

FCC Radio Test Report

FCC ID: H4ISA8990

Report No. : BTL-FCCP-1-2410T031
Equipment : Wireless Controller

Model Name : SA8990 Brand Name : LITEON

Applicant: LITE-ON Technology Corp.

Address : 22F, 392 Ruey Kuang Road, Neihu Dist., Taipei City 114, Taiwan

Radio Function : Bluetooth Low Energy

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/10/4

Date of Test : 2024/10/15 ~ 2024/10/21

Issued Date : 2024/11/19

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : <u>Brett Shop Engineer</u>

Brett Snen, Engineer

Approved by :

BTL Inc.

Jerry Chuang, Supervisor

Testing Laboratory

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2410T031 Page 1 of 58 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2410T031 Page 2 of 58 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 7 1.4 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 2.1 **DESCRIPTION OF EUT** 9 **TEST MODES** 2.2 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 3.2 **TEST PROCEDURE** 14 **DEVIATION FROM TEST STANDARD** 3.3 15 **TEST SETUP** 15 3.4 3.5 **TEST RESULT** 15 RADIATED EMISSIONS TEST 4 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 18 4.5 **EUT OPERATING CONDITIONS** 19 TEST RESULT - 9 KHZ TO 30 MHZ 4.6 19 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT - ABOVE 1 GHZ 19 5 **BANDWIDTH TEST** 20 5.1 APPLIED PROCEDURES / LIMIT 20 **TEST PROCEDURE** 5.2 20 5.3 **DEVIATION FROM STANDARD** 20 5.4 **TEST SETUP** 20 **EUT OPERATION CONDITIONS** 5.5 20 5.6 **TEST RESULTS** 20 6 **OUTPUT POWER TEST** 21 6.1 APPLIED PROCEDURES / LIMIT 21 **TEST PROCEDURE** 6.2 21 **DEVIATION FROM STANDARD** 6.3 21 6.4 **TEST SETUP** 21 6.5 **EUT OPERATION CONDITIONS** 21 **TEST RESULTS** 21 6.6 7 POWER SPECTRAL DENSITY TEST 22 7.1 APPLIED PROCEDURES / LIMIT 22 **TEST PROCEDURE** 7.2 22 7.3 **DEVIATION FROM STANDARD** 22 **TEST SETUP** 7.4 22 **EUT OPERATION CONDITIONS** 7.5 22 **TEST RESULTS** 22 7.6

8	ANTENN	IA CONDUCTED SPURIOUS EMISSION	23
8.1	APPLI	ED PROCEDURES / LIMIT	23
8.2	TEST	PROCEDURE	23
8.3	DEVIA	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT C	PERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	LIST OF	MEASURING EQUIPMENTS	24
10	EUT TES	ST PHOTO	26
11	EUT PHO	DTOS	26
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	27
APPEND	IX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	32
APPEND	IX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	37
APPEND	IX D	RADIATED EMISSIONS - ABOVE 1 GHZ	40
APPEND	IX E	BANDWIDTH	51
APPEND	IX F	OUTPUT POWER	53
APPEND	IX G	POWER SPECTRAL DENSITY TEST	55
APPEND	IX H	ANTENNA CONDUCTED SPURIOUS EMISSION	57

Project No.: 2410T031 Page 4 of 58 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2410T031	R00	Original Report.	2024/11/19	Valid

Project No.: 2410T031 Page 5 of 58 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247(a)(2)	Bandwidth	APPENDIX E	Pass	
15.247(b)(3)	Output Power	APPENDIX F	Pass	
15.247(e)	Power Spectral Density	APPENDIX G	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass	
15.203	Antenna Requirement		Pass	

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2410T031 Page 6 of 58 Report Version: R00

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ CB08 □ CB11 □ SR10 □ SR11

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06 ⊠ CB21 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

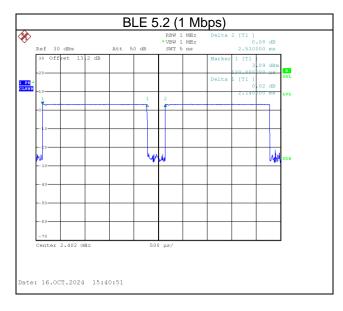
d toot .	
Test Item	U (dB)
Occupied Bandwidth	0.5334
Output power	0.3669
Power Spectral Density	0.6591
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 52 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	Refer to data	DC 5V	Emily Chang
Radiated emissions above 1 GHz	Refer to data	DC 5V	Emily Chang
Bandwidth	23 °C, 55 %	DC 5V	Easton Tsai
Output Power	23 °C, 55 %	DC 5V	Easton Tsai
Power Spectral Density	23 °C, 55 %	DC 5V	Easton Tsai
Antenna conducted Spurious Emission	23 °C, 55 %	DC 5V	Easton Tsai


Project No.: 2410T031 Page 7 of 58 Report Version: R00

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mada	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE (1 Mbps)	2.140	1	2.140	2.510	85.26%	0.69

Project No.: 2410T031 Page 8 of 58 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

F '	harries and October
Equipment	Wireless Controller
Model Name	SA8990
Brand Name	LITEON
Model Difference	N/A
Power Source	(1)DC voltage supplied from Type C USB port.
Power Source	(2)DC voltage supplied from Li-ion polymer battery.
Dower Boting	(1) 5V === 1A
Power Rating	(2) 3.7V 1050mAh (3.885Wh)
	1 * Battery: Hang Zhou Future Power Technology Co., Ltd / FT593545P
Products Covered	1 * USB Cable: LITEON / 823-01299-00A.
	1 * Dongle: LITEON / SD8960
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	1 Mbps
Output Power Max.	3.92 dBm (0.0025 W)
Test Software Version	Into FW test mode
Test Model	SA8990
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2410T031 Page 9 of 58 Report Version: R00

