

FCC Radio Test Report

FCC ID: H4ISD8960

Report No. : BTL-FCCP-1-2410T030

Equipment : Dongle
Model Name : SD8960
Brand Name : LITEON

Applicant: LITE-ON Technology Corp.

Address : 22F, 392 Ruey Kuang Road, Neihu Dist., Taipei City 114, Taiwan

Radio Function : Short Range Devices

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.249)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/10/4

Date of Test : 2024/10/16 ~ 2024/11/11

Issued Date : 2024/12/6

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Brett Shen

 Λ

Jerry Chuang, Supervisor

Jerry Chidang, Supervis

BTL Inc.

Approved by

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2410T030 Page 1 of 47 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2410T030 Page 2 of 47 Report Version: R00

CONTENTS REVISION HISTORY 4 SUMMARY OF TEST RESULTS 5 1.1 **TEST FACILITY** 6 MEASUREMENT UNCERTAINTY 1.2 6 1.3 TEST ENVIRONMENT CONDITIONS 6 1.4 **DUTY CYCLE** 7 2 **GENERAL INFORMATION** 8 **DESCRIPTION OF EUT** 2.1 8 **TEST MODES** 2.2 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 3.1 LIMIT 13 **TEST PROCEDURE** 13 3.2 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 **TEST SETUP** 14 **TEST RESULT** 3.5 14 4 RADIATED EMISSIONS TEST 15 4.1 LIMIT 15 4.2 **TEST PROCEDURE** 16 4.3 **DEVIATION FROM TEST STANDARD** 16 4.4 **TEST SETUP** 16 4.5 **EUT OPERATING CONDITIONS** 18 4.6 TEST RESULT - 9 KHZ TO 30 MHZ 18 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.8 TEST RESULT - ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 5.1 APPLIED PROCEDURES / LIMIT 19 5.2 **TEST PROCEDURE** 19 **DEVIATION FROM STANDARD** 5.3 19 5.4 **TEST SETUP** 19 5.5 **EUT OPERATION CONDITIONS** 19 5.6 **TEST RESULTS** 19 6 LIST OF MEASURING EQUIPMENTS 20 7 **EUT TEST PHOTO** 21 **EUT PHOTOS** 21 APPENDIX A AC POWER LINE CONDUCTED EMISSIONS 22 RADIATED EMISSIONS - 9 KHZ TO 30 MHZ 27 APPENDIX B APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ 32 RADIATED EMISSIONS - ABOVE 1 GHZ APPENDIX D 35 APPENDIX E **BANDWIDTH** 46

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2410T030	R00	Original Report.	2024/12/6	Valid

Project No.: 2410T030 Page 4 of 47 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

······································				
Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.249(a)(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.215(c)	Bandwidth	APPENDIX E	Pass	

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 "simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2410T030 Page 5 of 47 Report Version: R00

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659

The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

 □ CB11

SR10

☑ SR11

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06

□ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
CB21	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
	1 GHz ~ 6 GHz	5.21
	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

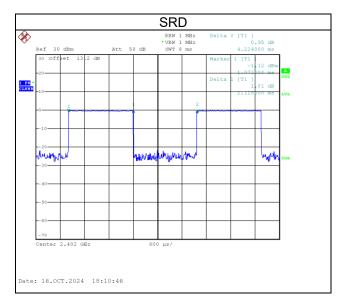
4 (00)					
	Test Item	U (dB)			
Bandwidth	_	0.5334			

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 52 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	Refer to data	DC 5V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	DC 5V	Mark Wang
Bandwidth	23 °C, 55 %	DC 5V	Easton Tsai


Project No.: 2410T030 Page 6 of 47 Report Version: R00

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle
Mode	(ms)	(ON)	(ms)	(ms)	(%)
SRD	2.128	1	2.128	4.224	50.38%

Project No.: 2410T030 Page 7 of 47 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Dongle
Model Name	SD8960
Brand Name	LITEON
Model Difference	N/A
Power Source	DC voltage supplied from USB port.
Power Rating	DC 5V
Products Covered	N/A
Frequency Range	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	1 Mbps
Field Strength	100.45 dBµV/m @ 3 m (Peak)
Test Software Version	FCC_test dongle.
Test Model	SD8960
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2410T030 Page 8 of 47 Report Version: R00

