	BUREAU VERITAS
	FCC Test Report
Report No.:	RFBEKC-WTW-P22080972
FCC ID:	H4IUD2401T
Test Model:	UD2401t
Received Date:	2022/8/30
Test Date:	2022/9/6 ~ 2022/9/27
Issued Date:	2022/10/13
Applicant:	LITE-ON Technology Corp.
Address:	16F, 392, Ruey Kuang Road, Neihu, Taipei 11492, Taiwan, R.O.C
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
FCC Registration / Designation Number:	198487 / TW2021
	View View
This report is governed by, and incorporates http://www.bureauveritas.com/home/about-u report to or for any other person or entity, or with respect to the test samples identified he which a test sample was taken or any simila results thereof based upon the information th conformity are based on simple acceptance date of issuance of this report to notify us of such notice shall be in writing and shall spec unqualified acceptance of the completeness	by reference, the Conditions of Testing as posted at the date of issuance of this report at <u>s/our-business/cps/about-us/terms-conditions/</u> and is intended for your exclusive use. Any copying or replication of this use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely erein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from ro ridentical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the nat you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that ifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Re	elease	e Control Record	3
1	С	Certificate of Conformity	4
2	S	ummary of Test Results	5
	2.1 2.2	Measurement Uncertainty Modification Record	5 5
3	G	General Information	6
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	6 7 8 9 10 10 10
4	Т	est Types and Results	.11
	$\begin{array}{c} 4.1 \\ 4.1.1 \\ 4.1.2 \\ 4.1.3 \\ 4.1.4 \\ 4.1.5 \\ 4.1.6 \\ 4.1.7 \\ 4.2.1 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \\ 4.2.7 \\ 4.3.1 \\ 4.3.2 \\ 4.3.3 \\ 4.3.4 \\ 4.3.5 \end{array}$	Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Instruments Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation From Test Standard Test Setup EUT Operating Condition Test Results Channel Bandwidth Test Instruments Test Instruments Test Instruments Test Results Channel Bandwidth Test Setup EUT Operating Condition Test Results Channel Bandwidth Test Procedure Deviation from Test Standard EUT Operating Condition Test Instruments Test Instruments Test Instruments Test Instruments Test Procedure Deviation from Test Standard EUT Operating Condition	11 11 12 14 15 16 17 22 23 23 23 23 23 24 26 26 26 26 26 26
5	4.3.6 ¤	Iest Kesuits	21 29
5	F		20
A	ppend	IIX – Information of the Testing Laboratories	29

Release Control Record

Issue No.	Description	Date Issued
RFBEKC-WTW-P22080972	Original release.	2022/10/13

Certificate of Conformity 1

Product:	Dongle
Brand:	ALIENWARE, DELL
Test Model:	UD2401t
Sample Status:	Engineering sample
Applicant:	LITE-ON Technology Corp.
Test Date:	2022/9/6 ~ 2022/9/27
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Innie Chang, Date: 2022/10/13

Annie Chang / Senior Specialist

2022/10/13

Approved by :

_, Date:____ em.1

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)					
FCC Clause	Test Item Result Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -17.16dB at 0.15391MHz.		
15.215	Channel Bandwidth Measurement	PASS	Meet the requirement of limit.		
15.209 15.249 (a) 15.249 (d)	Radiated Emission and Bandedge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -8.1dB at 2390.00MHz.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
AC Power Conducted Emissions	150 kHz ~ 30 MHz	3.00 dB
Conducted Emissions	9 kHz ~ 40 GHz	2.63 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	2.38 dB
	30MHz ~ 1000MHz	5.62 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.41 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Dongle
Brand	ALIENWARE, DELL
Test Model	UD2401t
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from host equipment
Modulation Type	GFSK
Operating Frequency	2403MHz ~ 2480MHz
Number of Channel	78
Field Strength	80.2 dBuV/m (3m)
Antenna Type	Chip antenna with 0.7dBi gain
Antenna Connector	N/A
Accessory Device	USB Type C to C Connector
Data Cable Supplied	USB Type C cable (2m)

Note:

1. Due to radiated measurements are made and the antenna gain is already accounted for this device, so provide an antenna datasheet and/or antenna measurement report is not required. The antenna dimensions and pictures (include antenna wire length if have) are stated in EUT photo exhibit.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

