ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT CERTIFICATION TO FCC PART 15 REQUIREMENTS

for

INTENTIONAL RADIATOR

434 MHz CAR ALARM TRANSMITTER

MODEL NO:M3RF3

FCC ID NO: H5OT15

REPORT NO: 01E9364

ISSUE DATE: APRIL 13, 2001

Prepared for

ADVANCE SECURITY INC. 3F, 48, TA AN RD., HIS-CHIH CITY, TAIPEI HSIEN, TAIWAN, R. O. C.

Prepared by

COMPLIANCE ENGINE ERING SERVICES, INC. NO. 199, CHUNG SHENG ROAD, HSIN TIEN CITY, TAIPEI, TAIWAN, R. O. C.

d.b.a.

COMPLIANCE CERTIFICATION SERVICES

U.S.A.: P.O.BOX 612650, SAN JOSE, CA 95161-2650 TAIPEI: P.O.BOX 17-82, HSIN TIEN, TAIWAN, R.O.C.

	TABLE OF CONTENTS	
1. VERIFICATION OF CO	MPLIANCE	1
2. Product Description		2
3. Test Facility		2
4. Measurement Standards.		2
5. Test Methodology		2
6. Measurement Equipment	Used	2
7. POWERLINE RFI LIMI	Γ	3
8. RADIATED EMISSION	LIMITS	3
9. SYSTEM TEST CONFIG	GURATION	4
10. Test Procedure		5
11. Equipment Modification	18	6
12. TEST RESULT		7
12.1 Maximum Modulation	Percentage (M%)	7
12.2 The Emissions Bandwa	dth	7

TEST DATA

- Maximum Modulation Percentage Plot
- Emission Bandwidth Plot
- Radiated Emission Worksheet for Average Measurement

1. VERIFICATION OF COMPLIANCE

COMPANY NAME:

ADVANCE SECURITY INC.

3F, 48, TA AN RD., HIS-CHIH CITY, TAIPEI HSIEN, TAIWAN, R. O. C.

CONTACT PERSON:

MICHAEL CHEN / PRESIDENT

TELEPHONE NO .:

(886-2) 2643-8192

EUT DESCRIPTION:

434 MHz CAR ALARM TRANSMITTER

MODEL NAME/NUMBER: M3RF3

FCC ID:

H5OT15

DATE TESTED:

MARCH 26, 2001

REPORT NUMBER:

01E9364

TYPE OF EQUIPMENT	SECURITY EQUIPMENT (INTENTIONAL RADIATOR)
EQUIPMENT TYPE	434 MHz CAR ALARM TRANSMITTER
MEASUREMENT PROCEDURE	ANSI C63.4 / 1992
LIMIT TYPE	CERTIFICATION
FCC RULE	CFR 47, PART 15

The above equipment was tested by Compliance Engineering Services, Inc. for compliance with the requirements set forth in the FCC CFR 47, PART 15. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Warning: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Engineering Services, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Engineering Services, Inc. will constitute fraud and shall nullify the document.

RICK YEO / EMC MANAGER

COMPLIANCE ENGINEERING SERVICES, INC.

2. Product Description

Fundamental Frequency	434 MHz			
Power Source	12V Battery			
Transmitting Time	Periodic ≤ 5 seconds			
Associated Receiver	FCC ID: H5OR32			

3. Test Facility

The open area test sites and conducted measurement facilities used to collect the radiated data are located at No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan R.O.C. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4. Measurement Standards

The site is constructed and calibrated in conformance with the requirements of ANSI C63.4/1992.

