

FCC Test Report (BT LE)

Report No.: RFBEKC-WTW-P20080403-1

FCC ID: H4IMS5320W

Test Model: MS5320Wt

Received Date: Aug. 20, 2020

Test Date: Aug. 26 to Sep. 3, 2020

Issued Date: Sep. 14, 2020

Applicant: LITE-ON Technology Corp.

- Address: 16F, 392, Ruey Kuang Road, Neihu, Taipei 11492, Taiwan, R.O.C.
- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration /

Designation Number: 198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report, on to firy us of any material error or omission caused by you negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. Afailure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record4					
1	C	Certificate of Conformity	5			
2	S	Summary of Test Results	6			
	2.1 2.2	Measurement Uncertainty Modification Record				
3	G	General Information	7			
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards and References	8 9 . 10 . 11 . 11 . 11			
4	т	est Types and Results	12			
		Test Instruments	12 13			
	4.1.4	Test Procedures Deviation from Test Standard Test Setup	.14			
	4.1.6 4.1.7	EUT Operating Conditions Test Results	. 16 . 17			
		6dB Bandwidth Measurement Limits of 6dB Bandwidth Measurement Test Setup	22			
	4.2.3 4.2.4	Test Instruments Test Procedure	22 22			
	4.2.6	Deviation from Test Standard EUT Operating Conditions Test Result	22			
	4.3 4.3.1	Conducted Output Power Measurement Limits OF Conducted Output Power Measurement	24 24			
	4.3.3	Test Setup Test Instruments Test Procedures	24			
	4.3.5 4.3.6	Deviation from Test Standard EUT Operating Conditions	24 24			
	4.4	Test Results Power Spectral Density Measurement Limits of Power Spectral Density Measurement	26			
	4.4.2 4.4.3	Test Setup Test Instruments	26 26			
	4.4.5	Test Procedure Deviation from Test Standard EUT Operating Condition	.26			
	4.4.7 4.5	Test Results Conducted Out of Band Emission Measurement	27 28			
	4.5.2 4.5.3	Limits of Conducted Out of Band Emission Measurement Test Setup Test Instruments	28 28			
		Test Procedure Deviation from Test Standard				

4.5.6 EUT Operating Condition	
4.5.7 Test Results	. 29
5 Pictures of Test Arrangements	. 30
Annex A - Band Edge Measurement	. 31
Appendix – Information of the Testing Laboratories	. 32

Release Control Record

Issue No.	Description	Date Issued
RFBEKC-WTW-P20080403-1	Original release.	Sep. 14, 2020

1 Certificate of Conformity

Product:	Wireless Mouse
Brand:	DELL
Test Model:	MS5320Wt
Sample Status:	Engineering sample
Applicant:	LITE-ON Technology Corp.
Test Date:	Aug. 26 to Sep. 3, 2020
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Jessica Cheng / Senior Specialist

Date: Sep. 14, 2020

Date:

Sep. 14, 2020

Approved by :

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	N/A	Power supply is 1.5Vdc from battery			
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -12.26dB at 42.95MHz.			
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.			
15.247(b)	Conducted power	Pass	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.			
15.203	Antenna Requirement	Pass	No antenna connector is used.			

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2. For 2.4GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions	9kHz ~ 40GHz	2.63 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.61 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.43 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.42 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Mouse
Brand	DELL
Test Model	MS5320Wt
Status of EUT	Engineering sample
Power Supply Rating	1.5Vdc from battery
Modulation Type	GFSK
Transfer Rate	1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	0.7852mW
Antenna Type	Chip antenna with -2.56dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note: The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