(3) Table for Filed Antenna:

Antenna	Brand	Model name	Type	Connector	Gain (dBi)
1	OneWave	WAN225010F2451SH05	Chip	N/A	-0.88

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

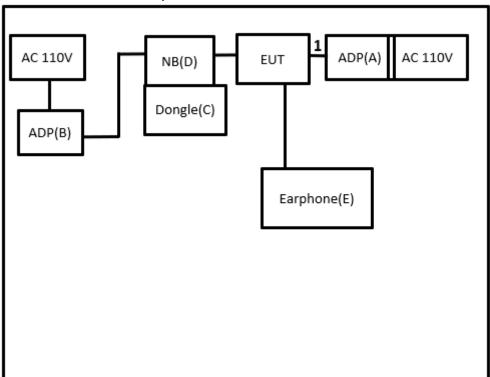
Project No.: 2410T031 Page 10 of 58 Report Version: R00

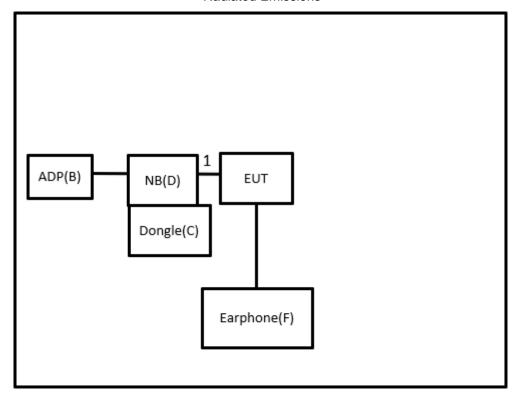
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic
Transmitter Radiated Emissions (above 18GHz)	1 Mbps	00	-
Bandwidth	1 Mbps	00/19/39	-
Output Power	1 Mbps	00/19/39	-
Power Spectral Density	1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1 Mbps	00/19/39	-

NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.(2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2410T031 Page 11 of 58 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

Project No.: 2410T031 Page 12 of 58 Report Version: R00

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	SAMSUNG	EP-TA 20 JWS	N/A	Furnished by test lab.
В	ADP	HP	HSTNN-CA40	N/A	Furnished by test lab.
С	Dongle	LITEON	SD8960	N/A	Supplied by test requester
D	NB	HP	TPNI-119	N/A	Furnished by test lab.
Е	Earphone	Apple	EaePods	N/A	Furnished by test lab.
F	Earphone	HTC	S260	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	2.06m	USB Cable	Supplied by test requester

Project No.: 2410T031 Page 13 of 58 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
(dBµV)		(dBµV)		(dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

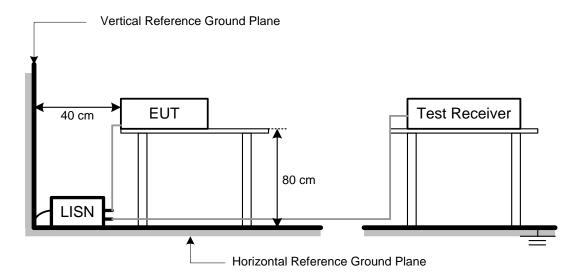
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


Project No.: 2410T031 Page 14 of 58 Report Version: R00

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB/m)		Measurement Value (dBµV/m)
41.91	+	-8.36	=	33.55

Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
33.55	-	43.50	=	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

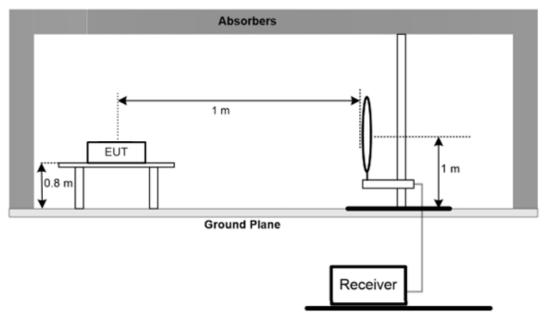
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2410T031 Page 16 of 58 Report Version: R00

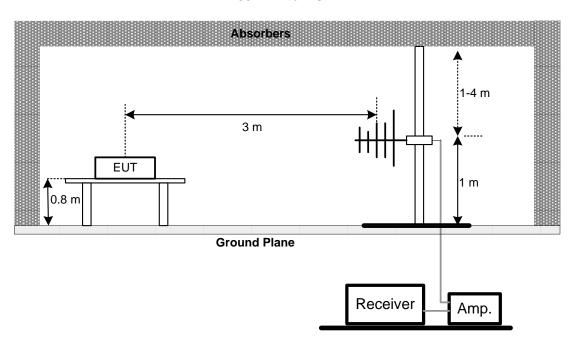
4.2 TEST PROCEDURE

- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

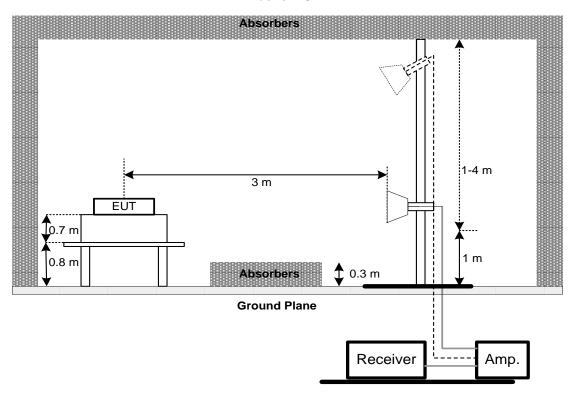

No deviation.

