

BELICK STREET 🛡 SANTA CLARA, CALIFORNIA 95054 🛡 PHONE (408 748-3585 🛡 FAX (510) 489-63

Dosimetric Assessment Test Report

for the

DTC Communications

Tested and Evaluated In Accordance With FCC OET 65 Supplement C: 01-01

Prepared for

DTC Communications 486 Amherst Street Nashua, NH 03062

Engineering Statement: The measurements shown in this report were made in accordance with the procedures specified in Supplement C to OET Bulletin 65 of the Federal Communications Commission (FCC) Guidelines [FCC 2001] and Industry Canada RSS-102 for uncontrolled exposure. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment evaluated is capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1999.

SAR Evaluation Certificate of Compliance

APPLICANT: DTC Communications


Applicant Name and Address:	DTC Communications 486 Amherst Street Nashua, NH 03062
Test Location:	MET Laboratories, Inc. 3162 Belick Street Santa Clara, CA 95054 USA

EUT:	Palladium II 100 mW Video Transmitter Mod. # PD2-TX-100-S
Date of Receipt:	March 26, 2009
RF exposure environment:	Uncontrolled Exposure/General Population
RF exposure category:	Portable
Power supply:	12VDC
Antenna:	Dual Patch
Production/prototype:	Production
Modulation:	COFDM
Duty Cycle:	100%
TX Range:	2451-2479.5 MHz
Max SAR Measured	SAR 1g (W/kg)
Body:	0.080 mW/g

Shawn McMillen Wireless Manager, Electromagnetic Compatibility Lab

Photograph 1. View of the Transmitter

Photograph 2. View of the Antenna

Table of Contents

INTROD	UCTION	5
SAR DEF	FINITION	5
DESCRI	TION OF DEVICE UNDER TEST (EUT)	6
SAR ME	ASUREMENT SYSTEM	7
MEASU	REMENT SUMMARY	8
FLOW C	HART OF THE RECOMMENDED PRACTICES AND PROCEDURES	
	ALUATION PROCEDURES	
	PERFORMANCE CHECK	
	FED EQUIVALENT TISSUES	
	ETY LIMITS	
	SYSTEM SPECIFICATIONS	
1.1.	Specifications	
1.1.	Data Acquisition Electronic (DAE) System:	
1.3.	Phantom(s):	
SAR Mea	surement System	
1.4.	RX90BL Robot	
1.5.	Robot Controller	
1.6.	Light Beam Switch	
1.7.	Data Acquisition Electronics	
1.8.	Electo-Optical Converter (EOC)	
1.9.	Measurement Server	
1.10.	Dosimetric Probe	
1.11.	SAM Phantom	
1.12.	Planar Phantom	
1.13.	Validation Planar Phantom	
1.14.	Device Holder	
1.15.	System Validation Kits	
TEST EQ	UIPMENT LIST	
MEASUF	REMENT UNCERTANTIES	
REFERE	NCES	
EUT PHO	DTOS	

APPENDIX A - SAR MEASUREMENT DATA APPENDIX B - SYSTEM PERFORMANCE CHECK APPENDIX C – PROBE CALIBRATION CERTIFICATE APPENDIX D – DIPOLE CALIBRATION CERTIFICATE APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS APPENDIX F – PHANTOM CERTIFICATE OF CONFORMITY

INTRODUCTION

This measurement report demonstrates that the Palladium II 100 mW Video Transmitter Mod. # PD2-TX-100-S described within this report complies with the Specific Absorption Rate (SAR) RF exposure requirements specified in ANSI/IEEE Std. C95.1-1999 and FCC 47 CFR §2.1093 for the Uncontrolled Exposure/General population environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 were employed.

A description of the device under test, device operating configuration and test conditions, measurement and site description, methodology and procedures used in the evaluation, equipment used, detailed summary of the test results and the various provisions of the rules are included in this dosimetric assessment test report.

SAR DEFINITION

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1).

$$SAR = \frac{d}{dt}(\frac{dU}{dm}) = \frac{d}{dt}(\frac{dU}{\rho dv})$$

Figure 1.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2 / \rho$$

where:

 σ - conductivity of the tissue - simulant material (S/m)

 ρ - mass density of the tissue - simulant material (kg/m3)

E - Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

DESCRIPTION OF DEVICE UNDER TEST (EUT)

Applicant:	DTC Communications					
Description of Test Item:	Palladium II 100 mW Video Transmitter Mod. # PD2-TX-100-S					
Supply Voltage:	12VDC					
Antenna Type(s) Tested:	Dual Patch	Dual Patch				
	Item	Part Number	Model Number			
Accessories:	NA	NA	NA			
Modes of Operation:	COFDM					
Duty Cycle Tested:	100%					
Application Type:	Certification					
Exposure Category:	Uncontrolled Exposure/General Population					
FCC and IC Rule Part(s):	FCC Part. 15C					
Standards:	IEEE Std. 1528-2003, FCC	COET Bulletin 65, Supplement	C, Edition 01-01			

SAR MEASUREMENT SYSTEM

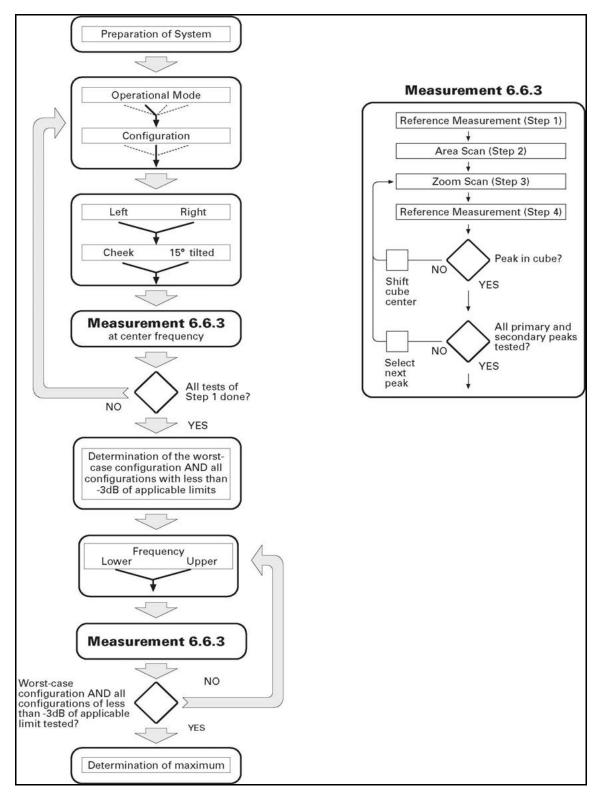
MET Laboratories, Inc SAR measurement facility utilizes the DASY4 Professional Dosimetric Assessment System (DASYTM) manufactured by Schmid & Partner Engineering AG (SPEAGTM) of Zurich, Switzerland for performing SAR compliance tests. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). The Cell controller system contain the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to

the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometergrade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit.

Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

MEASUREMENT SUMMARY

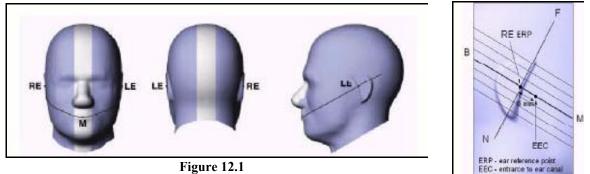
BODY SAR MEASUREMENT RESULTS (2450MHz) Band									
Freq (MHz)	Chan	Test Mode	Bandwidth	Power Type		ntom ction	Accessory	Positio n	Measured SAR 1g (W/kg)
2451	1	COFDM	1.25MHz	12VDC	Pla	anar	NA	Body	0.077
2466	2	COFDM	1.25MHz	12VDC	Pla	anar	NA	Body	0.080
2482.5	3	COFDM	1.25MHz	12VDC	Pla	anar	NA	Body	0.073
2454	4	COFDM	8MHz	12VDC	Planar		NA	Body	0.079
2466	5	COFDM	8MHz	12VDC	Pla	anar	NA	Body	0.077
2479.5	6	COFDM	8MHz	12VDC	Pla	anar	NA	Body	0.075
	ANSI/IEEE C95.1 1992 – SAFETY LIMIT 1.6 W/kg (averaged over 1 gram) Spatial Peak – Uncontrolled Environment/General Population								
		ture Type		/Hz Body			Date Tested		March 2, 2009
Diel	Dielectric Constant IEEE Target Measure					100%			
	εr 52.7			52.5			Ambient Temperature (C)		22.5
	Conducti	•	IEEE Target	Measured Fl		Flu	Fluid Temperature (C)		22
	σ (mho/m) 1.95 1.93			Fluid Depth		≥15cm			

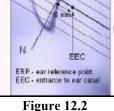


DETAILS OF SAR EVALUATION

The DTC Communication's Palladium II 100 mW Video Transmitter was determined to be compliant for localized Specific Absorption Rate based on the test provisions and conditions described below.

- 1. The EUT was tested for body SAR.
- 2. The EUT was placed into a test mode using DTC's protocol software.
- 3. The SAR evaluations were performed with the EUT powered by 12VDC Power Supply
- 4. The dielectric parameters of the simulated body fluid were measured prior to the evaluation using an 85070D Dielectric Probe Kit and an 8722D Network Analyzer.
- 5. The fluid and air temperature was measured prior to and after each SAR evaluation to ensure the temperature remained within $\pm 2 \text{ deg C}$ of the temperature of the fluid when the dielectric properties were measured.
- 6. During the SAR evaluations if a distribution produced several hotspots over the course of the area scan, each hotspot was evaluated separately.


FLOW CHART OF THE RECOMMENDED PRACTICES AND PROCEDURES



EAR Reference Point

Figure 12.1 shows the front, back and side views of the SAM Twin Phantom. The point M is the reference point for the center of the mouth, LE is the left ear reference point (ERP), and RE is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 12.2. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting. Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

Front, back and side view of SAM Twin Phantom

Side view of ERPs

HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the test device reference point located along the vertical centerline on the front of the device aligned to the ear reference point (See Fig. 12.3). The test device reference point was than located at the same level as the center of the ear reference point. The test device was positioned so that the vertical centerline was bisecting the front surface of the handset at it s top and bottom edges, positioning the ear reference point on the outer surface of the both the left and right head phantoms on the ear reference point.

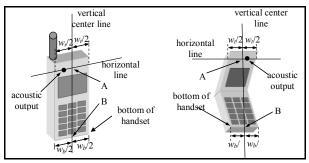
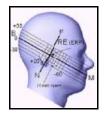


Figure 12.3 Handset Vertical Center & Horizontal Line Reference Points

POSITIONING FOR CHEEK/TOUCH

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom, such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.


3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).

4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.

5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 12.5)

Front, Side and Top View of Cheek/Touch Position

Side view with relevant markings

POSITIONING FOR EAR/15 DEGREE TILE

With the test device aligned in the Cheek/Touch Position:

1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.

2. The phone was then rotated around the horizontal line by 15 degree.

3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head.

Front, Side and Top View of Ear/15 Tilt Position

EVALUATION PROCEDURES

The evaluation was performed in the applicable area of the phantom depending on the type of device being tested.

- (i) For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
- (ii) For body-worn and face-held devices a planar phantom was used.

The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.

A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

For frequencies ≤ 4.5 GHz a 32mm x 32mm x 34mm (7x7x7 data points) zoom scan was assessed at the position where the greatest V/m was detected. For frequencies ≥ 4.5 GHz a 28mm x 28mm x 24mm (7x7x9 data points) zoom scan was assessed at the position where the greatest V/m was detected. The data at the surface was extrapolated since the distance from the probes sensors to the surface is 3.9cm. A least squares fourth-order polynomial was used to generate points between the probe detector and the inner surface of the phantom.

Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).

Z-Scan was determined as follows:

The Z-scan measures points along a vertical straight line. The line runs along a line normal to the inner surface of the phantom surface.

DATA EVALUATION PROCEDURES

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameters:	SensitivityConversion FactorDipole Compression Point	Norm _i , a_{i0} , a_{i1} , a_{i2} Conv F_i dcp_i
Device parameters:	- Frequency - Crest factor	f cf
Media parameters:	- Conductivity - Density	σ ρ

These parameters must be set correctly in the software. They can be found in the component documents or can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC - transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = Compensated signal of channel i (i = x, y, z) U_i = Input signal of channel i (i = x, y, z)cf = Crest factor of exciting field (DASY parameter) dcp_i = Diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{split} \mathrm{E-field probes}: \qquad & E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}} \\ \mathrm{H-field probes}: \qquad & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \\ \text{with } V_i = \mathrm{Compensated \ signal \ of \ channel \ i} \qquad & (\mathrm{i} = \mathrm{x}, \mathrm{y}, \mathrm{z}) \\ Norm_i = \mathrm{Sensor \ sensitivity \ of \ channel \ i} \qquad & (\mathrm{i} = \mathrm{x}, \mathrm{y}, \mathrm{z}) \\ \mu \mathrm{V}/(\mathrm{V/m})^2 \ \mathrm{for \ E-field \ probes} \\ ConvF = \mathrm{Sensitivity \ enhancement \ in \ solution} \\ a_{ij} = \mathrm{Sensor \ sensitivity \ factors \ for \ H-field \ probes} \\ f = \mathrm{Carrier \ frequency \ (GHz)} \\ E_i = \mathrm{Electric \ field \ strength \ of \ channel \ i \ in \ V/m} \\ H_i = \mathrm{Magnetic \ field \ strength \ of \ channel \ i \ in \ A/m} \end{split}$$

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770} \qquad \text{or} \qquad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm2 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with a 2450MHz dipole. The dielectric parameters of the simulated fluid were measured prior to the system performance check using an 85070D Dielectric Probe Kit and an 8722D Network Analyzer. A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of +10%. All results were normalized to 1W.

	Fluid Type		R 1g /kg)	Permit Consta	•	Conductivity	σ (mho/m)	Ambien	Fluid Temp	Fluid
Test Date	(MHz)	Calibrat ed Target	Measure d	IEEE Target	Measur ed	IEEE Target	Measured	t Temp. (C)	· (C)	Depth (cm)
3/2/2009	2450 Body	56 ±5%	56	52.7±5%	52.5	1.95±10%	1.93	22.6	21.7	≥15

Note: The ambient and fluid temperatures were measured prior to the fluid parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

SIMULATED EQUIVALENT TISSUES

Simulated Tissue Mixture				
Ingredient	2450MHz Head	2450MHz Body		
Water	46.7%	73.3%		
DGMBE	53.3%	26.7%		

SAR SAFETY LIMITS

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	4.0	20.0			

Notes:

•

- 1. Uncontrolled exposure environments are locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled exposure environments are locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure

ROBOT SYSTEM SPECIFICATIONS

1.1. **SPECIFICATIONS**

Posi	tioner:

Robot:	Staubli Unimation Corp. Robot Model: RX90
Repeatability:	0.02 mm
No. of axis:	6

1.2. **DATA ACQUISITION ELECTRONIC (DAE) SYSTEM:**

Cell Controller

	Processor:	Compaq Evo Clock Speed:2.4 GHz Operating System: Windows XP Professional
Data Converter		
	Features: Software: Connecting Lines:	Signal Amplifier, multiplexer, A/D converter, and control logic DASY4 software Optical downlink for data and status info. Optical uplink for commands and clock
Dasy4 Measurer	ment Server	
	Function: Hardware: Connections:	Real-time data evaluation for field measurements and surface detection PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model:	ET3DV6
Serial No.:	1793
Construction:	Triangular core fiber optic detection system
Frequency:	10 MHz to 6 GHz
Linearity:	\pm 0.2 dB (30 MHz to 3 GHz)

EX-Probe

Model:	EX3DV3
Serial No.	3511
Construction:	Triangular core
Frequency:	10 MHz to > 6 GHz
Linearity:	\pm 0.2 dB (30 MHz to 3 GHz)

mm 20 liters

PHANTOM(S): 1.3.

