FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

BT Mono Headset

Model: BMH-10x (x=0~9, A~Z)

Trade Name: LITEON

Issued to

Lite-On Technology Corporation
18F, 392, Ruey Kuang Road, Neihu, Taipei 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.

No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. http://www.ccsemc.com.tw service@tw.ccsemc.com

[^0]Compliance Certification Services Inc.

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION 3
2. EUT DESCRIPTION 4
3. TEST METHODOLOGY 5
3.1 EUT CONFIGURATION 5
3.2 EUT EXERCISE 5
3.3 GENERAL TEST PROCEDURES 5
3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS6
3.5 DESCRIPTION OF TEST MODES6
4. INSTRUMENT CALIBRATION7
4.1 MEASURING INSTRUMENT CALIBRATION 7
4.2 MEASUREMENT EQUIPMENT USED 7
5. FACILITIES AND ACCREDITATIONS9
5.1 FACILITIES 9
5.2 EQUIPMENT 9
5.3 LABORATORY ACCREDITATIONS AND LISTING 9
5.4 TABLE OF ACCREDITATIONS AND LISTINGS. 10
6. SETUP OF EQUIPMENT UNDER TEST 11
6.1 SETUP CONFIGURATION OF EUT 11
6.2 SUPPORT EQUIPMENT 11
7. FCC PART 15.247 REQUIREMENTS 12
7.1 PEAK POWER. 12
7.2 BAND EDGES MEASUREMENT 13
7.3 PEAK POWER SPECTRAL DENSITY 18
7.4 FREQUENCY SEPARATION 21
7.5 NUMBER OF HOPPING FREQUENCY 23
7.6 TIME OF OCCUPANCY (DWELL TIME) 25
7.7 SPURIOUS EMISSIONS 32
7.8 POWERLINE CONDUCTED EMISSIONS 42
7.9 RADIO FREQUENCY EXPOSURE 45
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP 46

1. TEST RESULT CERTIFICATION

Applicant:	Lite-On Technology Corporation 18F, 392, Ruey Kuang Road, Neihu, Taipei 114, Taiwan, R.O.C.
Equipment Under Test:	BT Mono Headset
Trade Name:	LITEON
Model:	BMH-10x $(x=0 \sim 9$, A~Z)
Date of Test:	November $8 \sim 10,2005$

APPLICABLE STANDARDS

STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Gavin Rim
Section Manager
Compliance Certification Services Inc.

Reviewed by:

Amanda Wu
Section Manager
Compliance Certification Services Inc.

Compliance Certification Services Inc.
Report No.: 51020101-RP1

2. EUT DESCRIPTION

Product	BT Mono Headset
Trade Name	LITEON
Model Number	BMH-10x (x= 0~9, A~Z)
Model Discrepancy	N/A
Power Supply	Adapter: Model number: DSA-31S FUS /P: AC 100-240V, 0.2A, 50-60Hz O/P: DC 5V, 0.3A Battery: 3.7 Vdc
Frequency Range	$2402 \sim 2480 \mathrm{MHz}$
Transmit Power	3.19 dBm
Modulation Technique	FHSS (GFSK)
Transmit Data Rate	1 Mbps
Number of Channels	79 Channels
Antenna Specification	PIFA Antenna / Gain: 1.75dBi

Remark:

1. For more details, please refer to the User's manual of the EUT.
2. The suffix of BMH-10x, ($x=0 \sim 9, A \sim Z$ or Blank) on model number is just for marketing purpose only.
3. Client consigns only one sample to test (model number: BMH-10x). Therefore, the testing Lab. just guarantees the unit, which has been tested.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{G H z}$
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
${ }^{1} 0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	156.52525	$2655-2900$	$22.01-23.12$
$8.41425-8.41475$	$156.7-156.9$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$162.0125-167.17$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$167.72-173.2$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$240-285$	$3600-4400$	$\left({ }^{2}\right)$
$13.36-13.41$	$322-335.4$		

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5DESCRIPTION OF TEST MODES

The EUT (model: BMH-10x $(x=0 \sim 9, A \sim Z))$ had been tested under operating condition.
Test program used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1 GHz , which worst case was in normal link mode only.
Channel Low (2402MHz) , Mid (2441 MHz) and High (2480 MHz) were chosen for full testing.
The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