(3) Table for Filed Antenna:

Antenna	Manufacturer	Model Name	Туре	Connector	Gain (dBi)
1	LITE-ON Technology Corp.	WAN228010H2451SH06	Chip	N/A	-0.71

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Project No.: 2410T030 Page 9 of 47 Report Version: R00

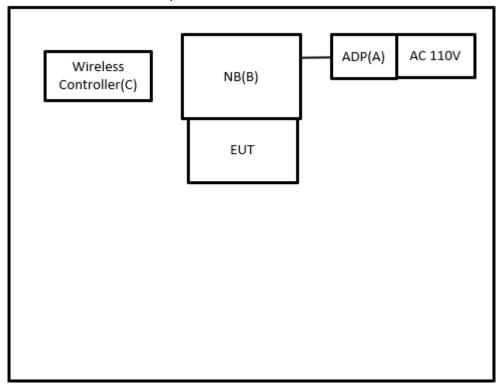
2.2 TEST MODES

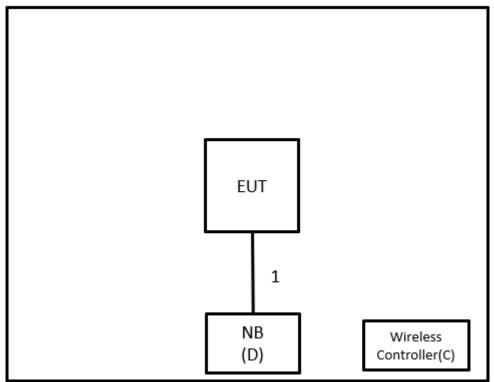
Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	SRD	00	-
Transmitter Radiated Emissions	SRD	00/39	Fundamental
(above 1GHz)	SRD	00/19/39	Harmonic
Transmitter Radiated Emissions (above 18GHz)	SRD	00	-
Bandwidth	SRD	00/19/39	-

NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

(2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2410T030 Page 10 of 47 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

Project No.: 2410T030 Page 11 of 47 Report Version: R00

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	ASUS	ADP-650W B	N/A	Furnished by test lab.
В	NB	Dynabook	X40-K	N/A	Furnished by test lab.
С	Wireless Controller	LITEON	SA8990	N/A	Supplied by test requester
D	NB	HP	TPN-I119	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	1m	USB extension Cable	Furnished by test lab.

Project No.: 2410T030 Page 12 of 47 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
(dBµV)		(dBµV)		(dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

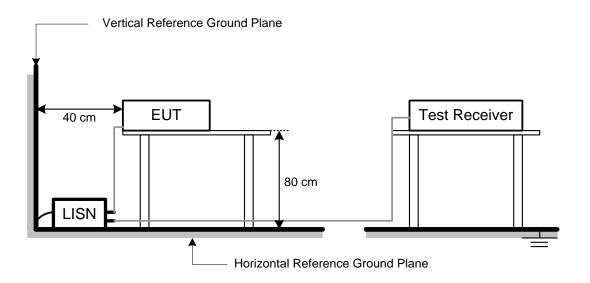
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


Project No.: 2410T030 Page 13 of 47 Report Version: R00

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

	THE TOOL TELLINE ITT (O KITE TO TOOL IN	·-/
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency		Emissions V/m)	Measurement Distance
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

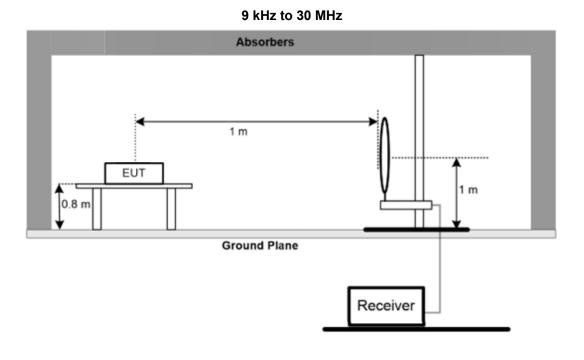
Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB/m)		(dBµV/m)
41.91	+	-8.36	II	33.55

Measurement Value (dBμV/m)		Limit Value (dBµV/m)		Margin Level (dB)
33.55	-	43.50	=	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