Validation & Evaluation Phan	tom
Type:	SAM V4.0C
Shell Materi	al: Fiberglass
Thickness:	$2.0 \pm 0.1 \text{ mm}$
Volume:	Approx. 20 lit

SAR Measurement System

Measurement System Diagram

1.4. <u>RX90BL ROBOT</u>

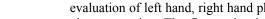
The Stäubli RX90BL Robot is a standard high precision 6-axis robot with an arm extension for accommodating the data acquisition electronics (DAE).

1.5. <u>ROBOT CONTROLLER</u>

The CS7MB Robot Controller system drives the robot motors. The system consists of a power supply, robot controller, and remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

1.6. LIGHT BEAM SWITCH

The Light Beam Switch (Probe alignment tool) allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



1.7. DATA ACQUISITION ELECTRONICS

The Data Acquisition Electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16-bit A/D converter and a command decoder and control logic unit. Some of the task the DAE performs is signal amplification, signal multiplexing, A/D conversion, and offset measurements. The DAE also contains the mechanical probe-mounting device, which contains two different sensor systems for frontal and sideways probe contacts used for probe collision detection and mechanical surface detection for controlling the distance between the probe and the inner surface of the phantom shell. Transmission from the DAE to the measurement server, via the EOC, is through

an optical downlink for data and status information as well as an optical uplink for commands and the clock.

evaluation of left hand, right hand phone usage as well as body mounted usage at the flat phantom region. The flat section is also used for system validation and the length and width of the flat section are at least 0.75 λ O and 0.6 λ O respectively at frequencies of 824 MHz and above (λO = wavelength in air).

Reference markings on the phantom top allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. A white cover is provided to cover the phantom during off-periods preventing water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. The phantom is filled with a tissue simulating liquid to a depth of at least 15 cm at each ear reference point. The bottom plate of the wooden table contains three pair of bolts for locking the device holder.

PLANAR PHANTOM 1.12.

The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld radio transceivers. The planar phantom is mounted on the wooden table of the DASY4 system.

MEASUREMENT SERVER

ELECTO-OPTICAL CONVERTER (EOC)

The Electro-Optical Converter performs the conversion between the optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC connects to, and transfers data to, the DASY4 measurement server. The EOC also contains the fiber optical surface detection system for controlling the distance between the probe and the inner surface of the phantom shell.

The Measurement Server performs time critical tasks such as signal filtering, all real-time data evaluation for field measurements and surface detection, controls

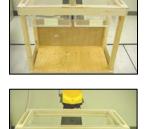
robot movements, and handles safety operation. The PC-operating system cannot interfere with these time critical processes. A watchdog supervises all connections, and disconnection of any of the cables to the measurement server will automatically

disarm the robot and disable all program-controlled robot movements.

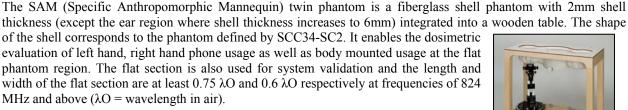
Dosimetric Probe is a symmetrical design with triangular core that incorporates three 3 mm long

1.10. **DOSIMETRIC PROBE**

dipoles arranged so that the overall response is close to isotropic. The probe sensors are covered by an outer protective shell, which is resistant to organic solvents i.e. glycol. The probe is equipped with an optical multi-fiber line, ending at the front of the probe tip, for optical surface detection. This line connects to the EOC box on the robot arm and provides automatic detection of the phantom surface. The optical surface detection works in transparent liquids and on diffuse reflecting surfaces with a repeatability of better than ± 0.1 mm.


SAM PHANTOM

thickness (except the ear region where shell thickness increases to 6mm) integrated into a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric


MET Report: MCS81423-SAR-FCC

DASY4

1.8.

1.9.

1.11.

1.13. VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted on the wooden table of the DASY4 system.

1.14. <u>DEVICE HOLDER</u>

The device holder is designed to cope with the different measurement positions in the three sections of the SAM phantom given in the standard. It has two scales, one for device rotation (with respect to the body axis) and one for device inclination (with respect to the line between the ear openings). The rotation center for both scales is the ear opening, thus the device needs no repositioning when changing the angles. The plane between the ear openings and the mouth tip has a rotation angle of 65° .

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The dielectric properties of the liquid conform to all the tabulated values [2-5]. Liquids are prepared according to Annex A and dielectric properties are measured according to Annex B.

1.15. SYSTEM VALIDATION KITS

Power Capability: > 100 W (f < 1 GHz); > 40 W (f > 1 GHz)

Construction: Symmetrical dipole with 1/4 balun Enables measurement of feed point impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: 300, 450, 835, 1900, 2450 MHz, 5-6GHz

Return loss: >20 dB at specified validation position

Dimensions: 300 MHz Dipole: Length: 396mm; Overall Height: 430 mm; Diameter: 6 mm
450 MHz Dipole: Length: 270 mm; Overall Height: 347 mm; Diameter: 6 mm
835 MHz Dipole: Length: 161 mm; Overall Height: 270 mm; Diameter: 3.6 mm
1900 MHz Dipole: Length: 68 mm; Overall Height: 219 mm; Diameter: 3.6 mm
2450 MHz Dipole: Length: 51.5 mm; Overall Height: 300 mm; Diameter: 3.6 mm
5-6GHz Dipole: Length: 26.0 mm; Overall Height: 170 mm; Diameter: 3.6 mm

TEST EQUIPMENT LIST

Test Equipment	Serial Number	Calibration Date
DASY4 System Robot EX3DV3 DAE3 2450MHz Dipole 5500MHz Dipole SAM Phantom V4.0C EUT Planar Phantom Validation Phantom	FO3/SX19A1/A/01 3511 584 1S2452 1S2571 N/A N/A N/A	N/A May 2008 April 2007 January 2009 January 2009 N/A N/A N/A
85070D Dielectric Probe Kt	N/A	N/A
83650B Signal Generator	3844A00910	June 2008
HP E4418B Power Meter	GB40205140	October 2008
Agilent E4407B	MY45102898	March 2008
HP 8482A Power Sensor	2607A11286	March 2008
HP 8722D Vector Network Analyzer	3S36140188	March 2008
Anritsu Power Meter ML2488A	6K00001832	March 2008
Anritsu Power Sensor	030864	March 2008
Mini-Circuits Power Amplifier	N902400810	N/A

MEASUREMENT UNCERTANTIES

Error Description	Tol. ±%	Prob. Dist.	Div.	c _i 1g	c _i 10g	Std Unc ±% (1g)	Std Unc ±% (10g)	v _i or v _{eff}
Measurement System		n						
Probe calibration	4.8	N	1	1	1	4.8	4.8	∞
Axial isotropy of the probe	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
Spherical isotropy of the probe	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	∞
Boundary effects	1.0	R	$\sqrt{3}$	1	1	4.8	4.8	∞
Probe linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Detection limit	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Readout electronics	1.0	N	1	1	1	1.0	1.0	8
Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Integration time	2.6	R	$\sqrt{3}$	1	1	0.8	0.8	∞
RF ambient conditions	3.0	R	$\sqrt{3}$	1	1	0.43	0.43	8
Mech. constraints of robot	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8 S
Probe positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8 S
Extrapolation & integration	1.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
Test Sample Related								
Device positioning	2.9	N	1	1	1	2.23	2.23	145
Device holder uncertainty	3.6	N	1	1	1	5.0	5.0	5
Power drift	5.0	R	$\sqrt{3}$			2.9	2.9	∞
Phantom and Setup								
Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid conductivity (measured)	2.5	N	1	0.64	0.43	1.6	1.1	8
Liquid permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	8
Liquid permittivity (measured)	2.5	N	1	0.6	0.5	1.5	1.2	x
Combined Standard Uncertaint	y (k=1)	RSS				10.3	10.0	
Expanded Uncertainty (k= 95% Confidence Level	2)					20.6	20.1	

UNCERTAINTY ASSESSMENT 300MHz-3GHz

Table:Worst-case uncertainty for DASY4 assessed according to IEEE P1528.