4. INSTRUMENT CALIBRATION

4.1MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	$01 / 10 / 2006$	

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Open Area Test Site \# 3				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R\&S	ESVS20	$838804 / 004$	$01 / 08 / 2006$
Spectrum Analyzer	R\&S	FSP30	100112	$09 / 23 / 2006$
Spectrum Analyzer	Agilent	E4446A	MY43360131	$01 / 10 / 2006$
Pre-Amplifier	MITEC	AFS42-00102650	924206	N.C.R.
Pre-Amplifier	MITEC	AMF-6F-260400	945377	N.C.R.
Bilog Antenna	SCHWAZBECK	VULB9163	145	$07 / 05 / 2006$
Horn Antenna	EMCO	3115	00022250	$04 / 18 / 2006$
Horn Antenna	EMCO	3116	2487	$12 / 08 / 2005$
Turn Table	EMCO	$2081-1.21$	$9709-1885$	N.C.R
Antenna Tower	EMCO	$2075-2$	$9707-2060$	N.C.R
Controller	EMCO	2090	$9709-1256$	N.C.R
RF Switch	ANRITSU	MP59B	M53867	N.C.R
Site NSA	C\&C	N/A	N/A	$09 / 06 / 2006$

Remark: The measurement uncertainty is less than +/- 2.16dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Powerline Conducted Emissions Test Site				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI TEST RECEIVER 9kHz-30MHz	 SCHWARZ	ESHS30	$828144 / 003$	$09 / 24 / 2006$
TWO-LINE V-NETWORK 9kHz-30MHz	SCHAFFNER	NNB41	$03 / 10013$	$06 / 11 / 2006$
LISN 10kHz-100MHz	EMCO	$3825 / 2$	$9106-1809$	$02 / 17 / 2006$
Test S/W	LABVIEW (V 6.1)			

Remark: The measurement uncertainty is less than +/- $2.81 d B$, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

5. FACILITIES AND ACCREDITATIONS

5.1FACILITIES

All measurement facilities used to collect the measurement data are located at
\square No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
® No. No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan
Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

X No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan
Tel: 886-3-324-0332 / Fax: 886-3-324-5235
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

5.4TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	$\begin{aligned} & N \mathbb{V}(\Delta), \square \\ & 200600-0 \end{aligned}$
USA	FCC	3/10 meter Open Area Test Sites $(93105,90471)$ / 3M Semi Anechoic Chamber (965860) to perform FCC Part 15/18 measurements	$\underbrace{965860}_{93105,90471}$
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI $\begin{aligned} & \mathrm{R}-393 / 1066 / 725 / 879 \\ & \mathrm{C}-402 / 747 / 912 \\ & \hline \end{aligned}$
Norway	NEMKO	EN $50081-1 / 2$, EN $50082-1 / 2$, IEC $61000-6-1 / 2$, EN 50091-2, EN $50130-4$, EN 55011, EN 55013, EN 55014-1/2, EN 55015 , EN 55022, EN 55024, EN 61000-3-2/3, EN $61326-1$, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN $300328-2$, EN $300422-2$, EN 301 419-1, EN $301489-01 / 03 / 07 / 08 / 09 / 17$, EN $301419-2 / 3$, EN $300454-2$, EN $301357-2$	
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	西 检
Canada	Industry Canada	3/10 meter Open Area Test Sites (IC 3991-3, IC 3991-4) / 3M Semi Anechoic Chamber (IC 6106) to perform RSS 212 Issue 1	Canadä̀ IC 3991-3 IC 3991-4 IC 6106

[^1]
6. SETUP OF EQUIPMENT UNDER TEST

6.1SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Notebook PC	Sony	VGN-S44TP	281980808100339	FCC DoC	Unshielded, 3 m	AC I/P: Unshielded, 1.8 m DC O/P: Unshielded, 1.8 m with a core
2.	USB Bluetooth Dongle	Rainsun Corporation	BT-232	N/A	FCC DoC	N/A	N/A