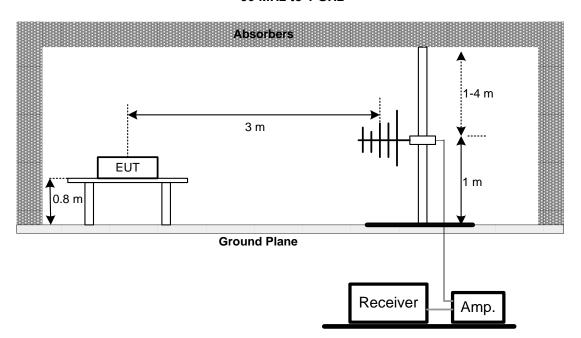
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2410T030 Page 15 of 47 Report Version: R00

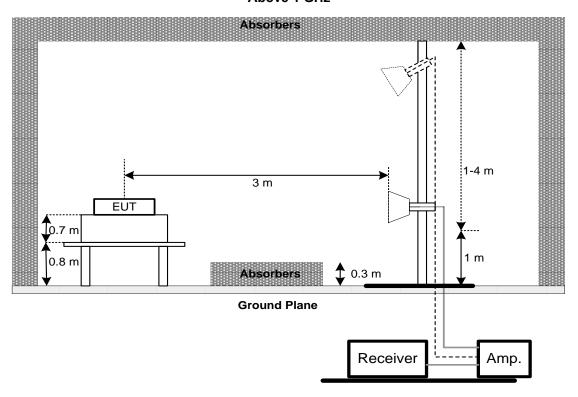

4.2 TEST PROCEDURE

- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode
 Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to
 meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
 (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2410T030 Page 18 of 47 Report Version: R00

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2410T030 Page 19 of 47 Report Version: R00

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions											
Item	Kind of Manufacturer		nufacturer Type No. Serial No.		Calibrated Date	Calibrated Until						
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2024/9/5	2025/9/4						
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2024/3/30	2025/3/29						
3	EMI Test Receiver	R&S	ESR 7	101433	2023/11/10	2024/11/9						
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A						

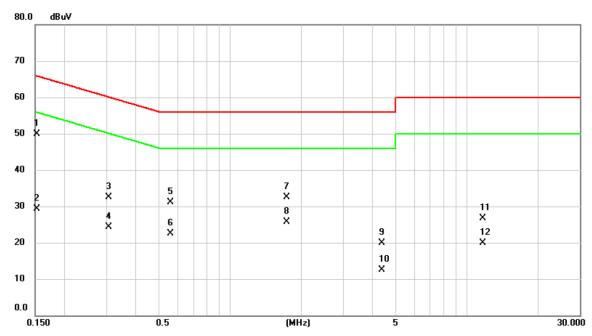
	Radiated Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Preamplifier	EMCI	EMC330N	980850	2024/9/5	2025/9/4					
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5					
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2024/9/4	2025/9/3					
4	Preamplifier	EMCI	EMC001340	980579	2024/9/4	2025/9/3					
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7					
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7					
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7					
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22					
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2024/9/9	2025/9/8					
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8					
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2024/5/17	2025/5/16					
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2024/6/14	2025/6/13					
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2024/6/14	2025/6/13					
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12					
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12					
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

	Bandwidth										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	Keysight	N9010A	MY54200240	2024/6/27	2025/6/26					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2410T030 Page 20 of 47 Report Version: R00

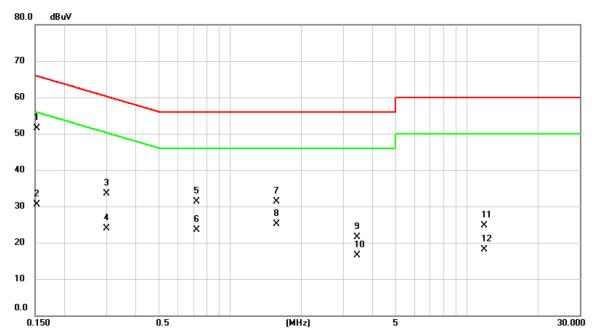
7 EUT TEST PHOTO								
Please refer to document Appendix No.: TP-2410T030-FCCP-1 (APPENDIX-TEST PHOTOS).								
8 EUT PHOTOS								
Please refer to document Appendix No.: EP-2410T030-1 (APPENDIX-EUT PHOTOS).								
Please relef to document Appendix No.: Er-24 to 1030-1 (AFFENDIX-E01 F110103).								