The budget is valid for the frequency range 300MHz to 3GHz and represents a worst-case analysis.

Error Description	Tol. ±%	Prob. Dist.	Div.	c _i 1g	c _i 10g	Std Unc ±% (1g)	Std Unc ±% (10g)	v _i or v _{eff}
Measurement System		1						
Probe calibration	4.8	Ν	1	1	1	8.3	8.3	8
Axial isotropy of the probe	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8 S
Spherical isotropy of the probe	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	8
Boundary effects	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8 S
Probe linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8 S
Detection limit	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8 S
Readout electronics	1.0	N	1	1	1	1.0	1.0	8 8
Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
RF ambient conditions	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Mech. constraints of robot	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
Probe positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8 S
Extrapolation & integration	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8 8
Test Sample Related								
Device positioning	2.9	N	1	1	1	2.9	2.9	145
Device holder uncertainty	3.6	N	1	1	1	3.6	3.6	5
Power drift	5.0	R	$\sqrt{3}$			2.9	2.9	∞
Phantom and Setup				P	-			
Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid conductivity (measured)	2.5	Ν	1	0.64	0.43	1.6	1.1	∞
Liquid permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	∞
Liquid permittivity (measured)	2.5	N	1	0.6	0.5	1.5	1.2	8
Combined Standard Uncertainty		RSS				12.3	12.1	
Expanded Uncertainty (k= 95% Confidence Level	2)					24.6	24.2	

UNCERTAINTY ASSESSMENT 3-6GHz

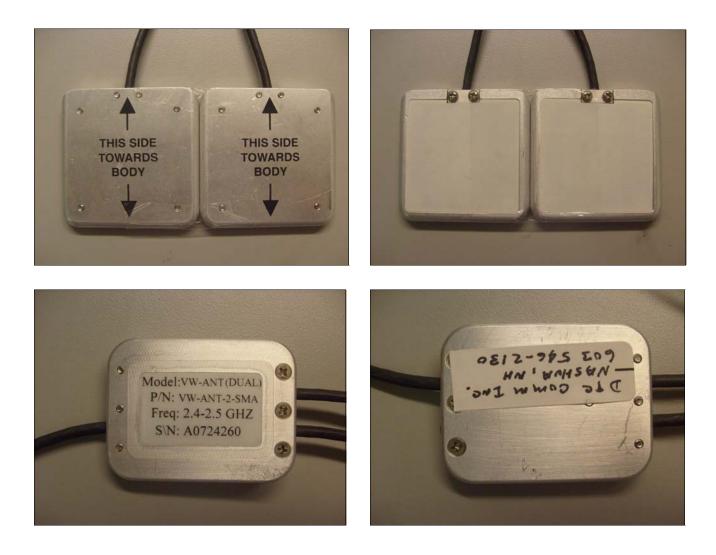
Table:

Worst-case uncertainty for DASY4 assessed according to IEEE P1528. The budget is valid for the frequency range 3-6GHz and represents a worst-case analysis.

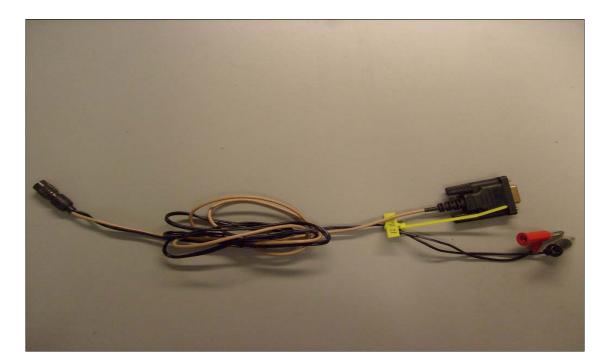
REFERENCES

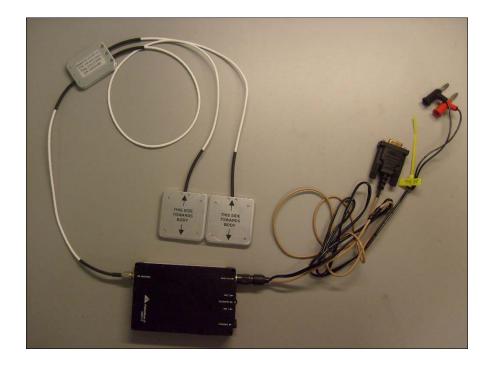
- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Aug. 1992.
- [3] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [5] IEEE Standards Coordinating Committee 34, IEEE 1528 (August 2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb.1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric Evaluation Of Mobile Communications Equipment With Known Precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz - 300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgen ssische Technische Hoschschule Z rich, Dosimetric Evaluation of the Cellular Phone.
- [20] Federal Communications Commission, Radiofrequency radiation exposure evaluation: portable devices, Rule Part 47 CFR 2.1093: 1999.
- [21] Health Canada, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Safety Code 6.

[22] Industry Canada, Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields, Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.


Electromagnetic Compatibility FCC OET 65 Supplement C: 01-10

EUT PHOTOS




Electromagnetic Compatibility FCC OET 65 Supplement C: 01-10

Dual Patch Antenna

Setup Pictures

APPENDIX A - SAR MEASUREMENT DATA

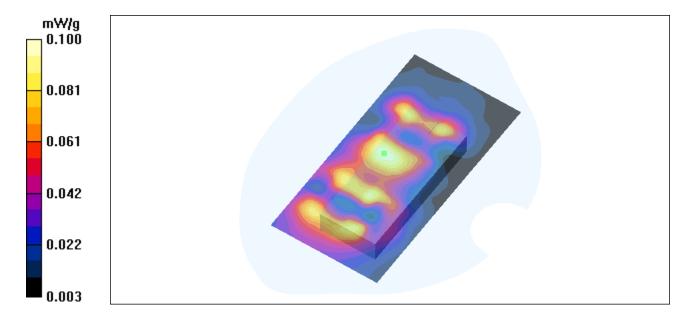
2451MHz 1.25MHz Bandwidth Body

Date/Time: 3/2/2009 1:25:32 PM

DUT: DTC; Type: PD2-TX-100-S

Medium Notes: ambitent temp: 22.5 deg C, Fluid Temp 22.0 deg C.

Communication System: DTS ; ; Frequency: 2451 MHz;Duty Cycle: 1:1 Medium: M2437 Medium parameters used (interpolated): f = 2451 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 4/2/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (101x201x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.100 mW/g

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 5.81 V/m; Power Drift = 0.204 dB Peak SAR (extrapolated) = 0.137 W/kg **SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.045 mW/g Maximum value of SAR (measured) = 0.094 mW/g**

2466MHz 1.25MHz Bandwidth Body

Date/Time: 3/2/2009 2:19:46 PM

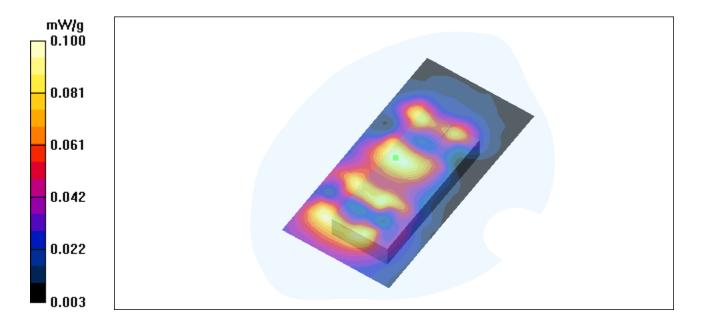
DUT: DTC; Type: PD2-TX-100-S

Medium Notes: ambitent temp: 22.5 deg C, Fluid Temp 22.0 deg C.