Remark:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS

7.1PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

1. According to $\S 15.247$ (b)(3), for systems using digital modulation in the bands of 902-928 $\mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and 5725-5850 MHz: 1 Watt.
2. According to $\S 15.247$ (b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi . Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted

Test Data

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	2.09	0.00162		PASS
Mid	2441	3.19	0.00208	1	PASS
High	2480	2.93	0.00196		PASS

7.2BAND EDGES MEASUREMENT

LIMIT

According to $\S 15.247(\mathrm{~d})$, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8 m above the ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emission.
4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
(a) PEAK: RBW $=V B W=1 \mathrm{MHz} /$ Sweep=AUTO
(b) AVERAGE: RBW $=1 \mathrm{MHz} / \mathrm{VBW}=10 \mathrm{~Hz} / \mathrm{Sweep}=$ AUTO
5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Band Edges (CH Low)

Detector mode: Peak

*. Agilent 08:49:56 Nov 8, 2005

Polarity: Vertical
T
Mkr1 2.39000 GHz $51.32 \mathrm{~dB} \stackrel{V}{ }$

Detector mode: Average
Agilent 08:49:34 Nov 8, 2005

Polarity: Vertical
T
Mkr1 2.39000 GHz

\#VBW 10 Hz

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Detector mode: Peak

Agilent 08:46:18 Nov 8, 2005

Polarity: Horizontal

T
Mkr1 2.38604 GHz

Ref $117 \mathrm{~dB} \mu \mathrm{~V}$ Atten 10 dB								$52.67 \mathrm{~dB} \mu \mathrm{~V}$		
Peak										
10 $\mathrm{~dB} /$										
$\begin{aligned} & \mathrm{dB} / \mathrm{f} \\ & \text { Offt } \\ & \text { 10 } \\ & \mathrm{dB} \end{aligned}$										
$\begin{aligned} & \text { DI } \\ & 74.0 \end{aligned}$										
$\mathrm{dB}_{\mu} \mathrm{V}$	-	\square	\square		-	-				
LgAv										
$\begin{array}{ll}\text { M1 } & \text { S2 }\end{array}$										
$\begin{array}{ll} S 3 & F C \\ A & A A \end{array}$	Mramaniten	nwishrum	Materten	Mamercion	monsm	Nowne	, mornater	Namersom	¢	/
$\begin{aligned} & *(f): \\ & \text { FTun } \end{aligned}$										
Swp										

Start 2.31000 GHz
\#Res BW 1 MHz

HVBW 1 MHz
Stop 2.40500 GHz \#Sweep 100 ms (601 pts)

Detector mode: Average
Agilent 08:45:56 Nov 8, 2005

Polarity: Horizontal
T
Mkr1 2.38604 GHz
Ref 117 dB $\wedge \quad$ Atten 10 dB

Compliance Certification Services Inc.
Report No.: 51020101-RP1

Band Edges (CH High)

Detector mode: Peak

Agilent 08:56:10 Nov 8, 2005

Detector mode: Average
Agilent 08:55:41 Nov 8, 2005

Polarity: Vertical
T
Mkr1 2.48350 GHz $54.19 \mathrm{~dB} \mu$

Polarity: Vertical
R T
Mkr1 2.48350 GHz
41.35 dB H V

HVBW 10 Hz

Sweep 1.949 s (601 pts)

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Detector mode: Peak

Agilent 08:59:20 Nov 8, 2005

Polarity: Horizontal

T
Mkr1 2.48417 GHz

Start 2.47500 GHz
\#Res BW 1 MHz

HVBW 1 MHz
Stop 2.50000 GHz \#Sweep 100 ms (601 pts)

Detector mode: Average
Agilent 08:58:56 Nov 8, 2005

Polarity: Horizontal
T
Mkr1 2.48417 GHz
Ref $117 \mathrm{~dB} \mu \mathrm{~V} \quad$ Atten 10 dB

7.3PEAK POWER SPECTRAL DENSITY

LIMIT

1. According to $\S 15.247(\mathrm{e})$, for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
2. According to $\S 15.247(\mathrm{f})$, the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW $=3 \mathrm{kHz}, \mathrm{VBW}=10 \mathrm{kHz}$, Span $=300 \mathrm{kHz}$, Sweep $=100 \mathrm{~s}$
4. Record the max. reading.
5. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