Project No.: 2410T030 Page 21 of 47 Report Version: R00

APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2410T030 Page 22 of 47 Report Version: R00

Test Mode	Normal	Tested Date	2024/10/16
Test Frequency	-	Phase	Line

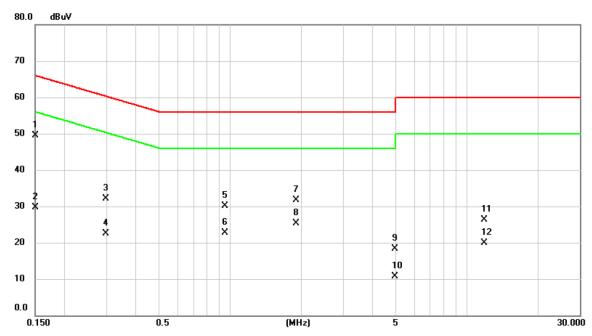

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1522	40.28	9.68	49.96	65.88	-15.92	QP	
2		0.1522	19.72	9.68	29.40	55.88	-26.48	AVG	
3		0.3075	22.92	9.60	32.52	60.04	-27.52	QP	
4		0.3075	14.72	9.60	24.32	50.04	-25.72	AVG	
5		0.5595	21.53	9.57	31.10	56.00	-24.90	QP	
6		0.5595	12.98	9.57	22.55	46.00	-23.45	AVG	
7		1.7363	22.90	9.54	32.44	56.00	-23.56	QP	
8		1.7363	16.15	9.54	25.69	46.00	-20.31	AVG	
9		4.3890	10.28	9.71	19.99	56.00	-36.01	QP	
10		4.3890	2.72	9.71	12.43	46.00	-33.57	AVG	
11		11.6655	17.04	9.68	26.72	60.00	-33.28	QP	
12		11.6655	10.30	9.68	19.98	50.00	-30.02	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

Project No.: 2410T030 Page 23 of 47 Report Version: R00

Test Mode	Normal	Tested Date	2024/10/16
Test Frequency	-	Phase	Neutral

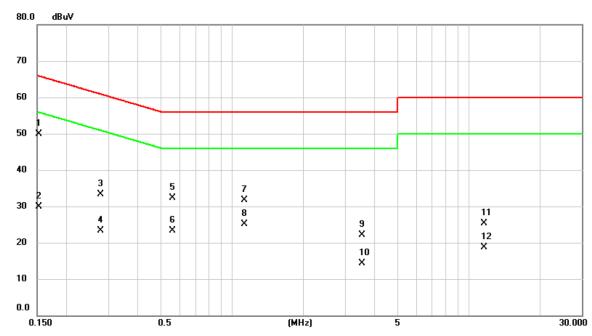


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1522	41.89	9.66	51.55	65.88	-14.33	QP	
2		0.1522	20.79	9.66	30.45	55.88	-25.43	AVG	
3		0.3007	23.91	9.59	33.50	60.22	-26.72	QP	
4		0.3007	14.34	9.59	23.93	50.22	-26.29	AVG	
5		0.7215	21.68	9.56	31.24	56.00	-24.76	QP	
6		0.7215	13.94	9.56	23.50	46.00	-22.50	AVG	
7		1.5743	21.73	9.55	31.28	56.00	-24.72	QP	
8		1.5743	15.47	9.55	25.02	46.00	-20.98	AVG	
9		3.4305	11.83	9.69	21.52	56.00	-34.48	QP	
10		3.4305	6.73	9.69	16.42	46.00	-29.58	AVG	
11		11.8658	15.05	9.72	24.77	60.00	-35.23	QP	
12		11.8658	8.31	9.72	18.03	50.00	-31.97	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