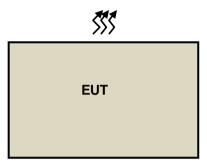
ONFIGURE		APPLICABLE	ТО		DECOR		
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION		
-	\checkmark	\checkmark	Note		-		
ere RE≥1	G: Radiated Err	ission above 1GHz	RE<	1G: Radiated E	mission below 1GHz		
PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement							
DTE: No need to concern of Conducted Emission due to the EUT is powered by battery							
Pre-Scan between a architectu	has been co available moo ire).		ates and ar	ntenna ports	node from all possible (if EUT with antenna listed below.		
EUT Configur		vailable Channel		d Channel	Modulation Type	Data Rate (Mbps)	
		0 to 39 (Below 1GHz):		19, 39	GFSK	1	
Pre-Scan between a architectu	has been co available moo ire).	(Below 1GHz): onducted to deter dulations, data ra	mine the v ates and ar	vorst-case m ntenna ports	node from all possible (if EUT with antenna	combinations	
Pre-Scan between a architectu Following	has been co available moo ire). channel(s) v	(Below 1GHz): onducted to deter dulations, data ra vas (were) select	mine the v ates and ar ted for the	vorst-case m ntenna ports final test as	node from all possible (if EUT with antenna listed below.	combinations diversity	
Pre-Scan between a architectu Following	has been co available moo ire). channel(s) v	(Below 1GHz): onducted to deter dulations, data ra vas (were) select vailable Channel	mine the v ates and ar ted for the	vorst-case m ntenna ports final test as I Channel	node from all possible (if EUT with antenna listed below. Modulation Type	combinations diversity Data Rate (Mbps)	
Pre-Scan between a architectu Following	has been co available moo ire). channel(s) v	(Below 1GHz): onducted to deter dulations, data ra vas (were) select	mine the v ates and ar ted for the	vorst-case m ntenna ports final test as	node from all possible (if EUT with antenna listed below.	combinations diversity	
 Pre-Scan between a architectu Following EUT Configur - mtenna Por mode. Pre-Scan between a architectu 	has been co available mod re). channel(s) v re Mode A t Conducted includes all t has been co available mod ire).	(Below 1GHz): onducted to deter dulations, data ra vas (were) select vailable Channel 0 to 39 d Measurement: est value of each onducted to deter dulations, data ra	mine the v ates and ar ted for the Testec	vorst-case m ntenna ports final test as I Channel 39 It only includ vorst-case m ntenna ports	node from all possible (if EUT with antenna listed below. <u>Modulation Type</u> GFSK les spectrum plot of w node from all possible (if EUT with antenna	combinations diversity Data Rate (Mbps) 1 orst value of each combinations	
 Pre-Scan between a architectu Following EUT Configur - ntenna Por mode. Pre-Scan between a architectu 	has been co available mod re). channel(s) v re Mode A re Mode A re Conducted includes all t has been co available mod ire). channel(s) v	(Below 1GHz): onducted to deter dulations, data ra vas (were) select vailable Channel 0 to 39 d Measurement: est value of each onducted to deter	mine the v ates and ar ted for the Testec	vorst-case m ntenna ports final test as I Channel 39 It only includ vorst-case m ntenna ports	node from all possible (if EUT with antenna listed below. <u>Modulation Type</u> GFSK les spectrum plot of w node from all possible (if EUT with antenna	combinations diversity Data Rate (Mbps) 1 orst value of each combinations	

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	23deg. C, 71%RH	1.5Vdc	lan Chang
RE<1G	30deg. C, 61%RH	1.5Vdc	lan Chang
APCM	25deg. C, 76%RH	1.5Vdc	Pirar Hsieh

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98%, duty factor shall be considered. Duty cycle = 2.35/21.05 = 0.112, Duty factor = $10 * \log(1/0.112) = 9.5$