Test Data

Channel	Frequency	PPSD $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Result
Low	2402	-8.02		PASS
Mid	2441	-8.50	8.00	PASS
High	2480	-8.28		PASS

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

$\underline{\text { Test Plot }}$

PPSD (CH Low)

Agilent 13:13:13 Nov 8, 2005
T
Mkr1 2.4020191 GHz

Center 2.4020206 GHz
\#Res BW 3 kHz
\#VBW 10 kHz
Span 300 kHz \#Sweep $100 \mathrm{~s}(601 \mathrm{pts})$

PPSD (CH Mid)

Compliance Certification Services Inc.
Report No.: 51020101-RP1

PPSD (CH High)

Agilent 13:20:36 Nov 8, 2005
T
Mkr1 2.4800190 GHz

Center 2.4800200 GHz
\#Res BW 3 kHz

Span 300 kHz \#Sweep 100 s (601 pts)

7.4FREQUENCY SEPARATION

LIMIT

According to $\S 15.247$ (a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = middle of hopping channel.
4. Set the spectrum analyzer as $\mathrm{RBW}=30 \mathrm{kHz}, \mathrm{VBW}=100 \mathrm{kHz}$, $\mathrm{Span}=3 \mathrm{MHz}$, Sweep $=$ auto.
5. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

No non-compliance noted

Test Data

Channel Separation $(\mathbf{M H z})$	20dB Bandwith $(\mathbf{k H z})$	Limit $(\mathbf{k H z})$	Result
1.00	745	>25	Pass

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Test Plot

Measurement of Channel Separation

A. Agilent 13:59:50 Nov 8, 2005

T
Mkr3 2.442020 GHz

Ref 16	IBm \#tten 20 dB								2.94 dBm	
\#Peak						-				
						b			\bigcirc	
dB/	\cdots		\checkmark		\sim			\sim		n
Offst	\cdots			\cdots			\cdots			\cdots
$\begin{aligned} & 11 \\ & \mathrm{~dB} \end{aligned}$										
LgAv										
M1 S2										

Center 2.441000 GHz

\#Res BW 30 kHz
Span 3 MHz

Measurement of 20dB Bandwidth

7.5NUMBER OF HOPPING FREQUENCY

LIMIT

According to $\S 15.247$ (a)(1)(ii), Frequency hopping systems operating in the $2400 \mathrm{MHz}-2483.5 \mathrm{MHz}$ bands shall use at least 75 hopping frequencies.

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set spectrum analyzer Start $=2400 \mathrm{MHz}$, Stop $=2441.5 \mathrm{MHz}$, Sweep $=$ auto and Start $=2441.5 \mathrm{MHz}$, Stop $=2483.5 \mathrm{MHz}$, Sweep $=$ auto.
4. Set the spectrum analyzer as RBW, VBW $=1 \mathrm{MHz}$.
5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

Test Data

Result (No. of CH)	Limit (No. of CH)	Result
79	>75	PASS

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Test Plot

Channel Number

$2.4 \mathrm{GHz}-2.4415 \mathrm{GHz}$

Agilent 13:53:54 Nov 8, 2005

T

Ref 16 dBm \#Atten 20 dB										
\#Peak Log										
$\begin{aligned} & 10 \\ & \mathrm{~dB} / \end{aligned}$		\sim				$\xrightarrow[\sim-10]{ }$	-	$\xrightarrow{\sim}$	\cdots	\sim -
Offst										
dB										
LgAv										
M1 S2										
$\begin{array}{ll} \mathrm{S} 3 & \mathrm{FC} \\ \hline \end{array}$										
\quad (f : FTun										
Swp										
Swp										

Start 2.40000 GHz
\#Res BW 1 MHz
\#VBW 1 MHz

Stop 2.44150 GHz
Sweep 1 ms (601 pts)

$2.4415 \mathrm{GHz}-2.4835 \mathrm{GHz}$

Agilent 13:54:43 Nov 8, 2005
T

7.6TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to $\S 15.247$ (a)(1)(iii), Frequency hopping systems operating in the $2400 \mathrm{MHz}-2483.5 \mathrm{MHz}$ bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW, VBW $=1 \mathrm{MHz}$, Span $=0 \mathrm{~Hz}$, Sweep $=$ auto.
5. Repeat above procedures until all frequency measured were complete.