Communication System: DTS ; ; Frequency: 2466 MHz;Duty Cycle: 1:1 Medium: M2437 Medium parameters used (interpolated): f = 2466 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 3mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn584; Calibrated: 4/2/2007

- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (101x201x1): Measurement grid: dx=10mm, dy=10mmMaximum value of SAR (interpolated) = 0.100 mW/g

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 6.18 V/m; Power Drift = -0.104 dB Peak SAR (extrapolated) = 0.146 W/kg **SAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.046 mW/g Maximum value of SAR (measured) = 0.098 mW/g**

2482.5MHz 1.25MHz Bandwidth Body

Date/Time: 3/2/2009 2:55:47 PM

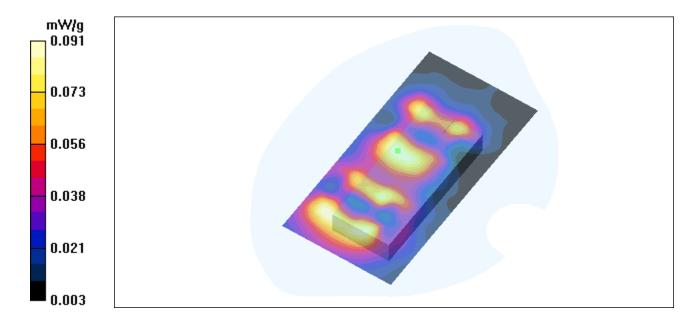
DUT: DTC; Type: PD2-TX-100-S

Medium Notes: ambitent temp: 22.5 deg C, Fluid Temp 22.0 deg C.

Communication System: DTS ; ; Frequency: 2482.5 MHz;Duty Cycle: 1:1 Medium: M2437 Medium parameters used (interpolated): f = 2482.5 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 3mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn584; Calibrated: 4/2/2007

- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (101x201x1): Measurement grid: dx=10mm, dy=10mmMaximum value of SAR (interpolated) = 0.091 mW/g

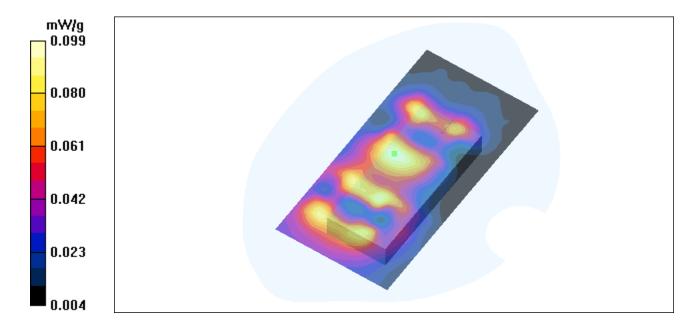
Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 5.73 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 0.133 W/kg **SAR(1 g) = 0.073 mW/g; SAR(10 g) = 0.042 mW/g Maximum value of SAR (measured) = 0.090 mW/g**

2454MHz 8MHz Bandwidth Body

Date/Time: 3/2/2009 3:28:46 PM

DUT: DTC; Type: PD2-TX-100-S

Medium Notes: ambitent temp: 22.5 deg C, Fluid Temp 22.0 deg C.


Communication System: DTS ; ; Frequency: 2454 MHz;Duty Cycle: 1:1 Medium: M2437 Medium parameters used (interpolated): f = 2454 MHz; $\sigma = 1.93$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 4/2/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (101x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.099 mW/g

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 5.96 V/m; Power Drift = 0.068 dB Peak SAR (extrapolated) = 0.140 W/kg **SAR(1 g) = 0.079 mW/g; SAR(10 g) = 0.046 mW/g Maximum value of SAR (measured) = 0.096 mW/g**

2466MHz 8MHz Bandwidth Body

Date/Time: 3/2/2009 4:22:44 PM

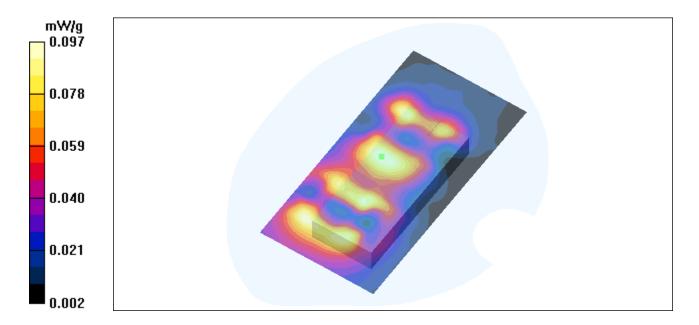
DUT: DTC; Type: PD2-TX-100-S

Medium Notes: ambitent temp: 22.5 deg C, Fluid Temp 22.0 deg C.

Communication System: DTS ; ; Frequency: 2466 MHz;Duty Cycle: 1:1 Medium: M2437 Medium parameters used (interpolated): f = 2466 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 3mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn584; Calibrated: 4/2/2007

- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (101x201x1): Measurement grid: dx=10mm, dy=10mmMaximum value of SAR (interpolated) = 0.097 mW/g

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 6.06 V/m; Power Drift = -0.136 dB Peak SAR (extrapolated) = 0.141 W/kg **SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.045 mW/g Maximum value of SAR (measured) = 0.094 mW/g**

2479.5MHz 8MHz Bandwidth Body

Date/Time: 3/2/2009 4:56:52 PM

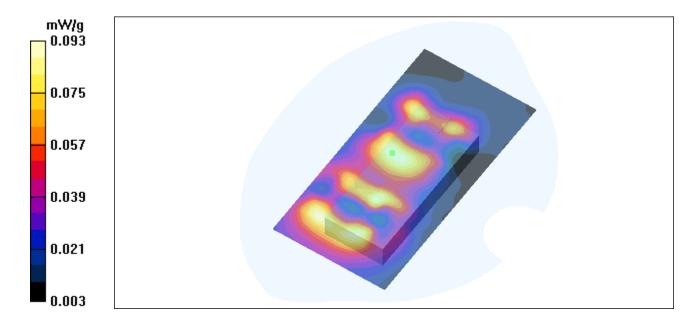
DUT: DTC; Type: PD2-TX-100-S

Medium Notes: ambitent temp: 22.5 deg C, Fluid Temp 22.0 deg C.