Project No.: 2410T031 Page 17 of 58 Report Version: R00



4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz	2400-2483.5	PASS	
15.247 (4)(2)	Danawiatii	(6dB bandwidth)	2400 2400.0	FASS	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

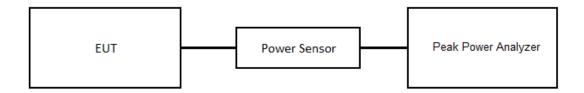
Please refer to the APPENDIX E.

Project No.: 2410T031 Page 20 of 58 Report Version: R00

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2410T031 Page 21 of 58 Report Version: R00

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS


7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2410T031 Page 22 of 58 Report Version: R00

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT SPECTRUM ANALYZER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2410T031 Page 23 of 58 Report Version: R00

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2024/9/5	2025/9/4		
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2024/3/30	2025/3/29		
3	EMI Test Receiver	R&S	ESR 7	101433	2023/11/10	2024/11/9		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC330N	980850	2024/9/5	2025/9/4		
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5		
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2024/9/4	2025/9/3		
4	Preamplifier	EMCI	EMC001340	980579	2024/9/4	2025/9/3		
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7		
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7		
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7		
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22		
9	Loop Ant	Electro-Metrics	EMCI-LPA600	273	2024/7/31	2025/7/30		
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8		
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2024/5/17	2025/5/16		
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2024/6/14	2025/6/13		
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2024/6/14	2025/6/13		
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12		
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12		
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Bandwidth							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26		

	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Peak Power Analyzer	Keysight	8990B	MY51000517	2024/3/12	2025/3/11	
2	Power Sensor	Keysight	N1923A	MY58310005	2024/3/12	2025/3/11	

Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26

Antenna conducted Spurious Emission							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26	

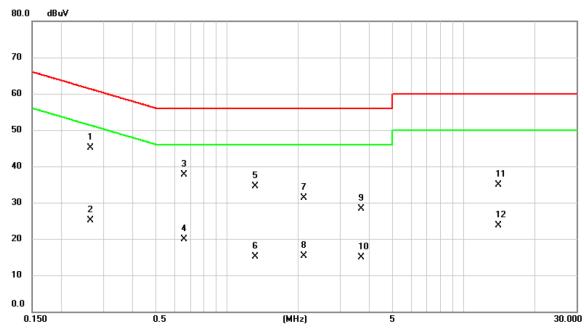
Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

Project No.: 2410T031 Page 25 of 58 Report Version: R00

10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2410T031-FCCP-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2410T031-1 (APPENDIX-EUT PHOTOS).

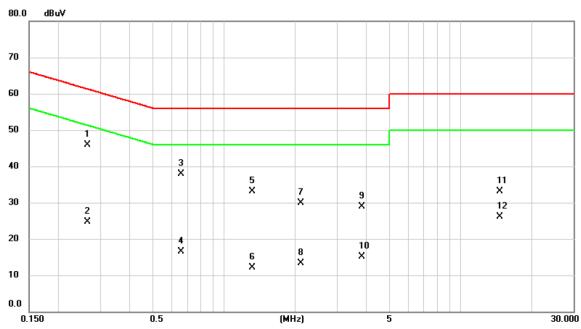
Project No.: 2410T031 Page 26 of 58 Report Version: R00



APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2410T031 Page 27 of 58 Report Version: R00

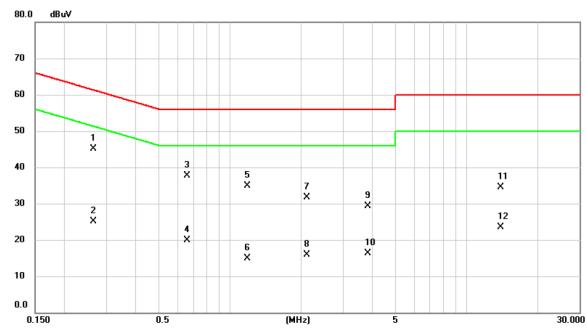
Test Mode	Normal	Tested Date	2024/10/15
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2647	35.47	9.62	45.09	61.28	-16.19	QP	
2		0.2647	15.44	9.62	25.06	51.28	-26.22	AVG	
3		0.6607	28.22	9.57	37.79	56.00	-18.21	QP	
4		0.6607	10.31	9.57	19.88	46.00	-26.12	AVG	
5		1.3200	24.89	9.56	34.45	56.00	-21.55	QP	
6		1.3200	5.45	9.56	15.01	46.00	-30.99	AVG	
7		2.1120	21.74	9.55	31.29	56.00	-24.71	QP	
8		2.1120	5.75	9.55	15.30	46.00	-30.70	AVG	
9		3.6960	18.68	9.68	28.36	56.00	-27.64	QP	
10		3.6960	5.24	9.68	14.92	46.00	-31.08	AVG	
11		14.0303	25.11	9.70	34.81	60.00	-25.19	QP	
12		14.0303	13.98	9.70	23.68	50.00	-26.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