RESEL 50 Ω AC 21.0500 ms		SENSE	#Avg	ALIGN AUTO Type: Pwr(RMS)	03:58:21 PM Aug 26, 2020 TRACE 1 2 3 4 5 6 TYPE WWW	Marker
ef 106.99 dBµ\	IFGain:Low			ΔΙ	DET P P N N N N	Select Marke
						Norn
ระการสารเสราะ	www.hantiterenty	unnesterlanger X2	102	un al manager and an	304_ 14/44200-1990-1990	De
						Fixe
B) 8.07 MHz		Y	FUNCTION	Sweep 50	Span 0 Hz .00 ms (1001 pts) FUNCTION VALUE	
t	24.65 ms	50.12 dBµV) 0.60 dB				Propertie
						M 0 1 c
	20000000 GHz B) 8.07 MHz	PN0: Fast → IFGain:Low Ref 106.99 dBµV vg/mexeduational/security/hypothesis 20000000 GHz B) 8.07 MHz #VB1 CL × t (Δ) 2.350 ms (Δ t (Δ) 2.350 ms (Δ	PNO: Fast → Trig: Free Rt IFGain:Low Trig: Free Rt #Atten: 10 df Ref 106.99 dBµV Ref 100.99 dBµV Ref 1	PHO: East Trig: Free Run #Atten: 10 dB tef 106.99 dBµV 0000000 GHz B) 8.07 MHz #VEW 50 MHz CL × t t t	PNO: Fast → Trig: Free Run #Atten: 10 dB All All All All All All All Al	PND: Fast → Trig: Free Run Trig: Free Run AMIKr3 21.05 ms Common Run Common Run Ref 106.99 dBµV Common Run Commo

3.4 Description of Support Units

The EUT has been tested as an independent unit together without any necessary accessory or support unit.

3.4.1 Configuration of System under Test

(Powered from battery)

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02 All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 19, 2020	Feb. 18, 2021
HP Preamplifier	8449B	3008A01201	Feb. 20, 2020	Feb. 19, 2021
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 19, 2020	Feb. 18, 2021
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 18, 2020	Mar. 17, 2021
Schwarzbeck Antenna	VULB 9168	139	Nov. 7, 2019	Nov. 6, 2020
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 24, 2019	Nov. 23, 2020
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Nov. 24, 2019	Nov. 23, 2020
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 9, 2020	Jul. 8, 2021
SUHNER RF cable With 3/4dB PAD	SF102	Cable-CH8-3.6m	Jul. 9, 2020	Jul. 8, 2021
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 16, 2020	Jun. 15, 2021
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 22, 2020	Jul. 21, 2021
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 24, 2019	Nov. 23, 2020
HigDELLass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2019	Sep. 22, 2020
Anritsu Power Sensor	MA2411B	0738404	Apr. 13, 2020	Apr. 12, 2021
Anritsu Power Meter	ML2495A	0842014	Apr. 13, 2020	Apr. 12, 2021

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

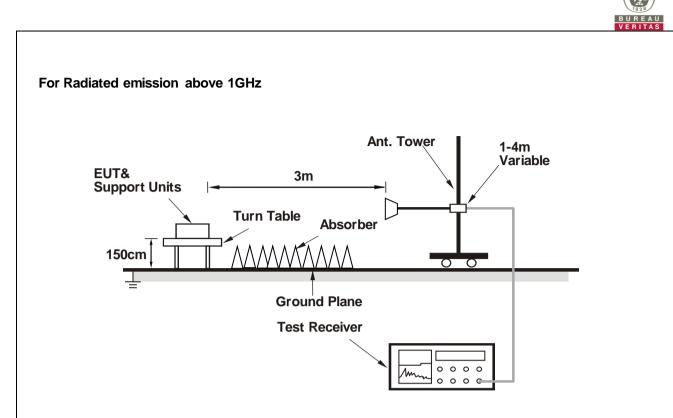
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (RBW = 1MHz, VBW = 430Hz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

Channel	TX Channel 0	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	46.03 PK	74.00	-27.97	2.50 H	353	44.71	1.32	
2	2390.00	35.54 AV	54.00	-18.46	2.50 H	353	34.22	1.32	
3	*2402.00	95.96 PK			2.50 H	353	94.58	1.38	
4	*2402.00	95.24 AV			2.50 H	353	93.86	1.38	
5	4804.00	50.47 PK	74.00	-23.53	3.65 H	149	41.30	9.17	
6	4804.00	39.06 AV	54.00	-14.94	3.65 H	149	29.89	9.17	
	Antenna Polarity & Test Distance : Vertical at 3 m								
		Emission			Antenna	Table	Raw	Correction	