5. Test Methodology

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 KHz, up to at least the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. (CFR 47 Section 15.33)

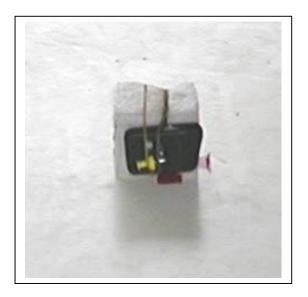
6. Measurement Equipment Used

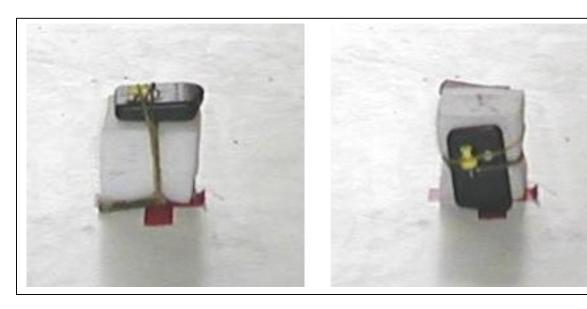
Manufacturer	Model Number	Description	Cal Due Date
H.P.	8566B	Spectrum Analyzer (100Hz – 22GHz)	12/2001
H.P.	8595EM	Spectrum Analyzer (9KHz – 6.5GHz)	01/2002
EMCO	3115	Antenna (1-18GHz)	02/2002
EMCO	3142	Antenna (30-2000MHz)	06/2001
T.E.C.	PA-102	Amplifier(30-2000MHz)	05/2001
MITEQ	NSP2600-44	Amplifier(1-26GHz)	02/2002

REPORT NO: 01E9364 FCC ID:H5OT15 DATE: APRIL 13, 2001

7. POWERLINE RFI LIMIT

CONNECTED TO AC POWER LINE	SECTION 15.207
CARRIER CURRENT SYSTEM IN THE FREQUENCY RANGE OF 450 kHZ TO 30 MHz	SECTION 15.205 AND SECTION 15.209, 15.221, 15.223, 15.225 OR 15.227, AS APPROPRIATE.
BATTERY POWER	NO REQUIRED.


8. RADIATED EMISSION LIMITS


GENERAL REQUIREMENTS	SECTION 15.209
RESTRICTED BANDS OF OPERATION	SECTION 15.205
PERIODIC OPERATION IN THE BAND 40.66 -40.70 MHz AND ABOVE 70 MHz.	SECTION 15.231

REPORT NO: 01E9364 FCC ID:H5OT15 DATE: APRIL 13, 2001

9. SYSTEM TEST CONFIGURATION

Use a block of foam and combined it with EUT wrapping rubber band around it. This way it can test X.Y, and Z axis. To activate continuous transmission, place a small plastic block between rubber band and EUT push button.

Radiated Open Site Test Set-up

10. Test Procedure Radiated Emissions, 15.231(4)(b)

Test Set-up for frequency range 30 – 1000 MHz

Ground plane

1 - 4 meters

turntable

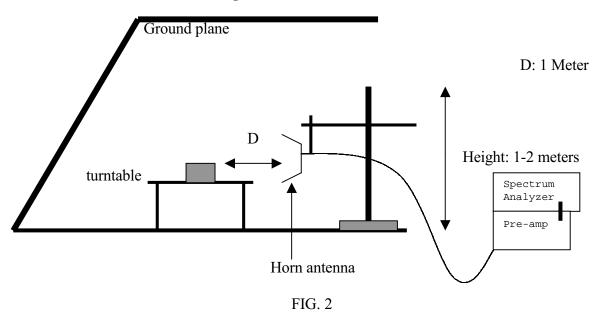

preamplifier/spectrum analyzer

Fig. 1

- 1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 3-meters from the EUT.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205. The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
- 3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

REPORT NO: 01E9364 FCC ID:H5OT15 DATE: APRIL 13, 2001

Test set-up for measurements above 1GHz

- 1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 1-meters from the EUT. The EUT antenna was mounted vertically as per normal installation.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205. The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
- 3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

11. Equipment Modifications

To achieve compliance to FCC Section 15.231 technical limits, the following change(s) were made during compliance testing:

NONE

12. TEST RESULT

Powerline RFI Class B	Eut	Radiated Emission Limits	Eut
SECTION 15.207		SECTION 15.209	X
SECTION 15.205, 15.209, 15.221, 15.223, x 15.225 OR 15.227		SECTION 15.205	
BATTERY POWER	X	SECTION 15.231 (b)	X
		SECTION 15.231 (e)	

12.1 Maximum Modulation Percentage (M%)

CALCULATION:

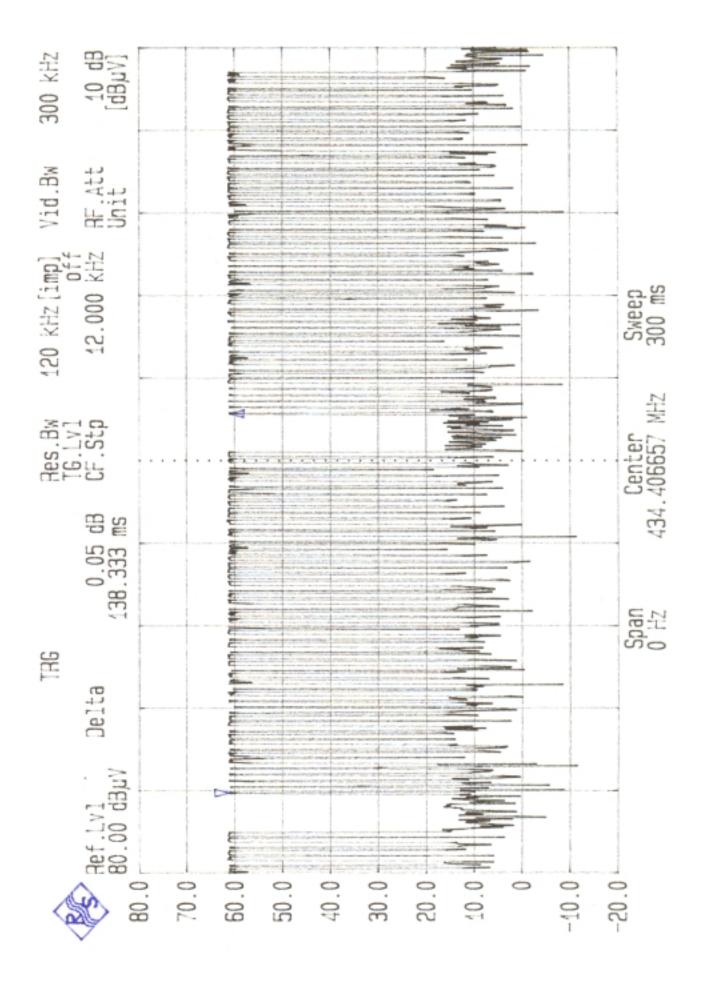
Average Reading = Peak Reading (dBuV/m)+ 20log (Duty Cycle)

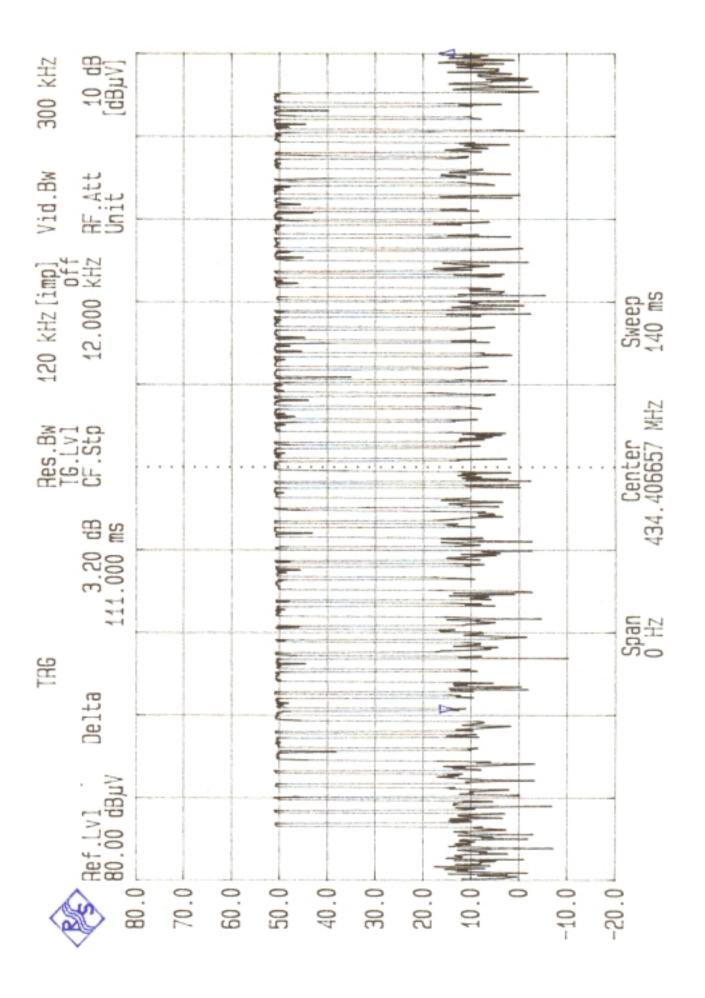
In order to determine possible Maximum Modulation percentage, alternations are made to the EUT. We measured:

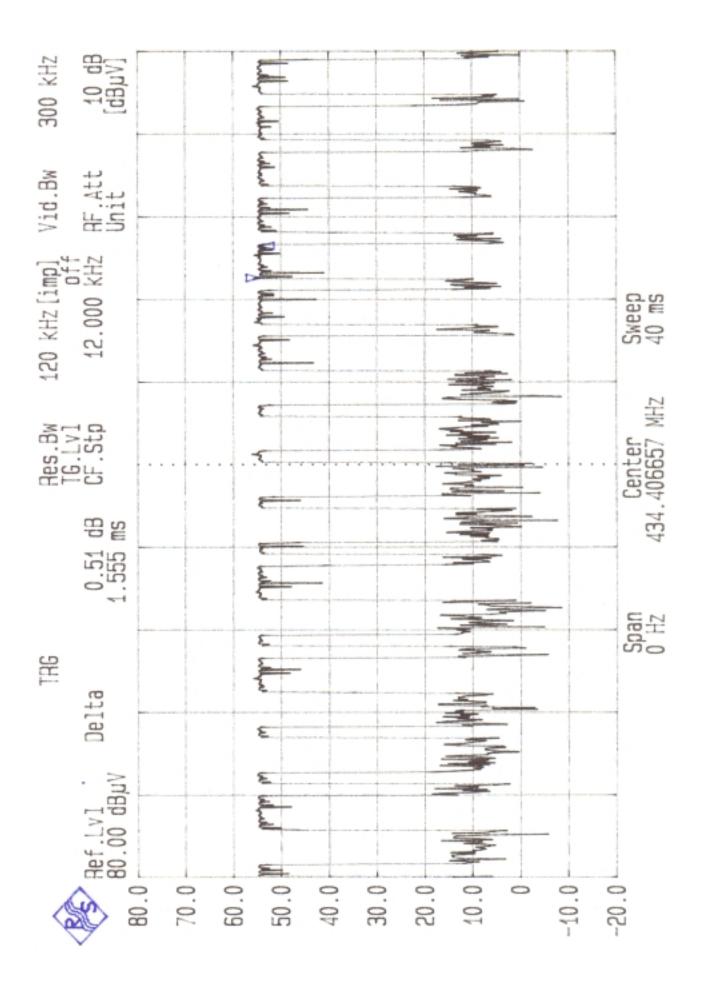
WHERE 1 Period = 138.333 mS>100 mS. use 100 mS for calculation

