQUIPMENT USED

TEST EQUIPMENTS LIST				
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
Spectrum Analyzer	HP 0.1K-1.5GHz	8568B	2732A03661	5/10/02
Spectrum Display	HP	85662A	2816A16696	5/4/02
Quasi Peak Adapter	HP9K-1GHz	85650A	2811A01155	5/4/02
Pre-Amplifier, 25 dB	HP0.1-1300MHz	8447D (P5)	2944A06550	9/19/01
Antenna, LP	EMCO200-2000MHz	3146	9107-3163	8/10/01
Horn Antenna(1-18GHz)	EMCO	3115	9001-3245	6/20/02
Quasi-Peak Detector	HP9K - 1GHz	85650A	3145A01654	6/28/02
Spectrum Display	HP	85662A	3026A19146	6/28/02
Spectrum Analyzer	HP100Hz - 22GHz	8566B	3014A06685	6/28/02
Pre-Amplifier	MITEQ1-26GHz	NSP2600-44	646456	4/12/02

[^0]
7. POWERLINE RFI LIMIT

CONNECTED TO AC POWER LINE	SECTION 15.207
CARRIER CURRENT SYSTEM IN THE	SECTION 15.205 AND SECTION 15.209, 15.221,
FREQUENCY RANGE OF 450 KHz TO 30 MHz	$15.223,15.225$ OR 15.227, AS APPROPRIATE.
BATTERY POWER	NOT REQUIRED

8. RADIATED EMISSION LIMITS

GENERAL REQUIREMENTS	SECTION 15.209
RESTRICTED BANDS OF OPERATION	SECTION 15.205
PERIODIC OPERATION IN THE BAND 40.66 - 40.70 MHz AND ABOVE 70 MHz.	SECTION 15.231

9. SYSTEM TEST CONFIGURATION

Use a block of foam and combined it with EUT wrapping cable tie around it. This way it can test X.Y, and Z axis. To activate continuous transmission, place a small plastic block between rubber band and EUT push button.

Radiated Open Site Test Set-up

High Frequency Test Set-up

Page 6 of 17

10. TEST PROCEDURE

Radiated Emissions, 15.231(4)(b)

Test Set-up for frequency range $\mathbf{3 0 - 1 0 0 0} \mathbf{~ M H z}$

Antenna mast

preamplifier/spectrum analyzer

Fig. 1

1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 3-meters from the EUT.
2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205 . The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test set-up for measurements above $\mathbf{1 G H z}$

FIG. 2

1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 1-meters from the EUT. The EUT antenna was mounted vertically as per normal installation.
2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205 . The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

11. EQUIPMENT MODIFICATIONS

To achieve compliance to FCC Section 15.231 technical limits, the following change(s) were made during compliance testing:

No changes were required in order to achieve compliance to Section 15.231 levels.

[^1]
12. TEST RESULT

Powerline RFI Class B	Eut	Radiated Emission Limits	Eut
SECTION 15.207		SECTION 15.209	X
SECTION 15.205, 15.209, 15.221, $15.223, \mathrm{x} 15.225$ OR 15.227		SECTION 15.205	X
BATTERY POWER	X	SECTION 15.231 (b)	X
		SECTION 15.231 (e)	

12.1 MAXIMUM MODULATION PERCENTAGE (M\%)

CALCULATION:

Average Reading $=\quad$ Peak Reading $(\mathrm{dBuV} / \mathrm{m})+20 \log ($ Duty Cycle $)$
In order to determine possible Maximum Modulation percentage, alternations are made to the EUT. We measured:

WHERE \quad| 1 Period | $=81.3 \mathrm{mS}$ |
| :--- | :--- |
| | Long pulse |
| Short pulse | $=1.78 \mathrm{mS}$ |
| | $=0.5 \mathrm{mS}$ |
| | No of Long pulse |
| No of Short pulse | $=10$ |
| | $=15$ |

Duty Cycle $=(\mathrm{N} 1 \mathrm{~L} 1+\mathrm{N} 2 \mathrm{~L} 2+\ldots+\mathrm{Nn}-1 \mathrm{Ln}-1+\mathrm{NnLn}) / 81.3$ or T
Duty Cycle $=((10 \times 1.78)+(15 \times 0.50)) / 81.3=0.3112=31.12 \%$
For duty cycle refer to plot \#1, 2, 3, 4.

