FCC 47 CFR MPE REPORT

SEIKAKU TECHNICAL GROUP LIMITED

PORTABLE SOUND SYSTEM WITH BLUETOOTH

Model Number: WS-5MU1

Additional Model: WS-5, WS-5M, READY 5B, READY 5B 1WR, READY 5

FCC ID: H38WS-5

Prepared for:	SEIKAKU TECHNICAL GROUP LIMITED				
	Offshore Chambers, P.O.Box 217 Apia, Samoa				
Prepared By:	EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2009017		
Date of Test:	Aug. 17~Sep. 05, 2020		
Date of Report:	Sep. 09, 2020		

EST Technology Co. ,Ltd Report No. ESTE-R2009017

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid^2$, $\mid H \mid^2$ or S
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}$, $ H ^{2}$ or S
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

EST Technology Co. ,Ltd Report No. ESTE-R2009017

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency	Peak output	Peak output	Target power	Antenna gain	
	(MHz)	power (dBm)	power (mW)	(dBm)	(dBi)	(Linear)
GFSK	2402	-3.75	0.422	-3±1	-0.58	0.875
	2441	-4.05	0.394	-4±1	-0.58	0.875
	2480	-4.78	0.333	-4±1	-0.58	0.875
	2402	-2.74	0.532	-2±1	-0.58	0.875
π /4-DQPSK	2441	-2.98	0.504	-2±1	-0.58	0.875
	2480	-3.73	0.424	-3±1	-0.58	0.875

3. Calculated Result and Limit

Mode	Target power	Antenna gain		Power Density (S)	Limited of Power Density	Test Result
	(dBm) (dl	(dBi)	(Linear)	2	(S) $(mW/cm2)$	
GFSK	-2	-0.58	0.875	0.00011	1	Compiles
π /4-DQPSK	-1	-0.58	0.875	0.00014	1	Compiles

End of Test Report

EST Technology Co. ,Ltd Report No. ESTE-R2009017