Compliance Certification Services Inc.

TEST RESULTS

No non-compliance noted

Test Data

DH 1

CH Low: $\quad 0.42 *(1600 / 2) / 79 * 31.6=134.4(\mathrm{~ms})$
CH Mid: $\quad 0.35 *(1600 / 2) / 79 * 31.6=112.0(\mathrm{~ms})$
CH High: 0.42 * $(1600 / 2) / 79 * 31.6=134.4(\mathrm{~ms})$

CH	Pulse Time $(\mathbf{m s})$	Total of Dwell $(\mathbf{m s})$	Period Time (\mathbf{s})	Limit $(\mathbf{m s})$	Result
Low	0.42	134.4	31.60		PASS
Mid	0.35	112.0	31.60	400.00	PASS
High	0.42	134.4	31.60		PASS

DH 3

CH Low: $\quad 1.67$ * (1600/4)/79 * $31.6=267.2(\mathrm{~ms})$
CH Mid: $\quad 1.62$ * $(1600 / 4) / 79 * 31.6=259.2(\mathrm{~ms})$
CH High: 1.68 * (1600/4)/79 * $31.6=268.8$ (ms)

CH	Pulse Time $(\mathbf{m s})$	Total of Dwell $(\mathbf{m s})$	Period Time (\mathbf{s})	Limit $(\mathbf{m s})$	Result
Low	1.67	267.2	31.60		PASS
Mid	1.62	259.2	31.60	400.00	PASS
High	1.68	268.8	31.60		PASS

DH 5

CH Low: $\quad 2.92$ * $(1600 / 6) / 79 * 31.6=311.5(\mathrm{~ms})$
CH Mid: $2.85 *(1600 / 6) / 79 * 31.6=304.0(\mathrm{~ms})$
CH High: 2.92 * $(1600 / 6) / 79 * 31.6=311.5(\mathrm{~ms})$

CH	Pulse Time $(\mathbf{m s})$	Total of Dwell $(\mathbf{m s})$	Period Time (\mathbf{s})	Limit $(\mathbf{m s})$	Result
Low	2.92	311.5	31.60		PASS
Mid	2.85	304.0	31.60	400.00	PASS
High	2.92	311.5	31.60		PASS

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Test Plot

DH 1

(CH Low)

Agilent 14:14:36 Nov8, 2005

T

Δ Mkr1 $416.7 \mu \mathrm{~s}$

Span 0 Hz
Res BW 1 MHz

(CH Mid)

Compliance Certification Services Inc.
Report No.: 51020101-RP1

(CH High)

DH 3

(CH Low)

Agilent 14:13:43 Nov 8, 2005

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

(CH Mid)

(CH High)

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

DH 5

(CH Low)

(CH Mid)

Agilent 14:10:36 Nov 8, 2005
T
$\Delta \mathrm{Mkr} 1 \quad 2.85 \mathrm{~ms}$

Center 2.441000 GHz
Res BW 1 MHz

Compliance Certification Services Inc.
Report No.: 51020101-RP1

(CH High)

7.7 SPURIOUS EMISSIONS

7.7.1 Conducted Measurement

LIMIT

According to $\S 15.247(\mathrm{~d})$, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz . The video bandwidth is set to 100 kHz .
Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Test Plot

CH Low

$30 \mathrm{MHz} \sim 26 \mathrm{GHz}$

Agilent 13:25:43 Nov 8, 2005
T

Ref 16 dBm \#Atten 20 dB								Mkr1 2.	$\begin{aligned} & 2.40 \mathrm{GHz} \\ & .79 \mathrm{dBm} \end{aligned}$	
\#Peak	1	,								
Log 10	4									
dB/										
Offst	\|									
$\begin{aligned} & 11 \\ & \mathrm{~dB} \end{aligned}$										
DI	\checkmark									
-17.2										
dBm	1	(Whanemern	, masmoneme	(0)			(wom		
LgAv										
M1 S2										