T. A.M. J.	EII.	T41 D .4.	0004/40/40
Test Mode	Idle	Tested Date	2024/10/16
Test Frequency	-	Phase	Line


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	39.93	9.67	49.60	66.00	-16.40	QP	
2		0.1500	19.94	9.67	29.61	56.00	-26.39	AVG	
3		0.2985	22.43	9.60	32.03	60.28	-28.25	QP	
4		0.2985	12.84	9.60	22.44	50.28	-27.84	AVG	
5		0.9510	20.53	9.56	30.09	56.00	-25.91	QP	
6		0.9510	13.19	9.56	22.75	46.00	-23.25	AVG	
7		1.9028	22.07	9.54	31.61	56.00	-24.39	QP	
8		1.9028	15.81	9.54	25.35	46.00	-20.65	AVG	
9		4.9605	8.51	9.73	18.24	56.00	-37.76	QP	
10		4.9605	0.94	9.73	10.67	46.00	-35.33	AVG	
11		11.8545	16.67	9.68	26.35	60.00	-33.65	QP	
12		11.8545	10.20	9.68	19.88	50.00	-30.12	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

Project No.: 2410T030 Page 25 of 47 Report Version: R00

Test Mode	Idle	Tested Date	2024/10/16
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1522	40.32	9.66	49.98	65.88	-15.90	QP	
2		0.1522	20.16	9.66	29.82	55.88	-26.06	AVG	
3		0.2788	23.61	9.60	33.21	60.85	-27.64	QP	
4		0.2788	13.62	9.60	23.22	50.85	-27.63	AVG	
5		0.5617	22.70	9.56	32.26	56.00	-23.74	QP	
6		0.5617	13.66	9.56	23.22	46.00	-22.78	AVG	
7		1.1265	22.08	9.55	31.63	56.00	-24.37	QP	
8		1.1265	15.55	9.55	25.10	46.00	-20.90	AVG	
9		3.5498	12.32	9.69	22.01	56.00	-33.99	QP	
10		3.5498	4.60	9.69	14.29	46.00	-31.71	AVG	
11		11.6250	15.61	9.72	25.33	60.00	-34.67	QP	
12		11.6250	8.97	9.72	18.69	50.00	-31.31	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

Project No.: 2410T030 Page 26 of 47 Report Version: R00

,	APPENDIX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

Project No.: 2410T030 Page 27 of 47 Report Version: R00

	Test Mo	de		RD		Test Date			/11/11	
Te	st Frequ	ency		2MHz		Polarization	ı		rtical	
	Temp		2	2°C		Hum.		58	8%	
50.0 d	BuV/m									_
_										
40										-
30										-
20										4
										┨
10										1
00										-
, L										
)										i
)										+
o										4
, L										
0 1										1
0 ×										+
0.0										
0.009	0.02	0.04	0.05	0.07	0.08 0.	09 0.1	1 0.12		0.15	_ MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	0.0122	0.14	34.84	34.98	144.96	-109.98	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M			SRD		Test Date			/11/11	
	Test Freq			02MHz		Polarization	1		tical	
	Tem	p		22°C		Hum.		58	3%	
120.0	dBuV/m									_
110 100 90 80	4									
	1 X 2 X	3 X	4 ×			5 X				
20								6 ×		
10.0										
0.1! No.		6.12 Freq.	9.10 Reading Level	Correct Factor	Measure- ment	8.06 21. Limit	04 24.0 Over	J3	30.00	МН
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1		0.7500	51.91	2.14	54.05	89.18	-35.13	QP		
2	*	1.4962	49.82	-0.77	49.05	83.18	-34.13	QP		
3		4.0593	39.60	-4.10	35.50	88.62	-53.12	QP		
4		8.7220	36.79	-3.36	33.43	88.62	-55.19	QP		
5		18.5714	37.13	-3.84	33.29	88.62	-55.33	QP		
6		25.6240	30.64	-2.88	27.76	88.62	-60.86	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