Communication System: DTS ; ; Frequency: 2479.5 MHz;Duty Cycle: 1:1 Medium: M2437 Medium parameters used (interpolated): f = 2479.5 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 3mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn584; Calibrated: 4/2/2007

- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (101x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.093 mW/g

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 5.88 V/m; Power Drift = 0.024 dB Peak SAR (extrapolated) = 0.137 W/kg **SAR(1 g) = 0.075 mW/g; SAR(10 g) = 0.043 mW/g Maximum value of SAR (measured) = 0.090 mW/g**

APPENDIX B - SYSTEM PERFORMANCE CHECK

2450MHz Body Verification

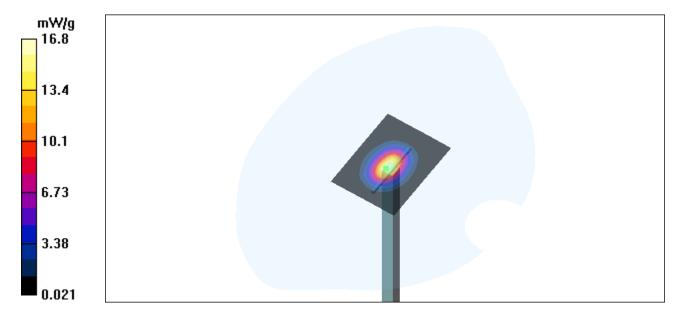
Date/Time: 3/2/2009 9:16:25 AM

DUT: Dipole 2450 MHz; Type: 1S2452

Communication System: CW; ; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.93$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn584; Calibrated: 4/2/2007

- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.9 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.1 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 28.7 W/kg **SAR(1 g) = 14 mW/g; SAR(10 g) = 6.4 mW/g** Maximum value of SAR (measured) = 16.0 mW/g

APPENDIX C – PROBE CALIBRATION CERTIFICATE

	ch, Switzerland	BCMEA (C C Z Z	Servizio svizzero di taratura
Accredited by the Swiss Accredita The Swiss Accreditation Servic fultilateral Agreement for the r	e is one of the signatori	es to the EA	on No.: SCS 108
Client MET Laborato			lo: EX3-3511_May08
CALIBRATION	CERTIFICAT	Е	
Object	EX3DV3 - SN:3	511	
Calibration procedure(s)		QA CAL-14.v3 and QA CAL-23.v edure for dosimetric E-field probe	
Calibration date:	May 16, 2008		
Condition of the calibrated item	In Tolerance		
		ory facility: environment temperature (22 ± 3)°	°C and humidity < 70%.
Calibration Equipment used (M&		ory facility: environment temperature $(22 \pm 3)^{\circ}$	C and humidity < 70%.
		ory facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Primary Standards Power meter E4419B	TE critical for calibration)	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788)	Scheduled Calibration Apr-09
Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration) ID # GB41293874 MY41495277	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788)	Scheduled Calibration Apr-09 Apr-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788)	Scheduled Calibration Apr-09 Apr-09 Apr-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00719)	Scheduled Calibration Apr-09 Apr-09 Apr-09 Aug-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	TE critical for calibration) ID # GB41293874 - MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b)	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00719) 31-Mar-08 (No. 217-00787)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	TE critical for calibration) ID # GB41293874 - MY41495277 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5089 (30b)	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00720)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Aug-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE critical for calibration) ID # GB41293874 - MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b)	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00719) 31-Mar-08 (No. 217-00787)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (3b) SN: 3013	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00719) 31-Mar-08 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. ES3-3013_Jan08)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Jan-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Jan-09 Sep-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	TE critical for calibration) ID # GB41293874 - MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID #	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Jan-09 Sep-08 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 _ MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 5129 (30b) SN: 660 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 31-Mar-08 (No. 217-00797) 34-Aug-07 (No. 217-00720) 2-Jan-08 (No. E33-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) Function	Scheduled Calibration Apr-09 Apr-09 Aug-08 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 _ MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 56129 SN: 660 ID # US3642U01700 US37390585	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5129 (3cb) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Katja Pokovic	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 31-Mar-08 (No. 217-00789) 31-Mar-08 (No. 217-00787) 8-Aug-07 (No. 217-00787) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) Function Technical Manager	Scheduled Calibration Apr-09 Apr-09 Aug-08 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 _ MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 5129 (30b) SN: 660 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 31-Mar-08 (No. 217-00797) 34-Aug-07 (No. 217-00720) 2-Jan-08 (No. 53-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Scheduled Calibration Apr-09 Apr-09 Aug-08 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-08

Certificate No: EX3-3511_May08

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- SWISS CP NO CP NO CP NO S ST
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement conter) i.e. $\vartheta = 0$ is normal to probe axis
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3511_May08

Page 2 of 9

Probe EX3DV3

SN:3511

Manufactured: Last calibrated: Recalibrated: December 15, 2003 January 23, 2006 May 16, 2008

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3511_May08

Page 3 of 9

EX3DV3 SN:3511

May 16, 2008

DASY - Parameters of Probe: EX3DV3 SN:3511

Sensitivity in Free Space ^A			Diode C	ompression ^B
NormX	0.77 ± 10.1%	μ V/(V/m) ²	DCP X	93 mV
NormY	0.61 ± 10.1%	μV/(V/m) ²	DCP Y	93 mV
NormZ	0.62 ± 10.1%	μ V/(V/m) ²	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz

0 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	9.0	5.4	
SAR _{be} [%]	With Correction Algorithm	0.5	0.2	

TSL

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	6.8	3.9	
SAR _{be} [%]	With Correction Algorithm	0.4	0.3	

Sensor Offset

Probe Tip to Sensor Center

1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

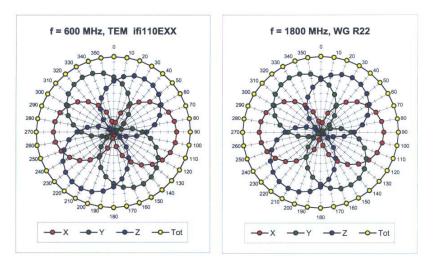
 $^{\rm B}$ Numerical linearization parameter: uncertainty not required.

Certificate No: EX3-3511_May08

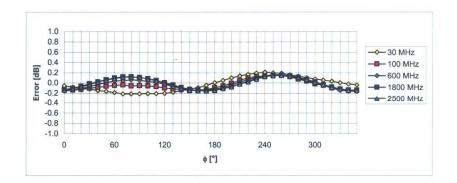
Page 4 of 9

EX3DV3 SN:3511

May 16, 2008

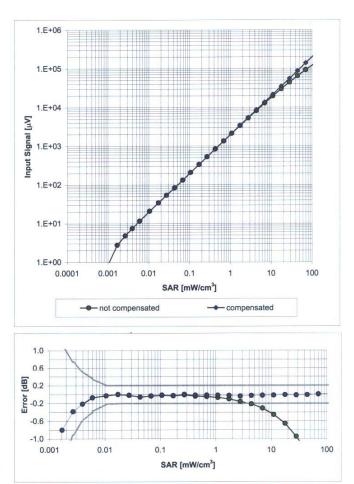

(TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5 1.4 1.3 Frequency response (normalized) 1.0 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz] --- TEM

Frequency Response of E-Field


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

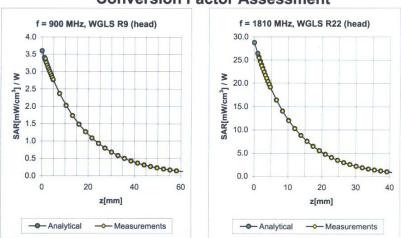
Certificate No: EX3-3511_May08

Page 5 of 9


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Certificate No: EX3-3511_May08

Page 6 of 9



Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

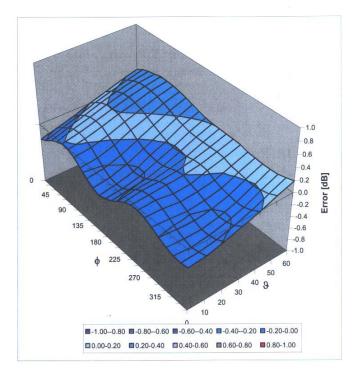
Certificate No: EX3-3511_May08

Page 7 of 9

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.23	1.14	9.56 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.20	1.13	8.40 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.23	1.02	7.67 ± 11.0% (k=2)
2600	± 50 / ± 100	Head	39.0 ± 5%	1.96 ± 5%	0.10	1.05	7.59 ± 11.0% (k=2)
5200	± 50 / ± 100	Head	36.0 ± 5%	4.66 ± 5%	0.40	1.70	5.04 ± 13.1% (k=2)
5500	± 50 / ± 100	Head	35.6 ± 5%	4.96 ± 5%	0.43	1.70	4.61 ± 13.1% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.45	1.70	4.53 ± 13.1% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.25	1.19	9.73 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.28	1.02	9.04 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.30	1.05	7.89 ± 11.0% (k=2)
2600	± 50 / ± 100	Body	52.5 ± 5%	2.16 ± 5%	0.15	1.05	7.34 ± 11.0% (k=2)
4950	± 50 / ± 100	Body	49.4 ± 5%	5.01 ± 5%	0.38	1.68	4.64 ± 13.1% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.38	1.68	4.61 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.38	1.68	4.40 ± 13.1% (k=2)
5800	±-50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.30	1.68	4.25 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: EX3-3511_May08

