TABLE OF CONTENTS LIST

APPLICANT: SEKAKU ELECTRON IND. CO., LTD.

FCC ID: H38WT-201

TEST REPORT:

PAGE 1.....COVER SHEET - GENERAL INFORMATION & TECHNICAL DESCR. PAGE 2.....TECHNICAL DESCRIPTION CONTINUED & RF POWER OUTPUT PAGE 3.....RF POWER OUTPUT CONDT. & MODULATION CHARACTERISTICS PAGE 4.....OCCUPIED BANDWIDTH PAGE 5.....FIELD STRENGTH OF SPURIOUS EMISSIONS PAGE 6.....METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS PAGE 7.....FREQUENCY STABILITY PAGE 8.....CERTIFICATION OF TECHNICAL DATA AND LIST OF TEST EQUIPMENT

EXHIBITS CONTANING:

EXHIBIT	1POWER OF ATTORNEY LETTER
EXHIBIT	2FCC ID LABEL SAMPLE AND SKETCH OF LOCATION
EXHIBIT	3AEXTERNAL FRONT VIEW PHOTOGRAPH
EXHIBIT	3BEXTERNAL REAR VIEW PHOTOGRAPH
EXHIBIT	3C-3EINTERNAL COMPONENT SIDE PHOTOGRAPH
EXHIBIT	3FINTERNAL SOLDER SIDE PHOTOGRAPH
EXHIBIT	4BLOCK DIAGRAM
EXHIBIT	5A-5BSCHEMATICS
EXHIBIT	6A-6GPARTS LIST
EXHIBIT	7A-7EUSER'S MANUAL
EXHIBIT	8AUDIO FREQUENCY RESPONSE GRAPH
EXHIBIT	9AUDIO INPUT VS DEVIATION GRAPH
EXHIBIT	10OCCUPIED BANDWIDTH PLOT - NO AUDIO
EXHIBIT	11OCCUPIED BANDWIDTH PLOT - 10 kHz TONE
EXHIBIT	12OCCUPIED BANDWIDTH PLOT - 15 kHz TONE
EXHIBIT	13A-13BCRYSTAL SPECIFICATIONS

GENERAL_INFORMATION_REQUIRED FOR_TYPE_ACCEPTANCE

- 2.983 (a,b,c) SEKAKU ELECTRON IND. CO., LTD. will manufacture the H38WT-201 in quantity, for use under FCC RULES PART 74.801, LOW POWER AUXILIARY STATIONS.
- 2.983 (d) TECHNICAL_DESCRIPTION

(1) Type of Emission: 160K0F3E Bn = 2M + 2DKM = 1000D = 68.0 KHz (Peak Deviation) K = 1Bn = 2(1K) + 2(68.0K)(1) = 2K + 136.0K = 138.0KHzM = 15,000D = 65 KHzK = 1Bn = 2(15K) + 2(65K) = 30 + 130 = 160KHz74.861(e)(5) ALLOWED AUTHORIZED BANDWIDTH = 200KHz. (2) Frequency Range: Part 74: 161.625-161.775MHz & 174-216MHz TEST FREQ = 214.84MHz. (3) Power Range and Controls:UNIT has no power controls. (4) Maximum Output Power Rating: 1.0 MilliWatts ERP. (5) DC Voltages and Current into Final Amplifier: FINAL AMPLIFIER ONLY 1.5V BATTERY Vce = 3.4 Volts Ice = 8.0 mA.(6) Function of each electron tube or semiconductor device or other active circuit device: IC1 LM358N AUDIO PREAMPLIFIER & LIMITER IC2 DS2101D Compressor Buffer TR1 STRS501 TR2 2SC241 Multiplier TR3 RB400D Multiplier TR4 XC6373A350PR Regulator TR5 XC6373A350PR POWER AMPLIFIER TR6 2SC2412K Regulator TR7 TR8 2SC2412K Buffer TR9 2SC2412K Tone Oscillator TR10 2SC2412K Buffer 2.983(d) (7) Complete Circuit Diagrams: The circuit diagram is included as EXHIBIT 5A-5B. The block diagram is included as EXHIBIT 4. The part list is included EXHIBIT 6A-6G.