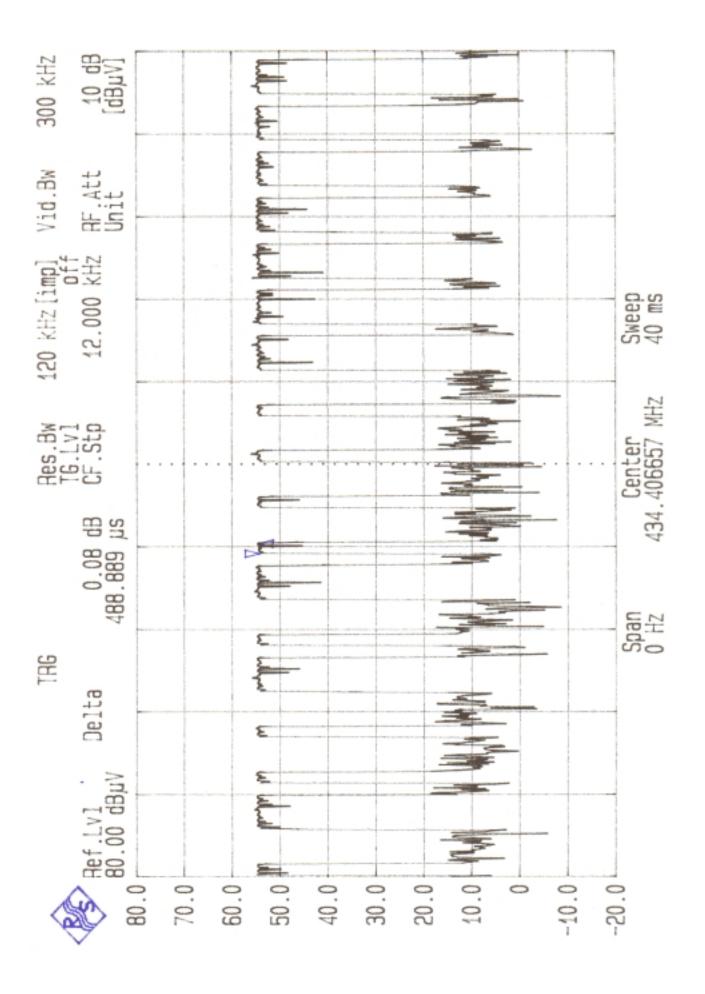
Long pulse = 1.555 mSShort pulse = 0.489 mS

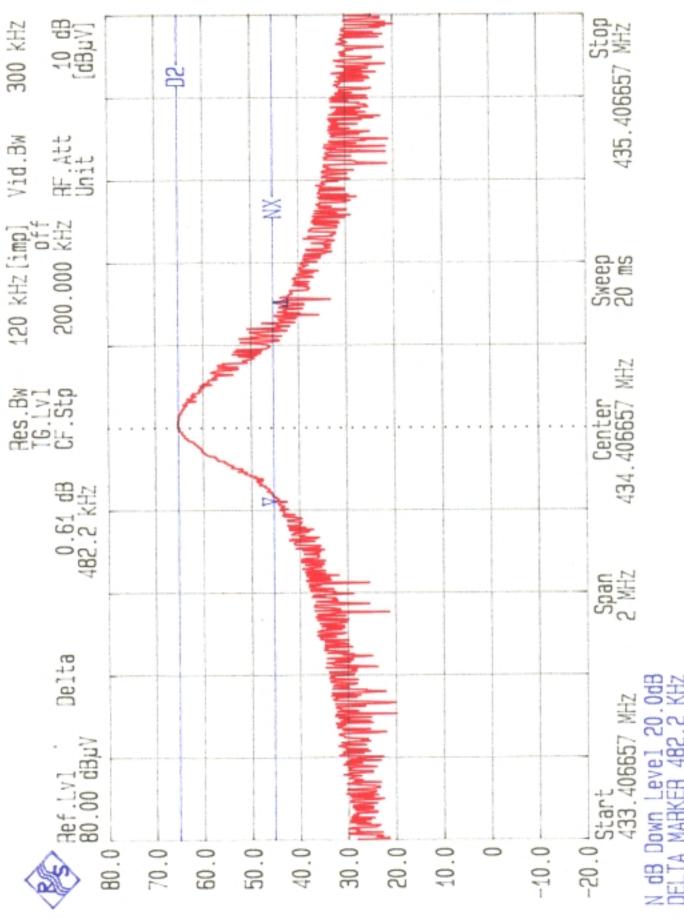
No of Long pulse = 34 No of Short pulse = 22


Duty Cycle = (N1L1+N2L2+...+Nn-1Ln-1+NnLn)/100 or T


Duty Cycle = ((34x1.555)+(22x0.489))/100=0.6363=63.63% or -3.93dB


12.2 The Emissions Bandwidth


The bandwidth of the emissions were investigated per 15.231(c)