78 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2403	20	2423	40	2443	60	2463
1	2404	21	2424	41	2444	61	2464
2	2405	22	2425	42	2445	62	2465
3	2406	23	2426	43	2446	63	2466
4	2407	24	2427	44	2447	64	2467
5	2408	25	2428	45	2448	65	2468
6	2409	26	2429	46	2449	66	2469
7	2410	27	2430	47	2450	67	2470
8	2411	28	2431	48	2451	68	2471
9	2412	29	2432	49	2452	69	2472
10	2413	30	2433	50	2453	70	2473
11	2414	31	2434	51	2454	71	2474
12	2415	32	2435	52	2455	72	2475
13	2416	33	2436	53	2456	73	2476
14	2417	34	2437	54	2457	74	2477
15	2418	35	2438	55	2458	75	2478
16	2419	36	2439	56	2459	76	2479
17	2420	37	2440	57	2460	77	2480
18	2421	38	2441	58	2461		
19	2422	39	2442	59	2462		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able lo		Description				
Mode	RE≥1G	RE<1G	PLC	APCM		Description			
-		\checkmark	\checkmark						
Where RE≥1	G: Radiated Em	ission above 10	GHz & RE4	1G: Radiated	Emission below 1GHz				
PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement									
NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y axis .									
Radiated Emis	sion Test (A	bove 1GHz	·)-						
Pre-Scan h	as been con	ducted to de	termine the w	orst-case m	ode from all possi	ble combinations betwee			
available n	nodulations,	data rates ai	nd antenna po	orts (if EUT v	vith antenna diver	sity architecture).			
🛛 Following c	hannel(s) wa	s (were) sel	ected for the f	inal test as l	isted below.				
EUT Config	gure Mode	Avail	able Channel	Те	sted Channel	Modulation Type			
-			0 to 77		0, 38, 77	GFSK			
Radiated Emis	sion Test (E	elow 1GHz):						
🛛 Pre-Scan h	as been con	ducted to de	termine the w	orst-case m	ode from all possi	ble combinations			
between av	ailable modu	lations, data	a rates and an	tenna ports	(if EUT with anter	nna diversity architecture			
🛛 Following c	hannel(s) wa	s (were) sel	ected for the f	inal test as l	isted below.				
EUT Config	gure Mode	Avail	able Channel	Te	sted Channel	Modulation Type			
			0 to 77		0				
Power Line Co	onducted En as been con	nission Test ducted to de lations, data	termine the w	orst-case mo	ode from all possi	ble combinations			
Power Line Co Pre-Scan h between av Following c	as been con ailable modu hannel(s) wa	hission Test ducted to de lations, data s (were) sel	t: termine the w rates and an ected for the f	orst-case m tenna ports inal test as l	ode from all possi (if EUT with anten isted below.	ble combinations na diversity architecture)			
Power Line Co	onducted En as been con ailable modu hannel(s) wa jure Mode	hission Test ducted to de lations, data s (were) sel Availa	t: termine the w rates and an ected for the f ble Channel	orst-case m tenna ports inal test as l Tes	ode from all possi (if EUT with anten isted below. ted Channel	ble combinations na diversity architecture) Modulation Type			
Power Line Co ∑ Pre-Scan h between av ∑ Following c EUT Config	onducted En as been con ailable modu hannel(s) wa jure Mode	hission Test ducted to de lations, data s (were) sel Availa	t: termine the w rates and an ected for the f ble Channel	orst-case me tenna ports inal test as l Tes	ode from all possi (if EUT with anten isted below. ted Channel	ble combinations na diversity architecture) Modulation Type GFSK			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av	as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con railable modu	hission Test ducted to de lations, data s (were) sel Availa Measureme st value of ea ducted to de lations, data	t: termine the w rates and an ected for the f ble Channel 0 to 77 <u>nt:</u> ach mode, but termine the w a rates and an	orst-case me tenna ports inal test as I Tes only include orst-case me tenna ports	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot c ode from all possi (if EUT with anter	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations ina diversity architecture)			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port ∑ This item in mode. ∑ Pre-Scan h between av ∑ Following c	onducted En as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con vailable modu hannel(s) wa	hission Test ducted to de lations, data s (were) sel Availa Availa ducted to de lations, data s (were) sel	termine the w rates and an ected for the f ble Channel 0 to 77 nt: ach mode, but termine the w a rates and an ected for the f	orst-case me inal test as l Tes only include orst-case me tenna ports inal test as l	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot of ode from all possi (if EUT with anter isted below.	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations ana diversity architecture)			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av Following c EUT Config	onducted En as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con vailable modu hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa (Measureme at value of ea ducted to de lations, data s (were) sel Availa	t: termine the w rates and an ected for the f ble Channel to to 77 nt: ach mode, but termine the w a rates and an ected for the f able Channel	orst-case me inal test as l Tes only include orst-case me tenna ports inal test as l	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot c ode from all possi (if EUT with anter isted below. sted Channel	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations ina diversity architecture) Modulation Type			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av Following c EUT Config	onducted