Page 8 of 9

EX3DV3 SN:3511

May 16, 2008

Deviation from Isotropy in HSL Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3511_May08

Page 9 of 9

APPENDIX D – DIPOLE CALIBRATION CERTIFICATE

CALIBRATION CERTIFICATE

Object:	2450MHz Validation Dipole
Calibration Procedure:	Calibration procedure for a validation dipole
Calibration Date:	1/13/09
Condition of the Calibrated Item:	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in a closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%

Calibration equipment used

Model Type	Serial Number	MET Asset #	Cal Date
Anritsu Power Meter ML2488A	6K00001832	1S2430	March 2008
Anritsu Power Sensor	030864	1\$2432	March 2008
HP E4418B Power Meter	GB40205140	1\$2276	October 2008
HP 8482A Power Sensor	2607A11286	1S2140	March 2008
83650B Signal Generator	3844A00910	1S2278	May 2008
HP 8722D Vector Network Analyzer	3S36140188	1\$2272	March 2008

Calibrated by: Anderson Soungpanya	Test Technician	A.J.
Name	Function	Signature

This calibration certificate shall not be reproduced except in full

Date of Issue: January 13, 2009

Calibration procedure for validation dipole

Calibration is performed according to the following standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz – 3GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Bulletin 65 Supplement C (Edition01-01).

Additional Documents

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All Figures stated in the certificate are valid at the frequency indicated.
- Antenna check: The antenna is checked for straightness using a straight edge placed parallel to the dipole arms prior to installing it against the phantom surface.
- The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Antenna flatness: The spacer thickness used for the 2450MHz dipole is 10.00mm +/- 0.2mm. To insure the antenna is within +/- 2 degrees of flatness to the phantom surface use a caliper to measure the dipole ends from the surface of the phantom.
- Vector Network Analyzer: The network analyzer is calibrated as per the user's manual.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. A Return Loss >20dB ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No Uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1W at the antenna connector. No Uncertainty required
- SAR for nominal head and muscle parameters: The measured TSL parameters are used to calculate the SAR results.

Measurement Conditions DASY system configuration

DASY system configuration		
DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Planar Validation Phantom	1S2450
Dipole Spacer		
Distance Dipole Center-TSL	10.00mm ± 0.2mm	With spacer
Area Scan resolution	dx, dy = 10mm	
Zoom Scan resolution	dx, dy, dz = 5mm	
Frequency	$2450MHz \pm 1MHz$	

Measurement Uncertainty of Dipole Calibration

Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	с _і 1g	Standard Uncertainty ±% (1g)
Anritsu Power Meter ML2488A	± 1.4	normal	2	1	± 0.7
Anritsu Power Sensor	± 1.4	normal	2	1	± 0.7
HP E4418B Power Meter	± 0.2	normal	2	1	± 0.1
HP 8482A Power Sensor	± 0.8	normal	2	1	± 0.4
83650B Signal Generator	± 2.0	normal	2	1	± 1.0
HP 8722D Vector Network Analyzer	± 2.0	normal	2	1	± 1.0
	± 3.9				

Head TSL Parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL Parameters	22.0 °C	39.2	1.88
Measured Head TSL Parameters	22.0 °C	39.2 ±5%	$1.88 \pm 5\%$

SAR results with Head TSL and system uncertainty

SAR averaged over 1 cm ³ (1g) of Head TSL	Condition	15.7 mW/g
SAR Normalized	Normalized to 1 W	62.8 mW/g
SAR for nominal Head TSL Parameters	Normalized to 1W	62.8 ± 24.29% mW/g (k=2)

SAR averaged over 1 cm ³ (10g) of Head TSL	Condition	7.08 mW/g
SAR Normalized	Normalized to 1 W	28.32 mW/g
SAR for nominal Head TSL Parameters	Normalized to 1 W	$28.32 \pm 23.51\%$ mW/g (k=2)

Muscle TSL Parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL Parameters	22.0 °C	52.5	1.93
Measured Head TSL Parameters	22.0 °C	52.5 ±5%	1.93 ±5%

SAR results with Muscle TSL and system uncertainty

SAR averaged over 1 cm ³ (1g) of Head TSL	Condition	14 mW/g
SAR Normalized	Normalized to 1 W	56.0 mW/g
SAR for nominal Head TSL Parameters	Normalized to 1 W	56.0 ± 24.29% mW/g (k=2)

SAR averaged over 1 cm ³ (10g) of Head TSL	Condition	6.4 mW/g
SAR Normalized	Normalized to 1 W	25.6 mW/g
SAR for nominal Head TSL Parameters	Normalized to 1 W	25.6 ± 23.51% mW/g (k=2)

2450MHz Head

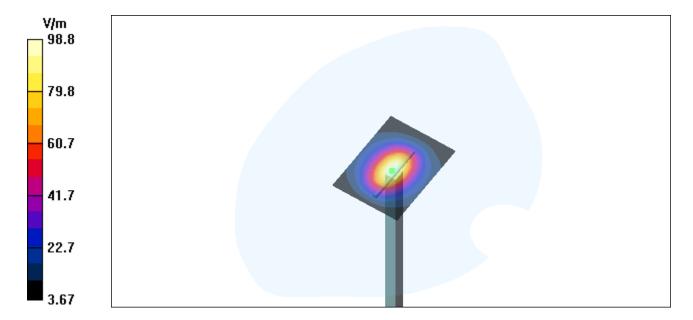
Date/Time: 1/13/2009 6:15:09 PM

DUT: Dipole 2450 MHz; Type: 1S2570

Communication System: CW; ; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: H2450 Medium parameters used: $\sigma = 1.88$ mho/m, $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 2450

MHz; $\sigma = 1.88$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

- Probe: EX3DV3 - SN3511; ConvF(7.67, 7.67, 7.67); Calibrated: 5/16/2008


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn584; Calibrated: 4/2/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of Total (interpolated) = 98.8 V/m

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.1 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 15.7 mW/g; SAR(10 g) = 7.08 mW/g Maximum value of SAR (measured) = 17.7 mW/g