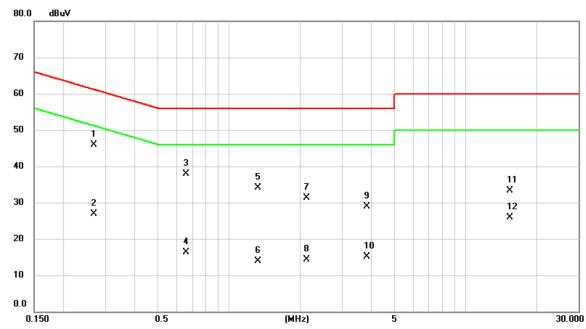
Test Mode	Normal	Tested Date	2024/10/15
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2647	36.22	9.61	45.83	61.28	-15.45	QP	
2		0.2647	15.09	9.61	24.70	51.28	-26.58	AVG	
3		0.6585	28.25	9.56	37.81	56.00	-18.19	QP	
4		0.6585	6.96	9.56	16.52	46.00	-29.48	AVG	
5		1.3200	23.57	9.56	33.13	56.00	-22.87	QP	
6		1.3200	2.62	9.56	12.18	46.00	-33.82	AVG	
7		2.1120	20.38	9.57	29.95	56.00	-26.05	QP	
8		2.1120	3.79	9.57	13.36	46.00	-32.64	AVG	
9		3.8220	19.18	9.70	28.88	56.00	-27.12	QP	
10		3.8220	5.46	9.70	15.16	46.00	-30.84	AVG	
11		14.6265	23.26	9.76	33.02	60.00	-26.98	QP	
12		14.6265	16.38	9.76	26.14	50.00	-23.86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2024/10/15
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2647	35.46	9.62	45.08	61.28	-16.20	QP	
2		0.2647	15.44	9.62	25.06	51.28	-26.22	AVG	
3		0.6607	28.16	9.57	37.73	56.00	-18.27	QP	
4		0.6607	10.31	9.57	19.88	46.00	-26.12	AVG	
5		1.1872	25.34	9.56	34.90	56.00	-21.10	QP	
6		1.1872	5.39	9.56	14.95	46.00	-31.05	AVG	
7		2.1098	22.08	9.55	31.63	56.00	-24.37	QP	
8		2.1098	6.27	9.55	15.82	46.00	-30.18	AVG	
9		3.8243	19.61	9.69	29.30	56.00	-26.70	QP	
10		3.8243	6.61	9.69	16.30	46.00	-29.70	AVG	
11		13.9695	24.76	9.70	34.46	60.00	-25.54	QP	
12		13.9695	13.86	9.70	23.56	50.00	-26.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2024/10/15
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2692	36.26	9.61	45.87	61.14	-15.27	QP	
2		0.2692	17.39	9.61	27.00	51.14	-24.14	AVG	
3		0.6585	28.38	9.56	37.94	56.00	-18.06	QP	
4		0.6585	6.77	9.56	16.33	46.00	-29.67	AVG	
5		1.3268	24.49	9.56	34.05	56.00	-21.95	QP	
6		1.3268	4.31	9.56	13.87	46.00	-32.13	AVG	
7		2.1233	21.72	9.57	31.29	56.00	-24.71	QP	
8		2.1233	4.79	9.57	14.36	46.00	-31.64	AVG	
9		3.8243	19.22	9.70	28.92	56.00	-27.08	QP	
10		3.8243	5.48	9.70	15.18	46.00	-30.82	AVG	
11		15.4005	23.46	9.77	33.23	60.00	-26.77	QP	
12		15.4005	16.20	9.77	25.97	50.00	-24.03	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

Project No.: 2410T031 Page 32 of 58 Report Version: R00

Test Mode Test Frequency			BLE 5.2	2 (1 Mbps)		Test Date		2024/10/15			
Te	st Frequ	ency	240)2MHz		Polarization		Ve	rtical		
	Temp		2	23°C		Hum.		53%			
150.0 d	BuV/m									_	
140											
130											
120											
110											
100										\perp	
90										\perp	
BO										\perp	
70										+	
60								,	,	-	
50									`	\dashv	
40 -										-	
30										+	
20.0											
0.009	0.02	0.04	0.05	0.07	0.08 0.	09 0.11	0.12		0.15	MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
1	*	0.1367	41.75	14.57	56.32	123.97	-67.65	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	T . N.4				. / 4 1	41 \	-		_				0004	/40/45		
	Test Mo		BL		_	∕lbps)				est Date larizatior				/10/15		
ie	st Frequ Temp				<u>2M⊦</u> 3°C	IZ			PO	Hum.	1		Vertical 53%			
120.0 d	<u>remp</u> BuV/m			۷.	3 C					nuiii.			ე,	370		
110 100 90 80 × 70	2 X															
50 ————————————————————————————————————			3 X						4 ×	6 ×			7 ×			
-10.0																
0.150	3.14	6.12	9.10		12.0	9	15.08	1	8.06	21.	D4	24.03	}	30.00	MHz	
No.	Mk.	Freq.	Read Lev			rrect actor		asure- nent		Limit	Ove	er			_	
		MHz	dBı	٧u		dB	dE	BuV/m	d	BuV/m	dE	3	Detector	Comm	nent	
1	*	0.7480	77.	04	2	.16	7	9.20		89.20	-10.	00	QP			
2		2.1638	70.	49	-2	2.10	6	8.39		88.62	-20.	23	QP			
3		7.4055	51.	52	-3	3.73	4	7.79		88.62	-40.	83	QP			
4		18.0530	46.	83	-3	3.78	4	3.05		88.62	-45.	57	QP			
5		20.5495	47.	80	-(3.87	4	3.93		88.62	-44.	69	QP			
6		20.5495	47.	80	-(3.87	4	3.93		88.62	-44.	69	QP			
7		25.5703	47.:	28	-2	2.89	4	4.39		88.62	-44.	23	QP			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

