12 FCC §15.247(i), § 2.1093 & IC RSS-102 - RF Exposure Information

12.1 Applicable Standards

According to §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF fields.

According to IC RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 – 300	28	0.073	2 (Note 1)	6
300 – 1 500	1.585 f ^{0.5}	$0.0042 \text{ f}^{0.5}$	f / 150	6
1 500 – 15 000	61.4	0.163	10	6
15 000 – 150 000	61.4	0.163	10	$616000 / f^{1.2}$
150 000- 300 000	0.158 f ^{0.5}	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	$616000 / f^{1.2}$

Note: *f* is frequency in MHz

Note ¹ = Power density limit is applicable at frequencies greater than 100 MHz

^{* =} Plane-wave equivalent power density

12.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator <math>R = distance to the center of radiation of the antenna

12.3 MPE Results

Mode	Frequency Band	MPE Distance (cm)	Output Power (dBm)	Antenna Gain (dBi)	Power Density (mw/cm²)	Power Density Limit (mw/cm²)	Result
WLAN	2.4 GHz	20	17.64	2.0	0.018	1.0	Compliance

The predicted power density level at $20~\rm cm$ is $0.018~\rm mw/cm^2$ which is below the uncontrolled exposure limit of $1.0~\rm mW/cm^2$. The EUT is used at least $20~\rm cm$ away from user's body. It is determined as mobile equipment and complies with the MPE limit.