En as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con vailable modu hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa ducted to de lations, data s (were) sel Availa	termine the w rates and an ected for the f ble Channel 0 to 77 nt: ach mode, but termine the w a rates and an ected for the f able Channel 0 to 77	orst-case me tenna ports inal test as I Tes only include orst-case me tenna ports inal test as I	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot of ode from all possi (if EUT with anter isted below. sted Channel 0, 38, 77	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations and diversity architecture) Modulation Type GFSK			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av Following c EUT Config	onducted En as been cond ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been condu hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa (Measureme at value of ea ducted to de lations, data s (were) sel Availa	t: termine the w rates and an ected for the f ble Channel to to 77 nt: ach mode, but termine the w a rates and an ected for the f able Channel 0 to 77	orst-case me inal test as l Tes only include orst-case me tenna ports inal test as l Te	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot c ode from all possi (if EUT with anter isted below. sted Channel 0, 38, 77	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations ina diversity architecture) Modulation Type GFSK			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av Following c EUT Config - - - - - - - - - - - - -	as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con vailable modu hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa ducted to de ducted to de lations, data s (were) sel Availa	termine the w rates and an ected for the f ble Channel 0 to 77 nt: ach mode, but termine the w a rates and an ected for the f able Channel 0 to 77	orst-case me tenna ports inal test as I Tes only include orst-case me tenna ports inal test as I Te	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot of ode from all possi (if EUT with anter isted below. sted Channel 0, 38, 77	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations and diversity architecture) Modulation Type GFSK			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av Following c EUT Config - Following c EUT Config	onducted En as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con vailable modu hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa (Measureme at value of ea ducted to de lations, data s (were) sel Availa Environmen 18.4deg.	t: termine the w rates and an ected for the f ble Channel 0 to 77 nt: ach mode, but termine the w a rates and an ected for the f able Channel 0 to 77 tal Conditions C, 64.2%RH	orst-case me inal test as l only include orst-case me tenna ports inal test as l Te Inp 120Vac,	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot c ode from all possi (if EUT with anter isted below. sted Channel 0, 38, 77	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations and diversity architecture) Modulation Type GFSK Tested By Jed Wu			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av Following c EUT Config Following c Following c EUT Config Config EUT Config Conf	as been con ailable modu hannel(s) wa ure Mode Conducted I cludes all tes as been con vailable modu hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa ducted to de lations, data s (were) sel ducted to de lations, data s (were) sel Availa Environmen 18.4deg. 0	t: termine the w rates and an ected for the f ble Channel 0 to 77 <u>nt:</u> ach mode, but termine the w a rates and an ected for the f able Channel 0 to 77 ttal Conditions C, 64.2%RH C, 63%RH	orst-case me tenna ports inal test as l only include orst-case me tenna ports inal test as l Te l l l l l l l l l l l l l l l l l l	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot of ode from all possi (if EUT with anter isted below. sted Channel 0, 38, 77 out Power 60Hz (System) 60Hz (System)	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations ina diversity architecture) Modulation Type GFSK Tested By Jed Wu Jed Wu			
Power Line Co Pre-Scan h between av Following c EUT Config - Antenna Port o This item in mode. Pre-Scan h between av Following c EUT Config - Following c EUT Config - Following c EUT Config - - - - - - - - - - - - -	onducted En as been cond ailable modu hannel(s) wa pure Mode Conducted I cludes all tes as been conducted as been conducted as been conducted hannel(s) wa gure Mode	hission Test ducted to de lations, data s (were) sel Availa Measureme at value of ea ducted to de lations, data s (were) sel Availa ducted to de lations, data s (were) sel Availa	termine the w rates and an ected for the f ble Channel 0 to 77 nt: ach mode, but termine the w a rates and an ected for the f able Channel 0 to 77 ttal Conditions C, 64.2%RH C, 63%RH C, 75%RH	orst-case me tenna ports inal test as I only include orst-case me tenna ports inal test as I Te Inp 120Vac, 120Vac,	ode from all possi (if EUT with anten isted below. ted Channel 0 es spectrum plot of ode from all possi (if EUT with anter isted below. sted Channel 0, 38, 77 out Power 60Hz (System) 60Hz (System)	ble combinations na diversity architecture) Modulation Type GFSK of worst value of each ble combinations and diversity architecture) Modulation Type GFSK GFSK Tested By Jed Wu Jed Wu Jed Wu			