12.2 EMISSION BANDWIDTH

The bandwidth of the emissions were investigated per 15.231(c)

Center Frequency	Measured	Limits
434.061 MHz	$\mathbf{4 3 3} \mathbf{~ K H z}$ (refer to plot)	$\mathbf{4 3 4 . 0 6 1 \times \mathbf { 0 . 2 5 \% } = \mathbf { 1 . 0 8 5 } \mathbf { ~ M H z }}$

SHORT PULSE

PLOT 1

COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY RD., MORGAN HILL, CA 95037, USA
S61F MONTER RD., MOL:(408)463-0885 FAX:(408)463-0888
This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

LONG PULSE

PLOT 2

COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY RD., MORGAN HILL, CA 95037, USA
561. MEL:(408)463-0885 FAX:(408)463-0888

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

ONE PERIOD AT 100 ms
PLOT 3

COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY RD., MORGAN HILL, CA 95037, USA
561F MONER RD., MORGAN HLL,(408)463-0885 FAX:(408)463-0888
This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

REFERENCE FOR MORE DUTY CYCLES AT 300msec

PLOT 4

COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY RD., MORGAN HILL, CA 95037, USA
S61F MEL:(408)463-0885 FAX:(408)463-0888
This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

EMISSION BANDWIDTH

RADIATED DATA

02/14/02 FCC Measurement Compliance Certification Services, Morgan Hill Open Field Site															
Equipment for 1-22 GHz						Equipment for 22-58 GHz									
HP8566B Analyzer						HP8566B Analyzer									
Miteq NSP2600-44 Preamp						HP 11975A Amplifier (LO)									
EMCO 3115 Antenna						HP11970K External mixer/antenna									
	Cable	Measurement		feet		Cable: IF Only (321 MHz)									
Average Measurements:						Peak Measurements:									
1 MHz Resolution Bandwidth						1MHz Resolution Bandwidth 1MHz Video Bandwidth									
	10 Hz	Video Bandwid													
EUT: 433.92Mhz Car Alarm Transmitter															
$\mathrm{M} \%=((\mathrm{t} 1+\mathrm{t} 2+\mathrm{t} 3+\ldots) / \mathrm{T})^{*} 81.3 \%=31.12 \%$							Av Reading = Pk Reading + 20*log(M\%)								
							$20 * \log (\mathrm{M} \%)=-10.14$								
f	Dist	Read Peak	Read Avg.	AF	CL	Amp	D Corr	HPF	Peak	Avg	Peak Lim	Avg Lim	Peak Mar	Avg Mar	Notes
GHz	feet	dBuV	dBuV	dB/m	dB	dB	dB		dBuV/m	$\mathrm{dBuV} / \mathrm{m}$	dBuV/m	dBuV/m	dB	dB	
1.301	6.6	50.5	40.4	23.9	2.9	-42.4	-3.5	0.0	31.5	21.4	74.0	54.0	-42.5	-32.6	V
1.735	6.6	62.5	52.4	25.8	3.5	-42.4	-3.5	0.0	45.9	35.8	74.0	54.0	-28.1	-18.2	V
2.169	6.6	51.4	41.3	27.5	3.9	-42.4	-3.5	0.0	36.9	26.8	74.0	54.0	-37.1	-27.2	V
2.603	6.6	50.3	40.2	28.4	4.2	-42.3	-3.5	0.0	37.2	27.1	74.0	54.0	-36.8	-26.9	V
3.037	6.6	49.6	39.5	30.2	4.5	-42.2	-3.5	0.0	38.7	28.6	74.0	54.0	-35.3	-25.4	V
3.471	6.6	49.2	39.1	31.5	4.9	-42.1	-3.5	0.0	40.1	30.0	74.0	54.0	-33.9	-24.0	V
3.905	6.6	49.5	39.4	32.7	5.3	-42.0	-3.5	0.0	42.1	32.0	74.0	54.0	-31.9	-22.0	V
4.339	6.6	54.5	44.4	32.7	5.7	-41.9	-3.5	0.0	47.5	37.4	74.0	54.0	-26.5	-16.6	V
f		Measurement Frequency				Amp	Preamp Gain						Avg Lim	Average Fie	ength Limit
	Dist	Distance to An	enna			D Corr	Distance Correct to 3 meters						Pk Lim	Peak Field	gth Limit
	Read	Analyzer Read					Average Field Strength @ 3 m						Avg Mar	Margin vs. A	ge Limit
	AF	Antenna Facto				Peak	Calculated Peak Field Strength						Pk Mar	Margin vs. P	
	CL	Cable Loss				HPF	High Pass Filter								

RADIATED EMISSIONS (HARMONIC)

RADIATED EMISSIONS (HARMONIC)

[^0]: Page 4 of 17

[^1]: Page 8 of 17