Center Frequency	Measured	Limits
434 MHz	482.2 kHz <	434X0.25%=1085 kHz
	(refer to plot)	

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP

No. 199 Chung Sheng Road Hsin Tien City, Taipei, Taiwan, R.O.C. PHONE: 02-2217-0894 FAX: 02-2

FAX: 02-2217-1254

Project #: Report #: Date& Time: Test Engr:

01E9364 9364D1 4/09/2001 **BILL HUANG**

ADVANCE SECURITY INC. Company: M3RF3 (Alarm TX / 434MHz) **EUT Description:**

EUT ONLY Test Configuration: FCC 15.231(b) Type of Test: NORMAL MODE Mode of Operation:

O D-Site

○ E-Site

M% = ((t1+t2+t3+...)/T) * 100% =63.63 % Av Reading = Pk Reading + 20*log(M%) -3.9268 20*log(M%) =

	I	DI. D.	A D!	^ -	01	ID		1 : :4	NA:	D-1	Λ -	l laial (
	Freq.	Pk Rdg	Av Rdg	AF	Closs	Pre-amp		Limit	Margin	Pol	Az (Dar)	Height
	(MHz)	(dBuV)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)
	Button #											
Χ	434.84	64.44	60.51	17.51	2.59	21.28	59.33	80.86	-21.52	3mV	90	1.30
	869.67	36.61	32.68	23.39	4.51	20.70	39.88	60.86	-20.98	3mV	90	1.50
Υ	434.80	64.34	60.41	17.51	2.59	21.28	59.23	80.86	-21.63	3mV	180	1.10
	869.58	35.92	31.99	23.39	4.51	20.70	39.19	60.86	-21.67	3mV	180	1.30
Z	434.58	52.43	48.50	17.51	2.59	21.28	47.32	80.86	-33.54	3mV	0	1.20
	869.63	28.35	24.42	23.39	4.51	20.70	31.62	60.86	-29.24	3mV	0	1.40
Χ	434.85	61.26	57.33	17.51	2.59	21.28	56.15	80.86	-24.71	3mH	90	1.25
	869.70	29.24	25.31	23.39	4.51	20.70	32.51	60.86	-28.35	3mH	90	1.30
Υ	434.82	62.43	58.50	17.51	2.59	21.28	57.32	80.86	-23.54	3mH	180	1.40
	869.63	33.79	29.86	23.39	4.51	20.70	37.06	60.86	-23.80	3mH	180	1.50
Z	434.80	65.12	61.19	17.51	2.59	21.28	60.01	80.86	-20.85	3mH	0	1.20
	869.74	29.17	25.24	23.39	4.51	20.70	32.44	60.86	-28.42	3mH	0	1.40
	Button #2	2:										
Χ	434.87	64.03	60.10	17.51	2.59	21.28	58.92	80.86	-21.94	3mV	90	1.00
	869.41	34.78	30.85	23.39	4.51	20.70	38.05	60.86	-22.81	3mV	90	1.30
Υ	434.73	62.53	58.60	17.51	2.59	21.28	57.42	80.86	-23.44	3mV	0	1.20
	869.71	29.24	25.31	23.39	4.51	20.70	32.51	60.86	-28.35	3mV	0	1.20
Z	434.73	53.19	49.26	17.51	2.59	21.28	48.08	80.86	-32.78	3mV	180	1.10
	869.48	28.61	24.68	23.39	4.51	20.70	31.88	60.86	-28.98	3mV	180	1.35
Χ	434.88	59.33	55.40	17.51	2.59	21.28	54.22	80.86	-26.64	3mH	90	1.00
	869.83	27.03	23.10	23.39	4.51	20.70	30.30	60.86	-30.56	3mH	90	1.20
Υ	434.88	61.06	57.13	17.51	2.59	21.28	55.95	80.86	-24.91	3mH	180	1.20
	869.70	26.45	22.52	23.39	4.51	20.70	29.72	60.86	-31.14	3mH	180	1.10
Z	434.92	64.11	60.18	17.51	2.59	21.28	59.00	80.86	-21.86	3mH	0	1.10
	869.86	24.27	20.34	23.39	4.51	20.70	27.54	60.86	-33.32	3mH	0	1.25
	Total dat	a #: 24										
						•						