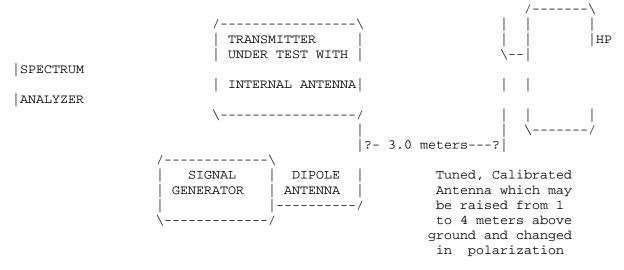
REPORT #: F:\CUS\S\SEK\SEK42T9.RPT
PAGE: 1

- 2.983(d) (8) Instruction book. The instruction manual is included as EXHIBIT 7A-7E in this report.
 - (9) Tune-up procedure. The tune-up procedure is given in page NA.
 - (10) Description of all circuitry and devices provided for determining and stabilizing frequency.

The transmitter frequency is controlled by a crystal, the crystal specifications are included in PAGE 13A-13B.

(11) Description of any circuits or devices employed for suppression of spurious radiation, for limiting modulation, and for limiting power. There are no devices or circuitry to limit the power, since this is a low power device. The interstage coupling between TR1, TR2, TR3, TR4, and TR6 as well as the low pass filter made up of L2, VC1, C26, L3, VC2, C28, L4, L6, VC3, & C29 suppress the harmonics.

Limiting Modulation: The transmitter audio circuitry is contained in IC2. The modulation limiting is also provided by IC1B.


Limiting Power: There is no provision for limiting power.

- (12) Digital modulation. This unit does not use digital modulation.
- 2.983(e) The data required by 2.985 through 2.997 is submitted below.
- 2.985(a) RF_power_output.

ERP was measured by the method described later in this report. The input power to the final stage was measured with a 1.5V supply connected in place of the 1.5V battery.

OUTPUT POWER: FOR 1.5 V OPERATION 1.0 mWATTS ERP

R.F. POWER OUTPUT

Equipment placed 1 meter above ground on a rotatable platform. The center of the Dipole antenna at the center of the platform and the output of the signal generator adjusted to produce the same meter reading as measured for the fundamental in the radiated emissions test.

2.987(a)(b) Modulation_characteristics:

AUDIO_FREQUENCY_RESPONSE

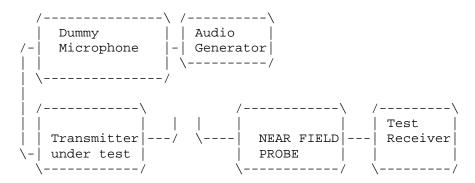
The audio frequency response was measured in accordance with TIA/EIA Specification 603 S2.2.6.2.1. with the follwoing exceptions;

Constant Deviation Test									
/\	/\ /\								
Dummy	Audio RMS								
/- Microphone	Generator /- VOLTMETER								
	\/ \/								
\/									
/									
/\	/\ /\								
	Test								
Transmitter /	\ NEAR FIELD Receiver								
\- under test	PROBE								
\/	\/								

1.The test receiver audio bandwidth was <50Hz to >20,000Hz. 2. Apply a 1000Hz tone and adjust the audio generator to produce 10% of the rated system deviation.

3. Measure frequency responce over the frequency range from 100Hz to 20,000Hz.

The audio frequency response curve is shown in Exhibit 8. AUDIO_LOW_PASS_FILTER The audio low pass filter is not required in this unit. APPLICANT: SEKAKU ELECTRON IND. CO., LTD. FCC ID: H38WT-201 REPORT #: F:\CUS\S\SEK\SEK42T9.RPT PAGE #: 3 2.989(c) Occupied_bandwidth: Using TIA/EIA 2.2.10 aAccoustic Microphone Sensitivity test procedure to determine if the UUT could be put into modulation limiting and limiting could not be reached, the maximum deviation was only +40KHz. Using this test procedure the frequency of maximum sensitivity was determined to be 500Hz.


a.

Test procedure diagram OCCUPIED BANDWIDTH MEASUREMENT

/\ /	\								
Acoustic Audio	ĺ								
/- Mic Spkr - Generator									
Chamber \	Chamber \/								
\/	j \/								
/\	/\ /	′\							
		Test							
Transmitter / \	NEAR FIELD	Receiver							
- under test	PROBE								
\/	\/ \	\/							