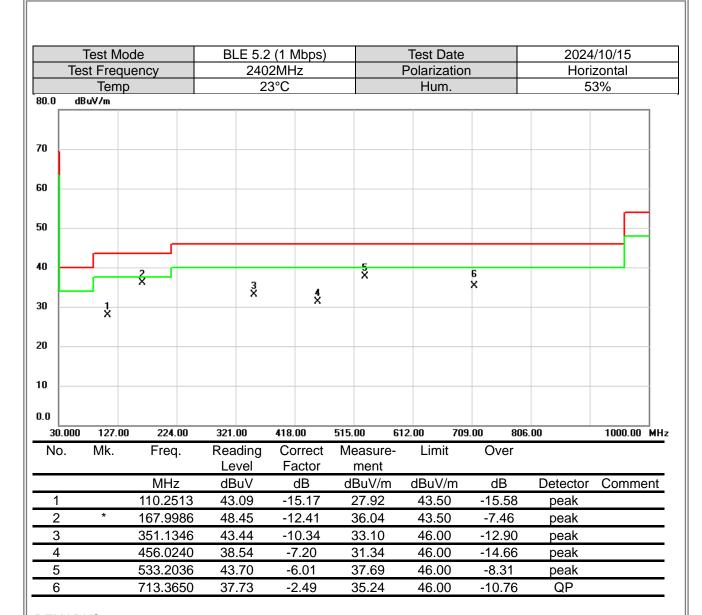
	Test Mod	de		2 (1 Mbps)		Test Date		2024/10/15			
Te	st Frequ	ency		2MHz		Polarization			zontal		
	Temp		2	3°C		Hum.		53%			
150.0 dl	BuV/m									_	
140										_	
30										-	
20											
110										\perp	
100										\parallel	
30										+	
30										+	
70										+	
50							1 X			+	
50										1	
40										-	
30										+	
20.0											
0.009	0.02	0.04	0.05	0.07	0.08 0.		0.12		0.15	MI	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
1	*	0.1147	41.34	15.58	56.92	125.49	-68.57	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo		BL		2 (1 Mbps))		est Date			/10/15	
	Test Frequ Temp				2MHz 3°C		P	olarization Hum.			zontal 3%	
120.0)			3 C			nuiii.		J.	370	
110 100												
90 80 70	×××											
50 50 40				3 X			4	5 X		6 X		
30 20												
0 -10.0												
	150 3.14	6.12	9.10		12.09	15.08	18.0			03	30.00	MHz
No	o. Mk.	Freq.	Read Lev		Correct Factor	Measur ment		Limit	Over			
		MHz	dBı		dB	dBuV/r		dBuV/m	dB	Detector	Comm	nent
1		0.7490	74.:		2.15	76.39		89.19	-12.80	QP		
2	*	1.4952	71.		-0.77	71.18		83.18	-12.00	QP		
3		7.5736	50.	48	-3.69	46.79		88.62	-41.83	QP		
4		18.0590	43.		-3.79	39.73		88.62	-48.89	QP		
5		20.7664	42.	48	-3.82	38.66		88.62	-49.96	QP		
6		25.7881	41.	03	-2.85	38.18		88.62	-50.44	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

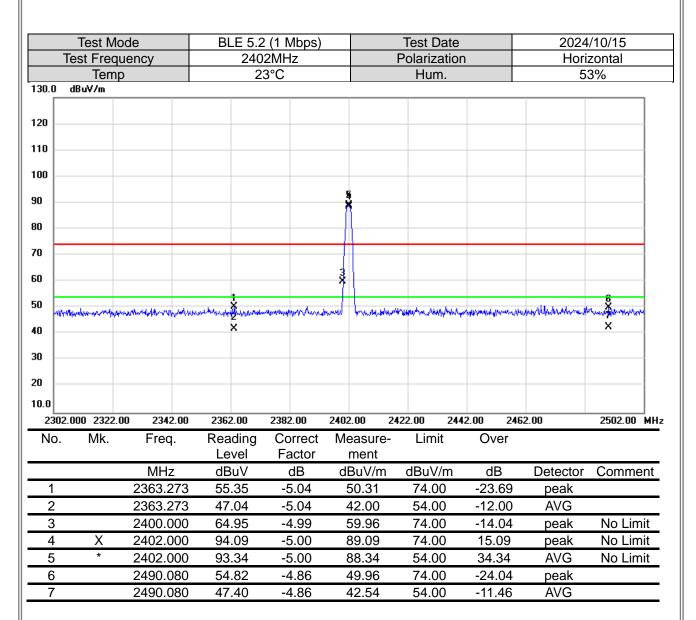
APPENDIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2410T031 Page 37 of 58 Report Version: R00