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	44.91 PK	74.00	-29.09	3.87 V	119	43.59	1.32
2	2390.00	35.01 AV	54.00	-18.99	3.87 V	119	33.69	1.32
3	*2402.00	90.39 PK			3.87 V	119	89.01	1.38
4	*2402.00	89.75 AV			3.87 V	119	88.37	1.38
5	4804.00	49.43 PK	74.00	-24.57	2.15 V	264	40.26	9.17
6	4804.00	37.54 AV	54.00	-16.46	2.15 V	264	28.37	9.17

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Channel	TX Channel 19	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2440.00	96.38 PK			2.45 H	360	94.91	1.47	
2	*2440.00	95.78 AV			2.45 H	360	94.31	1.47	
3	4880.00	50.90 PK	74.00	-23.10	1.69 H	235	41.65	9.25	
4	4880.00	38.88 AV	54.00	-15.12	1.69 H	235	29.63	9.25	
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2440.00	90.82 PK			3.89 V	126	89.35	1.47	
2	*2440.00	89.95 AV			3.89 V	126	88.48	1.47	
3	4880.00	49.51 PK	74.00	-24.49	2.20 V	251	40.26	9.25	
4	4880.00	37.62 AV	54.00	-16.38	2.20 V	251	28.37	9.25	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Channel	TX Channel 39	Dotactor Eurotion	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	98.06 PK			3.73 H	345	96.38	1.68	
2	*2480.00	97.26 AV			3.73 H	345	95.58	1.68	
3	2483.50	60.45 PK	74.00	-13.55	2.37 H	345	58.74	1.71	
4	2483.50	39.23 AV	54.00	-14.77	2.37 H	345	37.52	1.71	
5	4960.00	50.62 PK	74.00	-23.38	1.28 H	54	41.39	9.23	
6	4960.00	38.64 AV	54.00	-15.36	1.28 H	54	29.41	9.23	

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	93.31 PK			3.80 V	114	91.63	1.68
2	*2480.00	91.97 AV			3.80 V	114	90.29	1.68
3	2483.50	55.92 PK	74.00	-18.08	3.80 V	114	54.21	1.71
4	2483.50	35.40 AV	54.00	-18.60	3.80 V	114	33.69	1.71
5	4960.00	49.81 PK	74.00	-24.19	1.69 V	233	40.58	9.23
6	4960.00	37.95 AV	54.00	-16.05	1.69 V	233	28.72	9.23

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

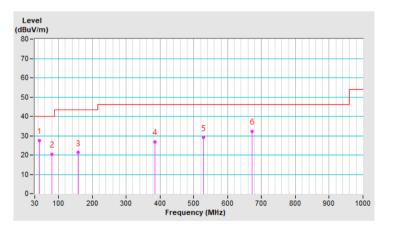
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

BELOW 1GHz WORST-CASE DATA

Channel	TX Channel 39	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz	Delector Function	QUASI-FEAK (QF)


	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	43.97	27.55 QP	40.00	-12.45	2.06 H	48	34.85	-7.30	
2	79.95	20.43 QP	40.00	-19.57	1.88 H	294	31.79	-11.36	
3	157.22	21.23 QP	43.50	-22.27	1.45 H	263	27.48	-6.25	
4	384.10	26.81 QP	46.00	-19.19	1.37 H	146	29.10	-2.29	
5	527.66	29.01 QP	46.00	-16.99	1.40 H	33	28.56	0.45	
6	671.56	32.30 QP	46.00	-13.70	1.26 H	289	28.83	3.47	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