•	Test Mod	de	S	RD		Test Date		2024	1/11/11	
Tes	st Frequ	ency	240	2MHz		Polarizatior	1	Hori	zontal	
	Temp			2°C		Hum.			8%	
50.0 dE	3uV/m									
40										
30										
20										
10										\dashv
00										4
o										_
,										_
)										
ı										_
,										_
,										_
,		1 X								
0.0		î								
0.009	0.02	0.04	0.05	0.07	0.08 0.	09 0.1	0.12	2	0.15	_{MI}
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1	*	0.0370	2.86	26.57	29.43	135.32	-105.89	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Te	Test Moest Frequ				RD 2MHz			Test Date Polarization	1		/11/11 zontal	
10	Temp				2°C			Hum.	•		8%	
20.0 d	BuV/m		I								<u> </u>	
80 80 80	2 X		3 X		4 *			5 X				
10.0 0.150	3.14	6.12	9.10		12.09	15.08	19	B.06 21.	04 24.0	03	30.00	
No.	Mk.	Freq.	Rea	ding	Correct		asure-	Limit	Over			
			Le		Factor		nent					
		MHz	dB		dB		uV/m	dBuV/m	dB	Detector	Comm	nent
1		0.7460	54.		2.17		6.84	89.23	-32.39	QP		
2	*	1.4992	53.		-0.78		2.36	83.16	-30.80	QP		
3		7.7667	33.		-3.63		0.06	88.62	-58.56	QP		
4		11.1000	23.		-3.12		0.66	88.62	-67.96	QP		
5		18.6311	28.	.25	-3.85	24	4.40	88.62	-64.22	QP		
6		20.7385	32.	26	-3.83	28	8.43	88.62	-60.19	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2410T030 Page 32 of 47 Report Version: R00

,	Test Mo	de	5	SRD		Test Date		2024	1/11/11	
Te	st Frequ	iency	240	2MHz		Polarizatio	n	Vei	rtical	
	Temp	•	2	2°C		Hum.		5	8%	
80.0 dE	BuV/m									_
70										
60										
50										
40					5		6 X			
30	2 X	3 X	4 ×		X					
20										
10 -										
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 70	9.00 806	5.00	1000.00	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	45.2613	45.61	-11.80	33.81	40.00	-6.19	peak		
2		83.9967	46.47	-17.40	29.07	40.00	-10.93	QP		
3		215.9813	46.52	-15.48	31.04	43.50	-12.46	peak		
4		351.0377	42.11	-10.34	31.77	46.00	-14.23	peak		
5		531.0050	43.20	-6.04	37.16	46.00	-8.84	peak		
6		713.8177	40.89	-2.48	38.41	46.00	-7.59	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

-	Test Mo	de		SR	D			Test Date		2024	/11/11	
Tes	st Frequ	iency	2	24021	ИНz			Polarizatio	n	Hori	zontal	
	Temp)		22°	С			Hum.		58	8%	
80.0 dB	uV/m											7
70												
60												
50												
40	ř	2		2		į	5 X		×			
30		Ž		X	* *	,	×					
20												
10												
0.0												
30.000	127.00	224.00	321.00	4	18.00	515.00) 6	12.00 70	9.00 806	.00	1000.00	МН
No.	Mk.	Freq.	Readiı Leve		Correct Factor		asure- nent	Limit	Over			
		MHz	dBu\	V	dB	dBı	uV/m	dBuV/m	dB	Detector	Comme	ent
1	*	92.9206	54.63	3	-17.68	36	3.95	43.50	-6.55	peak		
2		192.0223	47.87	7	-14.84	33	3.03	43.50	-10.47	peak		
3		360.0263	43.03	3	-10.09	32	2.94	46.00	-13.06	peak		
4		441.2476	39.16	6	-7.57	31	1.59	46.00	-14.41	peak		
5		530.9080	40.20	0	-6.05	34	4.15	46.00	-11.85	peak		
6		714.1733	38.62	2	-2.48	36	3.14	46.00	-9.86	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2410T030 Page 35 of 47 Report Version: R00