Report No.: BTL-FCCP-1-2410T031

-	Test Mo	de	BLE 5.	2 (1 Mbps)		Test Date		2024	/10/15	
Tes	st Frequ	iency	240	02MHz		Polarizatio	n	Vei	rtical	
	Temp		2	23°C		Hum.		5:	3%	
80.0 dB	uV/m			1						7
70										
60										
50										
40					5		6			
30	1 X	ž	×	*	×					
20	^									
10										
0.0 30.000	127.00	224.00	321.00	418.00	515.00 6	512.00 7 0	9.00 806	. 00	1000.00	_ ми.
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	5.00	1000.00	MIL
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		109.7340	38.66	-15.23	23.43	43.50	-20.07	peak		
2		181.4170	42.87	-13.65	29.22	43.50	-14.28	peak		
3		350.9730	40.97	-10.34	30.63	46.00	-15.37	peak		
4		456.0240	37.31	-7.20	30.11	46.00	-15.89	peak		
5		531.0050	38.62	-6.04	32.58	46.00	-13.42	QP		
6	*	714.0763	42.36	-2.48	39.88	46.00	-6.12	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2410T031 Page 40 of 58 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test M			.2 (1 Mbps)		Test Date			/10/15
	Test Freq			180MHz		Polarization	1		zontal
130.0	Tem dBuV/m	p		23°C		Hum.		5	3%
130.0 	UD U V / III								
120									
110									
100									
_					•				
90					ň				
BO					Щ				
70									
(U									
					111				
6U -									ĺ
L	1							5	
L	1 Dungan Janah	w.grapengalapennallagentrapenall	and the second second	of a solling and the solution	hand hamahan	rah dajah daga kang pengengangan	and the second of the second o	hanger seemen seeme	dayyayah, anyola
50	1 X Whater I would be 2 X	w. New year of the growth of the second	-app,-art-draway,-righter	and warming the model for	region hijosophism	- Andrew Berger Berger Berger	an water to the second of the	Ÿ	despread as see
50 v 40		w.grajengdoponyattiganovagasett	-approach disease, in files	operation as a state of the second of the	halianahan	mil-skyletterjylasse franksiska	and the second of the	hanger seemen seeme	daylyragish newyddi.
40 30		h. Northwest Aproximately and repeated	.agg,ar.inappyhydi.n	gandharin og Mandada	h.jrensh.me	TO Shakettari Jawa Gran Kunder	ngstenglik filosoferen 2,518°	hanger seemen seeme	daylarark, arribar
50 v 40		w. North personal dispersal dispersa	and provided the second second	ggadhain ag Manhala	harmatham	The State of	ng Anglik pilinanan Alli	hanger seemen seeme	daylyragish, awishid.
50 v 40 - 30 - 20 -	X							XX	daylyraeph,m.vjdri.
50 / 40 - 30 - 20 - 10.0 _	X 80.000 2400.	00 2420.00	2440.00	2460.00	2480.00 25	500.00 252	20.00 254	hanger seemen seeme	2580.00 M
50 v 40 - 30 - 20 -	X 80.000 2400.		2440.00 Reading	2460.00 g Correct	2480.00 29 Measure-			XX	
50 / 40 - 30 - 20 - 10.0 _	X 80.000 2400.	00 2420.00 Freq.	2440.00 Reading Level	2460.00 g Correct Factor	2480.00 29 Measure- ment	500.00 252 Limit	20.00 254 Over	× × × × × × × × × × × × × × × × × × ×	2580.00 M
50 40 30 20 10.0 238 No	X 80.000 2400.	00 2420.00 Freq.	2440.00 Reading Level dBuV	2460.00 G Correct Factor dB	2480.00 29 Measure- ment dBuV/m	500.00 252 Limit dBuV/m	20.00 254 Over dB	v. v	
50 40 30 20 10.0 238 No	X 80.000 2400.	00 2420.00 Freq. MHz 2382.953	2440.00 Reading Level dBuV 55.14	2460.00 g Correct Factor dB -5.02	2480.00 29 Measure- ment dBuV/m 50.12	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -23.88	Detector peak	2580.00 M
0.0 238 No	80.000 2400. Mk.	00 2420.00 Freq. MHz 2382.953 2382.953	2440.00 Reading Level dBuV 55.14 44.87	2460.00 Correct Factor dB -5.02	2480.00 29 Measurement dBuV/m 50.12 39.85	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -23.88 -14.15	Detector peak AVG	2580.00 M
1 2 3	X 80.000 2400.	00 2420.00 Freq. MHz 2382.953 2382.953 2480.000	2440.00 Reading Level dBuV 55.14 44.87 94.90	2460.00 Correct Factor dB -5.02 -5.02 -4.89	2480.00 29 Measurement dBuV/m 50.12 39.85 90.01	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -23.88 -14.15 16.01	Detector peak AVG peak	2580.00 M
10.0 10.0 2388 No	80.000 2400. . Mk.	00 2420.00 Freq. MHz 2382.953 2382.953	2440.00 Reading Level dBuV 55.14 44.87	2460.00 Correct Factor dB -5.02	2480.00 29 Measurement dBuV/m 50.12 39.85	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -23.88 -14.15	Detector peak AVG	2580.00 M