Start 30 MHz
\#Res BW 100 kHz

\#Res BW 100 kHz		\#VBW 100 kHz	Sweep 3.011 s (601 pts)	
Manker	Trace	Type	\times Axis	Amplitude
1	(1)	Freq	2.40 GHz	2.79 dBm
2	(1)	Freq	4.82 GHz	

CH Mid

$30 \mathrm{MHz} \sim 26 \mathrm{GHz}$

Agilent 13:24:32 Nov 8, 2005
T
Mkr1 2.44 GHz

Start 30 MHz
\#Res BW 100 kHz

\#Res BW 100 kHz		\#VBW 100 kHz	Sweep 3.011 s (601 pts)	
Marker	Trace	Type	\times Axis	Amplitude
1	(1)	Freq	2.44 GHz	2.79 dBm
2	(1)	Freq	4.90 GHz	

Compliance Certification Services Inc.
Report No.: 51020101-RP1

CH High

$\mathbf{3 0 M H z} \sim 26 \mathrm{GHz}$

Agilent 13:23:14 Nov8, 2005
T
Mkr2 4.94 GHz

Start 30 MHz
\#Res BW 100 kHz

\#Res BW 100 kHz		\#VBW 100 kHz	Sweep 3.011 s (601 pts)	
Marker	Trace	Type	\times Axis	Amplitude
1	(1)	Freq	2.49 GHz	-27.12 dBm
2	(1)	Freq		

Compliance Certification Services Inc.

7.7.2 Radiated Emissions

LIMIT

1. According to $\S 15.209(\mathrm{a})$, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency $(\mathbf{M H z})$	Field Strength $(\boldsymbol{\mu} \mathbf{V} / \mathbf{m})$	Measurement Distance (\mathbf{m})
$30-88$	100^{*}	3
$88-216$	150^{*}	3
$216-960$	200^{*}	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz , $76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.
2. In the emission table above, the tighter limit applies at the band edges.

Frequency $(\mathbf{M H z})$	Field Strength $(\boldsymbol{\mu} / \mathbf{m}$ at 3-meter)	Field Strength $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V} / \mathbf{m}$ at 3-meter)
$30-88$	100	40
$88-216$	150	43.5
$216-960$	200	46
Above 960	500	54

Compliance Certification Services Inc.
Report No.: 51020101-RP1

Test Configuration

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

$$
\text { RBW }=100 \mathrm{kHz} / \mathrm{VBW}=300 \mathrm{kHz} / \text { Sweep=AUTO }
$$

Above 1GHz:
(a) PEAK: RBW=VBW $=1 \mathrm{MHz} /$ Sweep $=A U T O$
(b) AVERAGE: $\mathrm{RBW}=1 \mathrm{MHz} / \mathrm{VBW}=10 \mathrm{~Hz} /$ Sweep=AUTO
7. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Link
Temperature: $\quad 26^{\circ} \mathrm{C}$
Humidity: $\quad 65 \%$ RH

Test Date: November 10, 2005
Tested by: Jason Chang
Polarity: Ver. / Hor.

Frequency (MHz) (MHz)	$\begin{aligned} & \text { Ant.Pol. } \\ & \text { (H/V) } \end{aligned}$	Reading (Peak) (dBuV)	$\begin{gathered} \text { Reading } \\ \text { (QP) } \\ \text { (dBuV) } \\ \hline \end{gathered}$	Correction Factor (dB/m)	Result (Peak) (dBuV/m) 25.44	$\begin{array}{\|c\|} \hline \text { Result } \\ (\mathrm{QP}) \\ (\mathrm{dBuV} / \mathrm{m}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Limit } \\ \text { (QP) } \\ (\mathrm{dBuV} / \mathrm{m}) \\ \hline \end{array}$	Margin (dB)	Remark
200.00	V	39.45	---	-14.00	25.44	---	43.50	-18.06	Peak
396.00	V	37.37	---	-9.26	28.11	---	46.00	-17.89	Peak
488.70	V	39.13	---	-8.33	30.80	---	46.00	-15.20	Peak
507.25	V	42.10	---	-8.01	34.08	---	46.00	-11.92	Peak
704.00	V	35.33	---	-5.45	29.88	---	46.00	-16.12	Peak
841.15	V	32.40	---	-3.36	29.04	---	46.00	-16.96	Peak
119.50	H	41.26	---	-14.82	26.44	---	43.50	-17.06	Peak
203.35	H	42.33	---	-13.86	28.47	---	43.50	-15.03	Peak
427.80	H	43.40	---	-9.11	34.29	---	46.00	-11.71	Peak
510.25	H	43.84	---	-7.96	35.87	---	46.00	-10.13	Peak
686.70	H	36.18	---	-5.55	30.63	---	46.00	-15.37	Peak
907.00	H	34.45	---	-2.19	32.26	---	46.00	-13.74	Peak