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP

No. 199 Chung Sheng Road Hsin Tien City, Taipei, Taiwan, R.O.C. PHONE: 02-2217-0894 FAX: 02-2

FAX: 02-2217-1254

ADVANCE SECURITY INC. Company: M3RF3 (Alarm TX / 434MHz)

EUT Description: EUT ONLY Test Configuration: FCC 15.231(b) Type of Test:

NORMAL MODE Mode of Operation:

O D-Site

○ E-Site

Project #:

Report #:

Test Engr:

Date& Time:

M% = ((t1+t2+t3+...)/T) * 100% =63.63 % Av Reading = Pk Reading + 20*log(M%) 20*log(M%) =-3.9268

01E9364 9364D2

4/09/2001

BILL HUANG

	Freq.	Pk Rdg	Av Rdg	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height
	(MHz)	(dBuV)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)
	Button #	3:										
Х	434.58	66.62	62.69	17.51	2.59	21.28	61.51	80.86	-19.35	3mV	180	1.10
	869.09	42.40	38.47	23.39	4.51	20.70	45.67	60.86	-15.19	3mV	180	1.40
Υ	434.58	68.02	64.09	17.51	2.59	21.28	62.91	80.86	-17.95	3mV	90	1.20
	869.16	34.40	30.47	23.39	4.51	20.70	37.67	60.86	-23.19	3mV	90	1.60
Z	434.61	49.56	45.63	17.51	2.59	21.28	44.45	80.86	-36.41	3mV	270	1.10
	868.58	35.49	31.56	23.39	4.51	20.70	38.76	60.86	-22.10	3mV	270	1.40
Х	434.59	63.19	59.26	17.51	2.59	21.28	58.08	80.86	-22.78	3mH	90	1.30
	869.09	34.73	30.80	23.39	4.51	20.70	38.00	60.86	-22.86	3mH	90	1.60
Υ	434.58	62.94	59.01	17.51	2.59	21.28	57.83	80.86	-23.03	3mH	270	1.10
	869.16	36.20	32.27	23.39	4.51	20.70	39.47	60.86	-21.39	3mH	270	1.50
Z	434.61	64.11	60.18	17.51	2.59	21.28	59.00	80.86	-21.86	3mH	0	1.00
	869.17	35.21	31.28	23.39	4.51	20.70	38.48	60.86	-22.38	3mH	0	1.50
	Total dat	a #: 12										

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP

1366 BORDEAUX DRIVE, SUNNYVALE, CA 94089 PHONE: (408) 752-8166 FAX: (408) 752-8168 Project #:
Report #:
Date& Time:
Test Engr:

01E9364 9364D3 4/10/2001 Vince Chiang

Company: ADVANCE SECURITY INC.

EUT Description: M3RF3 (Alarm Tx / 434MHz)

Test Configuration: EUT ONLY

Type of Test: FCC 15.231(b)/FCC 15.209

Mode of Operation: NORMAL MODE

● D-Site

○ E-Site

6 W orst

Descendin

Freq.	Pk Rdg	Av Rdg	AF	Closs	Pre-amp	Dist	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dBuV)	(dB)	(dB)	(dB)	dB	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
1302	52.79	48.86	25.1	2.8	38.00	-9.5	29.31	54.0	-24.69	1mV	0	1.2	Α
1736	52.18	48.25	26.7	3.3	37.95	-9.5	30.77	60.9	-30.09	1mV	0	1.2	Α
1302	48.60	44.67	25.1	2.8	38.00	-9.5	25.12	54.0	-28.88	1mH	0	1.2	Α
1737	46.97	43.04	26.7	3.3	37.95	-9.5	25.56	60.9	-35.30	1mH	0	1.2	Α

^{*} No other emission were found within 20dB under the limits upto 4.5 GHz.

Total data #:4 V.2d P(Peak): RBW=VBW=1MHz

A(Average): Pk Reading - 3.9268dB

Distance = $20\log(1/3) = -9.5dB$