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-1-2410T031

	Test M	lode		BLE 5.2	2 (1 Mbps)		Test Date	•		/10/15
T	est Fred	quency			2MHz		Polarizatio	n		tical
	Tem	ıp		2	3°C		Hum.		5	3%
30.0	dBuV/m									
20										
10	0									
00	0									
0										
:0										
0										
0 —										
0			į,							
0			1 X 2 X							
0										
0										
0.0										
	.000 2700.			6100.00	7800.00				300.00	18000.00 MI
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	00	44.11	0.88	44.99	74.00	-29.01	peak	
2	*	4804.00	00	36.76	0.88	37.64	54.00	-16.36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo					(1 Mbps)				Test D				/10/15
		Frequ					2MHz				Polariza				zontal
130.0	dBuV	Temp				23	s°C				Hum	l.		5.	3%
- T	ubu i														
120															
10															
00															
0															
80															
o															
0															
0				1											
o				ž X											
0															
0															
0.0															
1000	0.000	2700.0	0 4400	.00	6100.00		7800.00	9500	.00	112	200.00	1290	10.00 14	4600.00	18000.00 MH
No.	N	Иk.	Freq	•	Readir Level		Correct Factor		asure nent)-	Limit	1	Over		
			MHz		dBuV		dB		BuV/m	1	dBuV/	m	dB	Detector	Comment
1			4804.0		46.57		0.88		7.45		74.00		-26.55		
2		*	4804.0	00	41.24		0.88	4	2.12		54.00)	-11.88	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BLI		(1 Mbps)				Test D				/10/15
		Frequ					0MHz				Polariza				rtical
30.0	dBuV	Temp				2	3°C				Hum	1.		5	3%
130.0	aBuv	7M													
120															
10															
100															
90															
30 <u> </u>															
o															
0															
io				1 X											
o				2 X											
:0															
20															
0.0															
		2700.0			6100.		7800.00	9500			200.00			14600.00	18000.00 MH
No.	N	Иk.	Freq		Read Lev		Correct Factor		easur ment		Limi	t	Ove	r	
			MHz		dΒι		dB	dl	BuV/r	m	dBuV/	m /	dB	Detector	Comment
1			4880.0	00	45.4	45	1.03	4	46.48	}	74.0	0	-27.5	2 peak	
2		*	4880.0	00	37.2	23	1.03	- (38.26	;	54.0	0	-15.7	4 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL		2 (1 Mb	os)			Test					/10/15
			iency				0MHz				Polari:		n			zontal
130.0	dBuV	Temp)			2	3°C				Hu	m.			5	3%
130.0	abuv	/M														
120 _																
110																
100																
90																
BO _																
70																
60 <u> </u>																
50				1												
ю				1 ½ X												
30																
20																
10.0																
		2700.0		0.00	6100		7800.00		500.00		200.00		900.00		00.00	18000.00 M
No.	N	∕lk.	Fred	٦.		ding vel	Corre Fact		Meas mei		Lin	nit	Ov	er		
			MH	Z	dB	uV	dB		dBu∖	//m	dBu'	V/m	dl	3	Detector	Commen
1			4880.0	000	44	.32	1.0	3	45.3	35	74.	00	-28.	.65	peak	
2		*	4880.0	000	38	.84	1.03	3	39.8	37	54.	00	-14.	.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			2 (1 Mbps)		Test Date			/10/15
	Test Frequ			0MHz		Polarization	n		tical
	Temp)	2	3°C		Hum.		5	3%
130.0	dBuV/m								
120									
110									
100									
90									
BO									
o									
io									
50		1 X							
io		1 2 ×							
io									
20									
10.0									
	.000 2700.0		6100.00	7800.00				00.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	46.41	1.21	47.62	74.00	-26.38	peak	
2	*	4960.000	40.26	1.21	41.47	54.00	-12.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL		2 (1 Mbp	s)			Test D					/10/15
			iency				<u>0MHz</u> 3°C				Polariza					zontal
130.0	dBuV	Temp					3 0				Hum	1.			5.	3%
Г																
20 _																
10																
00																
30																
80 -																
o F																
io																
50				-												
10 L				ž X												
				^												
30																
20																
10.0																
		2700.0			6100		7800.00		0.00		200.00		00.00	1460	0.00	18000.00 MF
No.	N	Лk.	Freq		Rea Le		Correct Facto		easu ment		Limi	t	Ove	er		
			MHz		dB		dB	d	BuV/	m	dBuV	/m	dB	}	Detector	Comment
1			4960.0		44.		1.21		45.53		74.0		-28.		peak	
2		*	4960.0	00	39.	06	1.21		40.27	7	54.0	0	-13.	73	AVG	