	Test Mo	ode	S	RD		Test Date		2024	/11/11
	Test Freq			2MHz		Polarization	ו		zontal
	Tem	p	2	2°C		Hum.		58	8%
130.0	dBuV/m								
100									
120									
110									
100					ţ				
100									
90									
80									
70									
60					2 X				
					-H				
50	ha Marian de Marian	andrews broken between the second	ex/4/400/feet-algebraschere	وماحرة المواقعية ومعاور أدامه	minuted between	and planting and a second	manusch about and	Marie and a place of the company of the control to	worken de programme de la constantina del constantina de la constantina del constantina de la constant
40									
30									
30									
20									
10.0									
230	02.000 2322.	00 2342.00	2362.00	2382.00	2402.00 2	2422.00 244	2.00 246	2.00	2502.00 MHz
No	. Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2402.000	105.45	-5.00	100.45	114.00	-13.55	peak	
2		2402.000	100.45	-40.77	59.68	94.00	-34.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo			RD		Test Date			1/11/11
le:	st Frequ			0MHz 2°C		Polarizatio Hum.	n	Horizontal 58%	
30.0 dE	Temp			2 0		Hum.		5	8%
JO. 0	7477111								
20									
0									
10					1				
					*				
'									
'									
·					2 X				
, 📙	_				/ \ <mark></mark>				
**VINIA	w/Hpredistres/Aphleper	and the second second	halpertalliste many for	market and the property	Markey Jackson	ومرسال ماميلان مناعور المراكب والمحدود المجازوة المراكب	particular son and the son and	wyfranconodifferythythafternage	or Manager politically.
1									
·									
)									
1.0									
2380.00	0 2400.0	0 2420.00	2440.00	2460.00	2480.00		20.00 254	0.00	2580.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measur ment	e- Limit	Over		
		MHz	dBuV	dB	dBuV/r	n dBuV/m	dB	Detector	Comment
1	*	2480.000	102.72	-4.89	97.83	114.00	-16.17	peak	
2								AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mod			RD		Test D			/11/11
les	st Freque	ency		2MHz		Polariza			rtical
	Temp		2	2°C		Hum		5	8%
130.0 dB	uV/m								
120									
10									
00									
10									
30									
ю									
0									
50		1							
10		1 X 2							
80		×							
20									
10.0									
1000.00	0 2700.00	4400.00	6100.00	7800.00	9500.00	11200.00	12900.00 14	1600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/	m dB	Detector	Comment
1		4804.000	43.74	0.88	44.62	74.00		peak	
2	*	4804.000	31.92	0.88	32.80	54.00		AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo	de				RD					Test D					/11/11
Te	st Frequ					2MH	Z			Р	olariza					zontal
	Temp				2	2°C					Hum	١.			5	8%
130.0 dE	BuV/m															
100																
120																
110																
100																
90																
80																
70																
60																
50			1													
40			X													
+0			2													
30			×													
20																
10.0																
1000.00	0 2700.0	0 4400	.00	6100	.00	7800	.00	9500).00	112	00.00	1290	00.00	1460	0.00	18000.00 MH
No.	Mk.	Freq		Rea			rrect	Me	easure	∋-	Limi	t	Ove	er		
				Lev			ctor		ment							
		MHz		dB			dΒ		3uV/n	1	dBuV/		dB		Detector	Comment
1		4804.0		45.			.88		45.89		74.00		-28.		peak	
2	*	4804.0	00	31.	76	0	.88	(32.64		54.00	0	-21.3	36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	est Mod			RD OM I -		Test Da			·/11/11
les	t Freque	ency		0MHz		Polariza			rtical
130.0 dB	Temp			2°C		Hum.		50	8%
130.0 ub	47111								
20									
10									
00									
o									
:0									
0									
o									
io		1							
0		1 ×							
:0		2 X							
.0									
0.0									
1000.000	2700.00	4400.00	6100.00	7800.00	9500.00	11200.00	12900.00 140	600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/r	n dB	Detector	Comment
1		4880.000	44.62	1.03	45.65	74.00		peak	
2	*	4880.000	31.32	1.03	32.35	54.00	-21.65	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	est Mod			RD		Test Da			/11/11
Tes	t Frequ	ency		0MHz		Polariza			zontal
	Temp		2	2°C		Hum	-	58	8%
130.0 dB	/V/m								
20									
10									
00									
0									
:0									
. —									
٠									
0									
0		-							
		1 X							
10		2							
10		X							
20									
10.0									
	2700.00	4400.00	6100.00	7800.00	9500.00	11200.00	12900.00 146	500.00	18000.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure				
		'	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/ı	m dB	Detector	Comment
1		4880.000	44.06	1.03	45.09	74.00	-28.91	peak	
2	*	4880.000	31.23	1.03	32.26	54.00	-21.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo			RD		Test Date			1/11/11
Te	st Frequ			0MHz		Polarizatio	on		rtical
130.0 dE	Temp		2	2°C		Hum.		5	8%
130.0 ut	147III								
120									
10									
00									
,,									
80									
'o 🗀									
io									
,,,									
50		1 X							
10									
30		2 X							
,									
20									
10.0									
	0 2700.00		6100.00	7800.00				00.00	18000.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	- Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	44.27	1.21	45.48	74.00	-28.52	peak	Comment
2	*	4960.000	31.48	1.21	32.69	54.00	-21.31	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	est Mod			RD		Test Da			/11/11
les	t Freque	ency		0MHz		Polariza			zontal
400 0 ID	Temp		2	2°C		Hum		58	8%
130.0 dB	uV/m								
120									
110									
100									
90									
30									
70									
50									
50		1 X							
10		2							
30		×							
20									
10.0									
1000.00	0 2700.00	4400.00	6100.00	7800.00	9500.00	11200.00	12900.00 140	600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/	m dB	Detector	Comment
1		4960.000	44.17	1.21	45.38	74.00	-28.62	peak	
2	*	4960.000	31.20	1.21	32.41	54.00	-21.59	AVG	