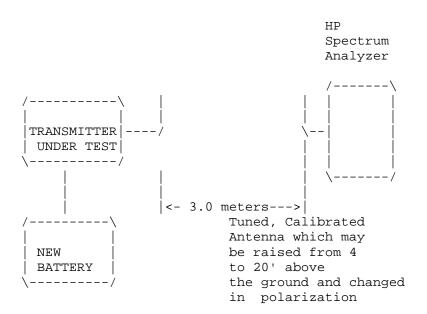
b. Since the UUT could not be put into modulation limiting with an acoustic coupling a dummy microphone was used to connect to the UUT and a test procedure similar to TIA/EIA-603 S2.2.11 was used to measure the occupied bandwidth. Plots were made of the frequency of maximum sensitivity, at 10KHz and at the highest frequency for the UUT. Data in the plots show that all sidebands beyond the authorized bandwidth are less than 0.5% of the unmodulated carrier. The plot show the transmitter modulated with 10,000 Hz(the highest modulation frequency), adjusted for 50% modulation plus 16 dB. The spectrum analyzer was set with the unmodulated carrier at the top of the screen. The test procedure diagram and occupied bandwidth plots follow.

Test procedure diagram OCCUPIED BANDWIDTH MEASUREMENT

REQUIREMENT: PART 74: 200kHz EMISSION BANDWIDTH.

2.993(a)(b) Field_strength_of_spurious_emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS


REQUIREMENTS: Emissions must be 43 +10log(Po) dB below the mean power output of the transmitter.

 $43 + 10 \log(0.001) = 43 - 10.0 = 30 \text{ dB}$

TEST DATA:

EMISSION FREQUENCY MHz @ 3	METER READING 3m dBuV	COAX LOSS dB	ACF dB	FIELD STRENGTH dBuV/m	ATT. LEVEL dB	MARGIN dB	ANT.
214.84 429.68 644.50 1074.18R	82.70 12.00 2.50 2.70	1.20 1.60 1.60 1.00	12.35 17.68 21.08 24.30	96.25 31.28 25.18 28.00	0.0 64.97 71.07 68.25	0.0 34.97 41.07 38.25	V V V V
1933.54	3.30	1.00	24.30	32.05	64.20	34.20	V V

METHOD OF MEASUREMENT: The procedure used was C63.4-1992 operated into its own built-in antenna at a height of 1.5 meters above the ground plane. The spectrum was scanned from 30 to at least the tenth harmonic of the fundamental using a HP model 8566B spectrum analyzer, an Eaton model 94455-1 Biconical Antenna, ElectroMetrics antennas models TDA, TDS-25-1, TDS-25-2 RGA 180. Measurements were made at the open field test site of TIMCO ENGINEERING INC. located at 6051 N.W. 19th LANE, GAINESVILLE, FL. 32605.

Equipment placed 4' above ground on a rotatable platform.

- 2.983(f) Photo_or_Drawing_of_Label: See Exhibit 2.
- 2.983(g) Photos_of_Equipment: See Exhibit 3A-3F.
- 2.997 Frequency Spectrum Investigated The Spectrum was investigated from 0.400 to at least the tenth harmonic of the fundamental.
- 2.999 Measurement_Procedures_for_Type_Acceptance:

Measurement techniques have been in accordance with EIA specifications and the FCC requirements.

2.909 Certification_of_Technical_Data_by_Engineers

We, the undersigned, certify that the enclosed measurements and enclosed data are true and correct.

S.S. SANDERS S.S. Sanders Engineer

TEST EQUIPMENT LIST

1.	Spectrum	Anal	lyzer:	Hew]	lett	Packar	rd	8566B	- (Opt	462,	W/	/
	preselect	or 8	35685A,	& ζ	Quasi	l-Peak	Ad	apter	$_{\rm HP}$	856	50A,	&	ΗP
	8449B -	OPT	H02	Cal.	. 6/2	26/98							

- 2. Signal Generator, Hewlett Packard 8640B, cal. 10/1/98
- 3. Eaton Biconnical Antenna Model 94455-1
- 20-200 MHz Serial No. 0997 Cal. 5/15/98
- 4. Electro-Metric Dipole Kit, 20-1000 MHz, Model TDA-30 10/15/98
- 5. Electro-Metric Horn 1-18 GHz, Model RGA-180, Cal. 8/15/98
- 6. Electro-Metric Antennas Model TDA-30/1-4,Cal. 10/15/98
- 7. Electro-Metric Line Impedance Stabilization Network Model No. EM-7821, Serial No. 101; 100KHz-30MHz 50uH. Cal.11/19/98
- Electro-Metric Line Impedance Stabilization Network Model No. EM-7820, Serial No. 2682; 10KHz-30MHz 50uH. Cal. 11/19/98
- 9. Special low loss cable was used above 1 GHz
- 10. Tenney Temperature Chamber