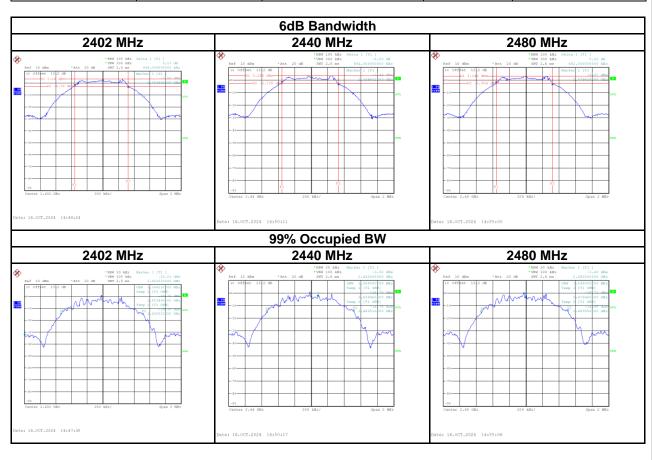
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Me				BL	E 5.2						Test D					/10/15	
	Test Freq		У				2MH	Z			F	Polariz		1			rtical	
	Tem	p				2	3°C					Hur	n.			5	3%	
130.0	dBuV/m																	1
120																		
10																		
00																		
10 -																		
30																		
'o ⊨																		
o																		
io																		
10 L		1 X																
10		2 X																
_		×																
:0 -																		
0																		
).0																		
	00.000 18850		19700			0.00	2140			0.00		100.00		50.00		0.00	26500.00	МН
No.	Mk.	I	Freq.			ding vel		rrect		easur ment		Lim	it	Ov	er			
			MHz			uV		dB		3uV/r		dBuV	//m	dE	3	Detector	Comme	nt
1			216.0			.20	-6	.88		10.32		74.0		-33.		peak		
2	*	19	216.0	00	37	.13	-6	88.	(30.25	_	54.0	00	-23.	75	AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			BL		2 (1 N					Test D					/10/15	
7	Test Freq					2MH	Z			F	Polariza					zontal	
	Tem	ρ			2	3°C					Hun	า.			5	3%	
130.0	dBuV/m																_
120																	_
10																	
00																	1
0 -																	\dashv
0																	4
o																	_
0																	
_																	
0 =		1															7
0		X															+
0		2 X															_
0																	
0																	1
0.0	0.00040050		700.00	2055		04.40								0.4000		00500	
No.	0.000 18850 Mk.		700.00	2055		2140			0.00		100.00 Limi			24800	.00	26500.0	UMH
INO.	IVIK.	Fre	ч.	Rea Le			rrect ctor		easur ment	₽-	LIIIII	ι	Ove	1			
		MF	łz	dB			B		3uV/r	n	dBuV	/m	dB		Detector	Comm	ent
1		1921		49.	41	-6	.88	4	12.53		74.0	0	-31.4	17	peak		
2	*	1921	6.00	39.	02	-6	.88	- (32.14		54.0	0	-21.8	36	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


3 T L		Report No.: BTL-FCCP-1-2410T031
	APPENDIX E	BANDWIDTH
	ALL ENDIN E	BANDIII

Project No.: 2410T031 Page 51 of 58 Report Version: R00

Test Mode: 1Mbps

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.68	1.05	500	Pass
2440	0.68	1.06	500	Pass
2480	0.68	1.05	500	Pass

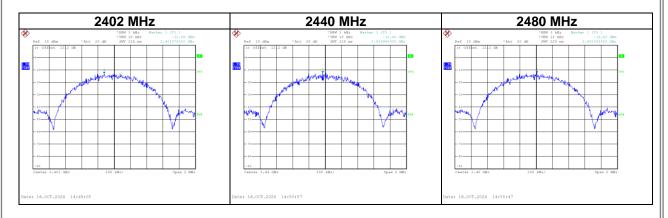
APPENDIX F	OUTPUT POWER	

Project No.: 2410T031 Page 53 of 58 Report Version: R00

Report No.: BTL-FCCP-1-2410T031

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	3.92	0.0025	30.00	1.0000	Pass
2440	3.76	0.0024	30.00	1.0000	Pass
2480	3.68	0.0023	30.00	1.0000	Pass

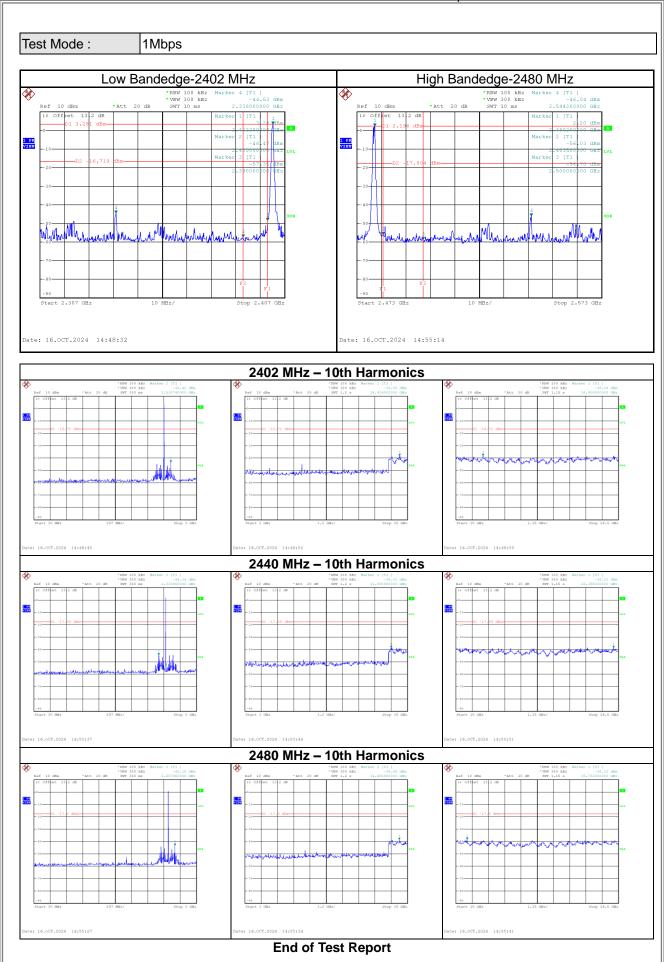
Project No.: 2410T031 Page 54 of 58 Report Version: R00


APPENDIX G POWER SPECTRAL DENSITY TEST

Project No.: 2410T031 Page 55 of 58 Report Version: R00

Test Mode: 1Mbps

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-12.88	8	Pass
2440	-12.46	8	Pass
2480	-12.52	8	Pass



APPENDIX H	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2410T031 Page 57 of 58 Report Version: R00

Report No.: BTL-FCCP-1-2410T031