Remark:

1. Measuring frequencies from 30 MHz to the 1 GHz .
2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using peak/quasi-peak detector mode.
3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin $>20 d B$ from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Quasi-peak limit $(d B u V / m)$.

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Above 1 GHz

Operation Mode:TX / CH Low
Temperature: $\quad 25^{\circ} \mathrm{C}$

Humidity: $\quad 65 \%$ RH

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	$\begin{gathered} \hline \text { Correction } \\ \text { Factor } \\ \text { (dB/m) } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Result } \\ (\text { Peak) } \end{array} \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Result } \\ (\text { Average }) \\ (\mathbf{d B u V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} \text { Limit } \\ \begin{array}{c} \text { (Peak) } \\ (\mathrm{dBuV} / \mathrm{m}) \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Limit } \\ \text { (Average) } \\ \text { (dBuV/m) } \\ \hline \end{array}$	Margin (dB)	Remark
1602.00	V	59.32	---	-7.40	51.93	---	74.00	54.00	-2.07	Peak
4803.75	V	62.89	40.38	0.33	63.22	40.71	74.00	54.00	-13.29	Average
N/A										
1450.00	H	57.73	---	-8.29	49.44	---	74.00	54.00	-4.56	Peak
4803.75	H	53.31	---	0.33	53.65	---	74.00	54.00	-0.35	Peak
N/A										

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin $>20 \mathrm{~dB}$ from the applicable limit) and considered that's already beyond the background noise floor.
6. $\operatorname{Margin}(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / CH Mid
Temperature: $\quad 25^{\circ} \mathrm{C}$
Humidity: $\quad 65 \%$ RH

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / CH High
Temperature: $\quad 25^{\circ} \mathrm{C}$
Humidity: $\quad 65 \%$ RH

Test Date: November 8, 2005
Tested by: Jason Chang
Polarity: Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1124.00	V	58.20	---	-9.34	48.86	---	74.00	54.00	-5.14	Peak
1916.00	V	58.18	---	-5.14	53.03	---	74.00	54.00	-0.97	Peak
4961.25	V	68.35	44.55	0.48	68.83	45.03	74.00	54.00	-8.97	Average
N/A										
1134.00	H	58.08	---	-9.31	48.77	---	74.00	54.00	-5.23	Peak
1654.00	H	60.32	---	-7.02	53.30	---	74.00	54.00	-0.70	Peak
4961.25	H	72.85	46.36	0.48	73.33	46.84	74.00	54.00	-7.16	Average
N/A										

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to $\S 15.207$ (a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Limits $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	
	Quasi-peak	Average
0.15 to 0.50	66 to 56^{*}	56 to 6^{*}
0.50 to 5	56	46
5 to 30	60	50

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

1. The EUT was placed on a table, which is 0.8 m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Operation Mode:	Normal Link	Test Date:	November 9, 2005
Temperature:	$25^{\circ} \mathrm{C}$	Tested by:	Jason Chang
Humidity:	$55 \% \mathrm{RH}$		