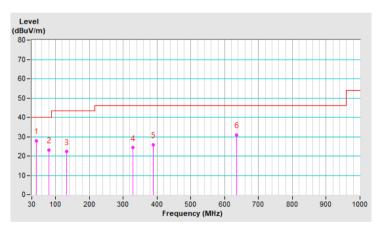
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Channel	TX Channel 39	Detector Eurotion	Quesi Desk (QD)
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	42.95	27.74 QP	40.00	-12.26	1.12 V	103	34.94	-7.20
2	80.00	23.10 QP	40.00	-16.90	1.37 V	98	34.47	-11.37
3	133.06	22.25 QP	43.50	-21.25	1.08 V	38	29.79	-7.54
4	329.39	24.27 QP	46.00	-21.73	1.92 V	23	27.51	-3.24
5	388.08	25.71 QP	46.00	-20.29	1.52 V	193	27.98	-2.27
6	634.70	30.95 QP	46.00	-15.05	1.10 V	106	27.74	3.21

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 6dB Bandwidth Measurement

4.2.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth $(VBW) \ge 3 \times RBW$, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.2.5 Deviation from Test Standard

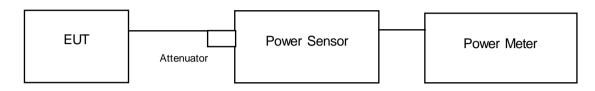
No deviation.

4.2.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.74	0.5	Pass
19	2440	0.73	0.5	Pass
39	2480	0.73	0.5	Pass



4.3 Conducted Output Power Measurement

4.3.1 Limits OF Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.2.6.

4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	0.7396	-1.31	30	Pass
19	2440	0.7534	-1.23	30	Pass
39	2480	0.7852	-1.05	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	0.705	-1.52
19	2440	0.723	-1.41
39	2480	0.745	-1.28

4.4 Power Spectral Density Measurement

4.4.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm per 3 kHz.

4.4.2 Test Setup

4.4.3 Test Instruments

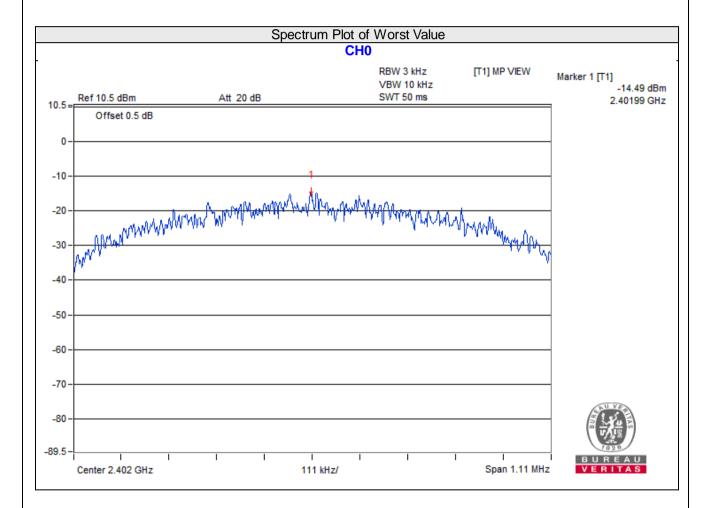
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Condition

Same as Item 4.2.6

4.4.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-14.49	8	Pass
19	2440	-14.79	8	Pass
39	2480	-15.08	8	Pass