2450MHz Body

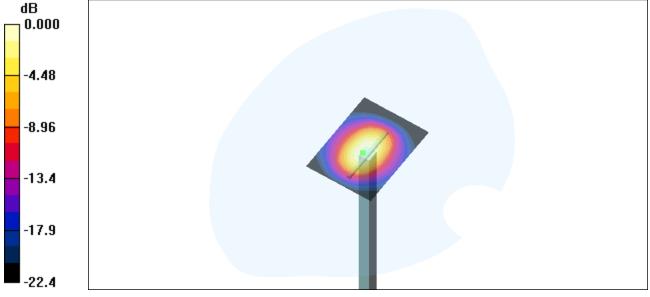
Date/Time: 1/13/2009 11:10:30 AM

DUT: Dipole 2450 MHz; Type: 1S2570

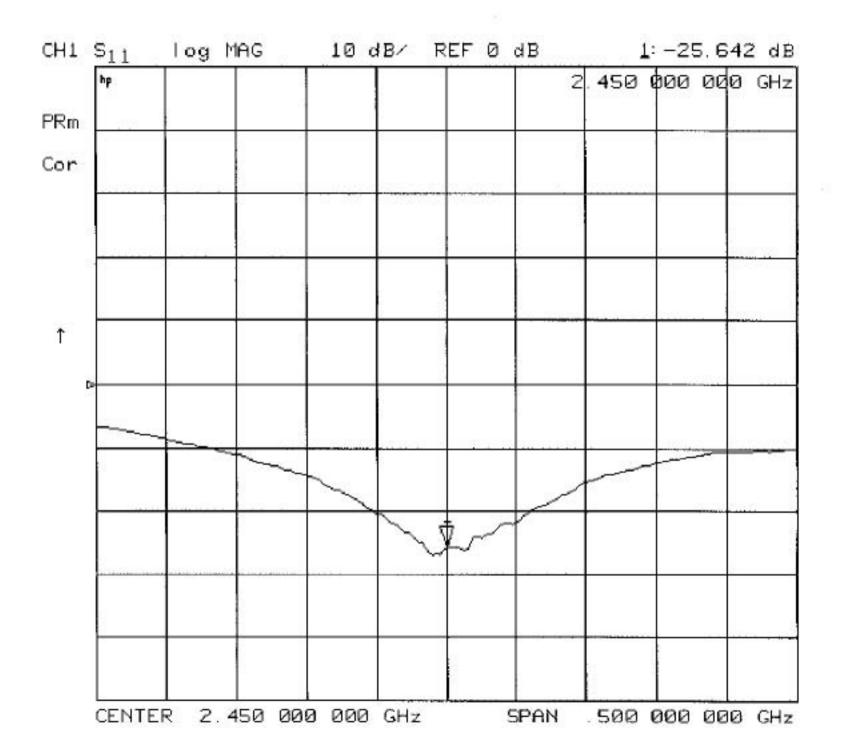
Communication System: CW; ; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

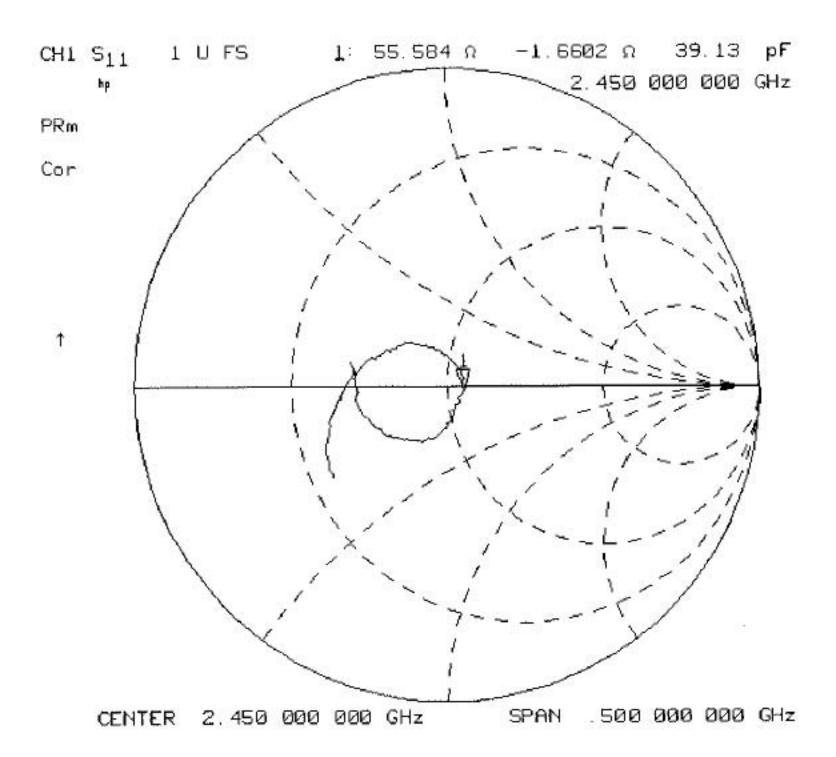
- Probe: EX3DV3 - SN3511; ConvF(7.89, 7.89, 7.89); Calibrated: 5/16/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn584; Calibrated: 4/2/2007

- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310


- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.8 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.3 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 28.6 W/kg **SAR(1 g) = 14 mW/g; SAR(10 g) = 6.4 mW/g** Maximum value of SAR (measured) = 16.0 mW/g

 $0 \, dB = 16.0 \, mW/g$

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

Title SubTitle March 2, 2009 08:24 AM

е'	e''	
52.606(14.0222	
52.594	14.0280	
52.587(14.0448	
52.584	14.0500	
52.580	14.0816	
52.576 [°]	14.0906	
52.580 [°]	14.1029	
52.554 [,]	14.1115	
52.560	14.1291	
52.551 [°]	14.1309	
52.560	14.1408	
52.550	14.1559	
52.551	14.1531	
52.552	14.1729	
52.527	14.1682	
52.533	14.1669	
52.526	14.1835	
52.531	14.1729	
52.531	14.1739	
52.528	14.1826	
52.529	14.1703	
52.515	14.1742	
52.512 [,]	14.1715	
52.510 [,]	14.1669	
52.499	14.1724	
52.500	14.1938	
52.498	14.1686	
52.488'		
52.470	14.1625	
52.466	14.1635	
52.470	14.1789	
52.463!	14.1877	
	52.606(52.594; 52.587(52.580; 52.580; 52.576 52.580; 52.554; 52.550; 52.551; 52.550; 52.551; 52.526; 52.527; 52.522; 52.527; 52.522; 52.522; 52.5231; 52.526; 52.5231; 52.526; 52.5231; 52.528; 52.529; 52.5212; 52.529; 52.512; 52.529; 52.512; 52.529; 52.512; 52.529; 52.512; 52.529; 52.512; 52.529; 52.512; 52.529; 52.512; 52.529; 52.512; 52.520; 52.490; 52.400; 52.	52.606(14.022252.594:14.028052.587(14.044852.580!14.081652.580!14.081652.57614.090652.58014.102952.55414.111552.560114.129152.55114.130952.550114.130952.550214.155952.551114.153152.552114.153152.552114.153152.552114.168252.552114.168252.523114.166952.523114.172952.523114.172952.523114.173952.523114.173952.523114.173952.523114.174252.523114.174252.515114.174252.529114.170352.515214.174252.500114.166952.4993114.174452.500114.168652.4993114.170452.4993114.170452.493114.170452.493114.170452.470114.162552.470114.162552.470114.163552.470114.163552.470114.163552.470114.163552.470114.1789

2.470000000 Gł	52.438!	14.1848
2.47200000 Gł	52.442 [,]	14.1776
2.47400000 Gł	52.434	14.2108
2.47600000 Gł	52.417(14.1997
2.47800000 Gł	52.420	14.2169
2.48000000 Gł	52.407	14.2187
2.482000000 Gł	52.393(14.2308
2.484000000 Gł	52.380	14.2305
2.48600000 Gł	52.360	14.2403
2.488000000 Gł	52.357	14.2551
2.49000000 Gł	52.347	14.2622
2.49200000 Gł	52.337 [°]	14.2673
2.49400000 Gł	52.316	14.2903
2.49600000 Gł	52.317(14.3038
2.49800000 Gł	52.305	14.3194
2.50000000 Gł	52.295(14.3217

APPENDIX F – PHANTOM CERTIFICATE OF CONFORMITY

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland	

e

a

a

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas; 6mm +/- 0.2mm at ERP	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions	DEGMBE based simulating liquids	Pre-series, First article, Samples

Standards

- [1] CENELEC EN 50361
- [2] IEEE Std 1528-200x Draft CD 1.1 (Dec 02)
- [3] IEC 62209/CD (Nov 02)
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

7.8.2003

Signature / Stamp

<u>s</u> D а

Schmid & Partner Engineering AG Zerghausstresse 43, 8004 Zurich, Switzerland Phone 741 0, 248 9760, Fex 441 1 245 9779 Info@speag.com, http://www.speag.com