3.3 Duty Cycle of Test Signal

Duty cycle correction factor = 20 log(Duty cycle) = 20 log(0.117) = -18.6dB

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	Lenovo	IdeaPad 5 15ITL05	N/A	N/A	Provided by Lab
В.	NB Adapter	Lenovo	PA-1450-55LL	N/A	N/A	Provided by Lab
C.	USB Type C to C Connector	LITEON	connector	N/A	N/A	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type C Cable	1	2.0	Y	0	Supplied by applicant
2.	DC cable	1	1.5	Ν	0	Provided by Lab

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Bi_Log Antenna Schwarzbeck	VULB 9168	137	2021/10/27	2022/10/26
Coupling/Dcoupling Network	CDNE-M2	00097	2022/6/1	2023/5/31
Schwarzbeck	CDNE-M3	00091	2022/6/1	2023/5/31
LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
Pre_Amplifier EMCI	EMC001340	980269	2022/6/28	2023/6/27
Pre_Amplifier HP	8447D	2432A03504	2022/2/17	2023/2/16
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2022/6/30	2023/6/29
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8
Test Receiver	NOO29A	MY51210129	2022/4/8	2023/4/7
Agilent	N9038A	MY51210137	2022/6/9	2023/6/8
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Linkou 966 Chamber 6 (CH 6).

3. Tested Date: 2022/9/6

Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Band Pass Filter MICRO-TRONICS	BRM17690	005	2022/5/26	2023/5/25
Boresight antenna tower fixture BV	BAF-02	6	N/A	N/A
High Pass Filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2022/5/26	2023/5/25
Horn Antenna EMCO	3115	00027024 00028257	2021/11/14 2021/11/14	2022/11/13 2022/11/13
Horn Antenna ETS-Lindgren	3117-PA	00215857	2021/11/14	2022/11/13
Horn Antenna Schwarzbeck	BBHA 9170	212	2021/10/13	2022/10/12
Notch Filter MICRO-TRONICS	BRC50703-01	010	2022/5/26	2023/5/25
Pre-amplifier HP	8449B	3008A01201	2022/2/17	2023/2/16
Pre-amplifier (18GHz-40GHz) EMCI	EMC184045B	980175	2022/9/3	2023/9/2
Pre_Amplifier	EMC0126545	980076	2022/2/17	2023/2/16
EMCI	EMC184045B	980235	2022/2/17	2023/2/16
RF Coaxial Cable EM	EM102-KMKM-3.5+1M	EM102-KMKM- 3.5+1M-01	2022/7/7	2023/7/6
RF Coaxial Cable HUBER SUHNER	SF-104	Cable-CH6-01	2022/7/7	2023/7/6
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Agilent	E4446A	MY51100009	2022/6/27	2023/6/26
Spectrum Analyzer KEYSIGHT	N9030A	MY54490260	2022/7/14	2023/7/13
Spectrum Analyzer R&S	FSV40	101042	2022/5/9	2023/5/8
Test Receiver	N0038A	MY51210129	2022/4/8	2023/4/7
Agilent	NOCOCH	MY51210137	2022/6/9	2023/6/8
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Linkou 966 Chamber 6 (CH 6).