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB)	QP Result (dBuV)	AV Result (dBuV)	QP Limit $(\mathbf{d B u} \mathbf{)}$	AV Limit (dBuV)	QP Margin $(\mathbf{d B})$	AV Margin (dB)	Note
0.179	24.230	24.370	0.142	24.372	24.512	64.532	54.532	-40.160	-30.020	L1
0.275	25.130	15.380	0.100	25.230	15.480	60.966	50.966	-35.736	-35.486	L1
0.363	21.030	12.150	0.100	21.130	12.250	58.660	48.660	-37.530	-36.410	L1
20.476	10.220	6.680	1.200	11.420	7.880	60.000	50.000	-48.580	-42.120	L1
24.791	9.590	4.220	1.200	10.790	5.420	60.000	50.000	-49.210	-44.580	L1
27.497	10.010	5.480	1.300	11.310	6.780	60.000	50.000	-48.690	-43.220	L1
0.176	24.650	24.980	0.148	24.798	25.128	64.672	54.672	-39.874	-29.544	L2
0.238	19.050	18.590	0.100	19.150	18.690	62.166	52.166	-43.016	-33.476	L2
0.709	10.090	6.190	0.100	10.190	6.290	56.000	46.000	-45.810	-39.710	L2
20.476	12.030	9.110	1.200	13.230	10.310	60.000	50.000	-46.770	-39.690	L2
24.791	10.820	5.980	1.200	12.020	7.180	60.000	50.000	-47.980	-42.820	L2
27.497	13.070	8.490	1.300	14.370	9.790	60.000	50.000	-45.630	-40.210	L2

Remark:

1. Measuring frequencies from 0.15 MHz to 30 MHz .
2. The emissions measured in frequency range from 0.15 MHz to 30 MHz were made with an instrument using Quasi-peak detector and average detector.
3. The IF bandwidth of SPA between 0.15 MHz and 30 MHz was 10 kHz ; the IF bandwidth of Test Receiver between 0.15 MHz and 30 MHz was 9 kHz ;
4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

Compliance Certification Services Inc.
Report No.: 51020101-RP1
FCC ID: H4IPIDB20501

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

7.9 RADIO FREQUENCY EXPOSURE

LIMIT

According to $\S 15.247(\mathrm{i})$, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.
EUT Specification

EUT	BT Mono Headset
Frequency band (Operating)	WLAN: $2.412 \mathrm{GHz} \sim 2.462 \mathrm{GHz}$ WLAN: $5.18 \mathrm{GHz} \sim 5.32 \mathrm{GHz} / 5.50 \mathrm{GHz} \sim 5.70 \mathrm{GHz}$ WLAN: $5.745 \mathrm{GHz} \sim 5.825 \mathrm{GHz}$ Others: Bluetooth: $2.402 \mathrm{GHz} \sim 2.480 \mathrm{GHz}$
Device category	Portable ($<20 \mathrm{~cm}$ separation) Mobile ($>20 \mathrm{~cm}$ separation) Others
Exposure classification	\square Occupational/Controlled exposure $\left(S=5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$$\boxtimes$General Population/Uncontrolled exposure $\left(S=1 \mathrm{~mW} / \mathrm{cm}^{2}\right)$
Antenna diversity	Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	3.19 dBm (2.08 mW)
Antenna gain (Max)	1.75 dBi (Numeric gain: 1.496)
Evaluation applied	$\begin{aligned} & \square \text { MPE Evaluation } \\ & \square \text { SAR Evaluation } \\ & \boxtimes \text { N/A } \end{aligned}$
Remark: 1. The maximum output power is $\mathbf{3 . 1 9 \mathrm { dBm } (2 . 0 8 \mathrm { mW }) \text { at } 2 4 4 1 \mathrm { MHz } \text { (with } \underline { 1 . 4 9 6 } \text { numeric } . ~}$ antenna gain.)	
2. DTS device is not subj compliance. 3. For mobile or fixed locatid power density is 1.0 m would be larger.	outine RF evaluation; MPE estimate is used to justify the transmitters, no SAR consideration applied. The maximum ${ }^{2}$ even if the calculation indicates that the power density

TEST RESULTS

No non-compliance noted.
(SAR evaluation is not required for the PORTABLE device while its maximum output power is lower than the general population low threshold: $60 / f_{(G H z)}=60 / 2.441=24.58 \mathrm{~mW}$)

MPE evaluation

Not applicable.

[^0]: Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

[^1]: * No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.
 * Australia: MRA of NVLAP AS/NZS 4771 \& AS/NZS 4268.