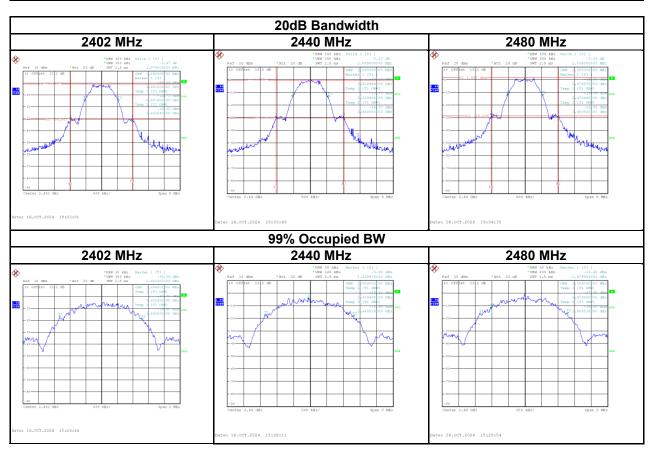
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mod			SRD		Test D			1/11/11
IE	st Freque	ency		2MHz		Polariza			rtical
130.0 d	Temp BuV/m		- 2	2°C		Hun	1.	5	8%
130.0 a	BUY/M								
20									
10									
00									
0									
0									
o 💳									
) <u> </u>									
) 🔚									
, L		1 X							
		2							
		×							
0									
0									
.0									
	000 18850.0			21400.00	22250.00	23100.00		24800.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct	Measure	e- Limi	t Over		
		MHz	dBuV	Factor dB	ment dBuV/m	n dBuV	/m dB	Detector	Comment
1		19216.00	48.20	-6.88	41.32	74.0			20111110111
2	*	19216.00	38.13	-6.88	31.25	54.0	0 -22.75		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo				SRD			Test Da				/11/11
10	est Frequ Temp				2°C		<u> </u>	Polariza Hum				zontal 3%
30.0	dBuV/m	,			2 0			Hulli	•		- 50	3 /0
20												
10												
00												
0												
0												
o ⊨												
o 📙												
0		1										
0		*										
0		2 X										
20												
0												
1,0000	.000 18850	.00 19700		20550.00	21400.00	22250.00	- 22	100.00	23950.00	2480	10.00	26500.00 MH
No.	.000 18850 Mk.				Correct	Measure		Limit			10.00	26300.00 MH
INU.	IVIK.	Freq.		Reading Level	Factor	ment	- -	LIIIIII		rei		
		MHz		dBuV	dB	dBuV/n	n	dBuV/i	m d	В	Detector	Comment
1		19216.0	00	48.91	-6.88	42.03		74.00		.97	peak	
2	*	19216.0	00	38.39	-6.88	31.51		54.00) -22	.49	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0


3 T L		Report No.: BTL-FCCP-1-2410T030
		110 POINT 1 2410 1000
	ADDENDIVE	D A NIDWIDTH
	APPENDIX E	BANDWIDIA

Project No.: 2410T030 Page 46 of 47 Report Version: R00

Test Mode: SRD

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)
2402	1.975	1.056
2440	2.055	1.064
2480	2.035	1.056

End of Test Report