4.5 Conducted Out of Band Emission Measurement

4.5.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.5.2 Test Setup

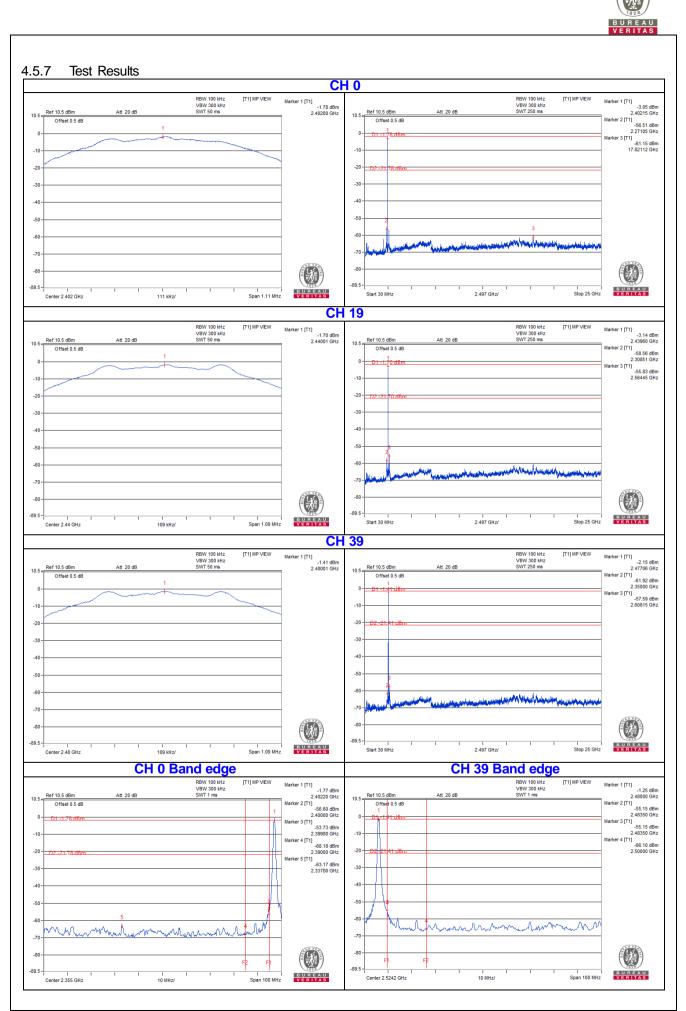
4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

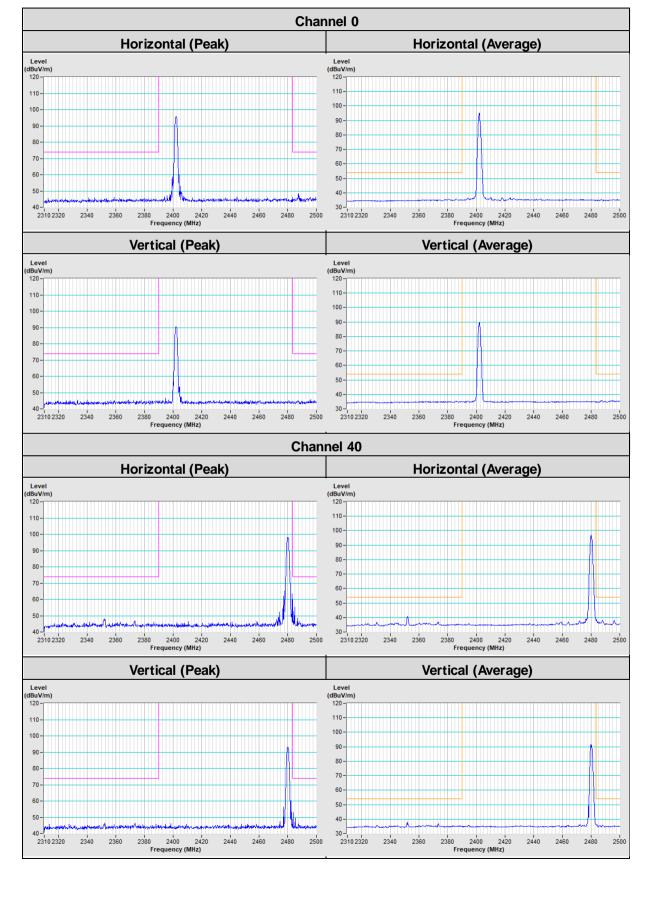

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.5.5 Deviation from Test Standard No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.2.6



5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----