3. Tested Date: 2022/9/6

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty factor. The duty factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected the EUT to Notebook PC.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	52.7 PK	74.0	-21.3	1.19 H	212	42.0	10.7	
2	2390.00	45.6 AV	54.0	-8.4	1.19 H	212	34.9	10.7	
3	2400.00	42.3 PK	74.0	-31.7	1.19 H	212	31.5	10.8	
4	2400.00	23.7 AV	54.0	-30.3	1.19 H	212	12.9	10.8	
5	*2403.00	97.8 PK	114.0	-16.2	1.19 H	212	86.9	10.9	
6	*2403.00	79.2 AV	94.0	-14.8	1.19 H	212	68.3	10.9	
7	4806.00	44.8 PK	74.0	-29.2	1.46 H	258	35.8	9.0	
8	4806.00	26.2 AV	54.0	-27.8	1.46 H	258	17.2	9.0	

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	53.4 PK	74.0	-20.6	1.01 V	202	42.7	10.7
2	2390.00	45.9 AV	54.0	-8.1	1.01 V	202	35.2	10.7
3	2400.00	44.1 PK	74.0	-29.9	1.01 V	202	33.3	10.8
4	2400.00	25.5 AV	54.0	-28.5	1.01 V	202	14.7	10.8
5	*2403.00	98.8 PK	114.0	-15.2	1.01 V	202	87.9	10.9
6	*2403.00	80.2 AV	94.0	-13.8	1.01 V	202	69.3	10.9
7	4806.00	45.3 PK	74.0	-28.7	1.25 V	236	36.3	9.0
8	4806.00	26.7 AV	54.0	-27.3	1.25 V	236	17.7	9.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.117) = -18.6 dB

RF Mode	TX GFSK	Channel	CH 38:2441 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00	96.7 PK	114.0	-17.3	1.18 H	214	85.9	10.8	
2	*2441.00	78.1 AV	94.0	-15.9	1.18 H	214	67.3	10.8	
3	4882.00	46.8 PK	74.0	-27.2	1.47 H	260	37.4	9.4	
4	4882.00	28.2 AV	54.0	-25.8	1.47 H	260	18.8	9.4	
		An	tenna Polari	ty & Test Di	stance : Vert	ical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00		11/1 0	-16 /	1.00 V	204	86.8	10.8	
	2111.00	97.0 FK	114.0	-10.4	1.00 V	204	00.0	10.0	
2	*2441.00	79.0 AV	94.0	-15.0	1.00 V	204	68.2	10.8	
2 3	*2441.00 4882.00	79.0 AV 47.4 PK	94.0 74.0	-15.0 -26.6	1.00 V 1.26 V	204 238	68.2 38.0	10.8 9.4	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.117) = -18.6 dB

RF Mode	TX GFSK	Channel	CH 77:2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	96.9 PK	114.0	-17.1	1.18 H	210	86.0	10.9	
2	*2480.00	78.3 AV	94.0	-15.7	1.18 H	210	67.4	10.9	
3	2483.50	53.5 PK	74.0	-20.5	1.18 H	210	42.5	11.0	
4	2483.50	34.9 AV	54.0	-19.1	1.18 H	210	23.9	11.0	
5	4960.00	47.8 PK	74.0	-26.2	1.45 H	257	38.0	9.8	
6	4960.00	29.2 AV	54.0	-24.8	1.45 H	257	19.4	9.8	
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	97.8 PK	114.0	-16.2	1.00 V	204	86.9	10.9	
2	*2480.00	79.2 AV	94.0	-14.8	1.00 V	204	68.3	10.9	
3	2483.50	54.3 PK	74.0	-19.7	1.00 V	204	43.3	11.0	
4	2483.50	35.7 AV	54.0	-18.3	1.00 V	204	24.7	11.0	
5	4960.00	48.3 PK	74.0	-25.7	1.24 V	234	38.5	9.8	
6	4960.00	29.7 AV	54.0	-24.3	1.24 V	234	19.9	9.8	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.117) = -18.6 dB

BELOW 1GHz WORST-CASE DATA

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	47.61	19.0 QP	40.0	-21.0	1.58 H	200	27.8	-8.8		
2	153.29	20.3 QP	43.5	-23.2	1.69 H	78	28.5	-8.2		
3	204.02	28.1 QP	43.5	-15.4	1.37 H	150	38.7	-10.6		
4	306.30	22.5 QP	46.0	-23.5	1.24 H	266	28.2	-5.7		
5	346.95	23.4 QP	46.0	-22.6	1.39 H	10	28.3	-4.9		
6	428.19	25.5 QP	46.0	-20.5	1.89 H	195	28.3	-2.8		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	48.77	20.1 QP	40.0	-19.9	1.96 V	101	28.8	-8.7		
2	158.57	19.8 QP	43.5	-23.7	1.73 V	202	27.9	-8.1		
3	244.61	20.2 QP	46.0	-25.8	1.45 V	353	28.6	-8.4		
4	313.58	22.2 QP	46.0	-23.8	1.28 V	163	27.6	-5.4		
5	356.99	23.6 QP	46.0	-22.4	1.36 V	334	28.3	-4.7		
6	422.07	25.5 QP	46.0	-20.5	1.29 V	12	28.5	-3.0		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHZ)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver R&S	ESR3	102412	2022/1/22	2023/1/21
LISN Schwarzbeck	NSLK 8128	8128-244	2021/11/11	2022/11/10
LISN Schwarzbeck	NNLK8129	8129229	2022/6/8	2023/6/7
DC LISN Schwarzbeck	NNLK 8121	8121-808	2022/4/29	2023/4/28
LISN Schwarzbeck	NNLK 8121	8121-731	2022/5/26	2023/5/25
LISN Schwarzbeck	NNLK 8121	8121-00759	2022/8/18	2023/8/17
LISN R&S	ENV216	101196	2022/5/24	2023/5/23
LISN R&S	ESH3-Z5	100220	2021/11/25	2022/11/24
DC LISN R&S	ESH3-Z6	844950/018	2022/8/2	2023/8/1
DC LISN R&S	ESH3-Z6	100219	2022/8/2	2023/8/1
High Voltage Probe Schwarzbeck	TK9420	00982	2021/12/24	2022/12/23
RF Coaxial Cable Commate	5D-FB	Cable-CO5-01	2022/1/28	2023/1/27
Attenuator STI	STI02-2200-10	NO.4	2022/9/2	2023/9/1
50 Ohms Terminator LYNICS	0900510	E1-01-305	2022/2/9	2023/2/8
50 ohm terminal LYNICS	0900510	E1-011286	2021/10/1	2022/9/30
50 ohm terminal LYNICS	0900510	E1-011285	2021/10/1	2022/9/30
Isolation Transformer Erika Fiedler	D-65396	017	2022/9/8	2023/9/7
Software BVADT	Cond_V7.3.7.4	NA	NA	NA

Notes:

1. The test was performed in Linkou Conduction 5.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/9/27

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as item 4.1.6.

4.2.7 Test Results

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Line (L)									
FrequencyCorrectionNoFactor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.
1	0.16526	9.93	36.39	17.05	46.32	26.98	65.20	55.20	-18.88	-28.22
2	0.29072	9.94	22.74	11.46	32.68	21.40	60.50	50.50	-27.82	-29.10
3	0.45490	9.94	22.83	14.36	32.77	24.30	56.79	46.79	-24.02	-22.49
4	4.64248	10.15	22.06	14.19	32.21	24.34	56.00	46.00	-23.79	-21.66
5	6.75905	10.24	20.74	12.80	30.98	23.04	60.00	50.00	-29.02	-26.96
6	18.08733	10.56	20.17	12.88	30.73	23.44	60.00	50.00	-29.27	-26.56

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Neutral (N)									
Frequency Correction Read		Readin (dB	Reading Value Emission Level				Margin (dB)			
NO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	9.94	38.69	17.88	48.63	27.82	65.79	55.79	-17.16	-27.97
2	0.25163	9.95	25.81	14.38	35.76	24.33	61.70	51.70	-25.94	-27.37
3	0.45696	9.96	24.61	17.47	34.57	27.43	56.75	46.75	-22.18	-19.32
4	4.56430	10.15	22.09	14.92	32.24	25.07	56.00	46.00	-23.76	-20.93
5	7.62294	10.27	21.64	15.91	31.91	26.18	60.00	50.00	-28.09	-23.82
6	21.05426	10.57	22.82	17.51	33.39	28.08	60.00	50.00	-26.61	-21.92

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Channel Bandwidth

4.3.1 Test Setup

4.3.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in LK Oven
- 3. Tested Date: 2022/9/8

4.3.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.3.4 Deviation from Test Standard

No deviation.

4.3.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.3.6 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)		
0	2403	0.95		
38	2441	0.96		
77	2480	0.96		

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ----