EMC TEST REPORT

REPORT NO. : <u>F89081815</u>

MODEL NO. : <u>SK-2315</u>

DATE OF TEST: <u>Aug. 21, 2000</u>

PREPARED FOR : SILITEK CORP.

ADDRESS: 4F, 7, SEC. 1, TUNG HWA SOUTH RD., TAIPEI, TAIWAN, R.O.C.

PREPARED BY: <u>ADVANCE DATA TECHNOLOGY CORPORATION</u>

11F, NO.1, SEC.4, NAN-KING EAST RD., TAIPEI, TAIWAN, R.O.C.

Accredited Laboratory

This test report consists of 15 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of our laboratory. It should not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. government. The test result in the report only applies to the tested sample.

TABLE OF CONTENTS

1.	CERTIFICATION	3
2.	GENERAL INFORMATION	4
	 2.1 GENERAL DESCRIPTION OF EUT 2.2 DESCRIPTION OF SUPPORT UNITS 2.3 TEST METHODOLOGY AND CONFIGURATION 	5
3.	TEST INSTRUMENTS	6
	3.1 TEST INSTRUMENTS (EMISSION)	
4.	TEST RESULTS (EMISSION)	8
	 4.1 RADIO DISTURBANCE 4.2 EUT OPERATION CONDITION 4.3 TEST DATA OF CONDUCTED EMISSION 4.4 TEST DATA OF RADIATED EMISSION 	8 9
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION WITH MINIMUM MARGIN	13
6.	APPENDIX - INFORMATION OF THE TESTING LABORATORY	15

1. **CERTIFICATION**

Issue date: Aug. 21, 2000

Product USB KEYBOARD Trade Name PACKARD BELL

Model No. SK-2315

Applicant SILITEK CORPORATION

Standard FCC Part 15, Subpart B, Class B

CISPR 22: 1993+A1: 1995+A2: 1996, Class B

ANSI C63.4-1992

We hereby certify that one sample of the designation has been tested in our facility on Aug. 21, 2000. The test record, data evaluation and Equipment Under Test (EUT) configurations represent herein are true and accurate representation of the measurements of the sample's EMC characteristics under the conditions herein specified.

The test results show that the EUT as described in this report is in compliance with the Class B limits of conducted and radiated emission of applicable standards.

TESTED BY : Mitch Jen , DATE: 8.11. 2000

(Mitch Jen)

CHECKED BY : (Yemmy Soong) , DATE: 8/21/2000

APPROVED BY: mile on, DATE: 8/21/2000

(Mike Su)

ADVANCE DATA TECHNOLOGY CORPORATION

Accredited Laboratory

ECC	II).	CVI	IDO	CV
FCC	ш:	UIU	J K9 2	20N

2. **GENERAL INFORMATION**

2.1 GENERAL DESCRIPTION OF EUT

Product : **USB KEYBOARD**

: Model No. SK-2315

Power Supply Type : Switching (DC 5V from PC)
Data Cable : Shielded (1.8m)

Note: For more detailed features description, please refer to Manufacturer's Specification User's Manual.

ADVANCE DATA TECHNOLOGY CORPORATION

2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories are used to form representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID.
1	PERSONAL	IDM	2107 1200	1S218714ABNA0	EGG D. G
1	COMPUTER	IBM	2187-12W	002	FCC DoC
2	21" COLOR	IID	D20464	ID00512217	ECC D. C
2	MONITOR	HP	D2846A	JP90512317	FCC DoC
3	PRINTER	HP	2225C	2442S63076	BS46XU2225C
4	MOUSE	LOGITECH	M-S43	LZE000703132	DZL211106
5	MODEM	ACEEX	1414	980020510	IFAXDM1414

No.	Signal cable description						
1	NA						
2	1.8 m braid shielded wire, terminated with VGA connector via metallic frame, w/o core.						
3	1.2m braid shielded wire, terminated with DB25 and Centronic connector via metallic						
	frame, w/o core.						
4	1.5 m foil shielded wire, terminated with PS2 connector via drain wire, w/o core.						
5	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,						
	w/o core.						

Note: All power cords of the above support units are non-shielded (1.8m).

2.3 TEST METHODOLOGY AND CONFIGURATION

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 1992. Radiated testing was performed at an antenna to EUT distance of 10 m on an open area test site.

Please refer to the photos of test configuration in Item 5.

3. TEST INSTRUMENTS

3.1 TEST INSTRUMENTS (EMISSION)

CONDUCTED EMISSION MEASUREMENT

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
ROHDE & SCHWARZ Test	ESHS30	828109/007	July 6, 2001
Receiver	ESHSSU	828109/007	July 0, 2001
ROHDE & SCHWARZ	ESH3-Z5	839135/006	July 9, 2001
Artificial Mains Network	E3113-Z3	639133/000	July 9, 2001
ROHDE & SCHWARZ	ENY41	835154/007	Apr. 26, 2001
4-wire ISN	LIN 141	633134/007	Apr. 20, 2001
EMCO-L.I.S.N.	3825/2	9204-1964	July 9, 2001
Shielded Room	Site 2	ADT-C02	NA

Note: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

RADIATED EMISSION MEASUREMENT

Description & Manufacturer	Model No.	Serial No.	Calibrated until
HP Spectrum Analyzer	8590L	3544A00941	Dec. 05, 2000
HP Pre-Amplifier	8447D	2944A08312	Sept. 7, 2000
HP Preamplifier	8347A	3307A01088	Aug. 30, 2000
HP Preamplifier	8449B	3008A01201	Dec. 14, 2000
R&S Receiver	ESVS10	844594/010	Sept. 29, 2000
SCHWARZBECK Tunable	VHA 9103	E101051	Nov. 23, 2000
Dipole Antenna	UHA 9105	E101055	1101. 23, 2000
ROHDE & SCHWARZ	ESMI	839013/007	Aug. 30, 2000
TEST RECEIVER	LOWII	839379/002	Aug. 30, 2000
CHASE BILOG Antenna	CBL6111A	1500	Aug. 30, 2000
EMCO Double Ridged Guide	3115	9312-4192	March 29, 2001
Antenna	3113	9312-4192	Wiaicii 29, 2001
EMCO Turn Table	1060-04	1196	NA
EMCO Tower	1051	1264	NA
Open Field Test Site	Site 1	ADT-R01	Aug. 27, 2000

Note: 1. The measurement uncertainty is less than +/- 3dB, which is calculated as per NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

3.2 LIMITS OF CONDUCTED AND RADIATED EMISSION

LIMIT OF RADIATED EMISSION OF CISPR 22

FREQUENCY	Class A (at 10m) *	Class B (at 10m) *
(MHz)	dBuV/m	dBuV/m
30 - 230	40	30
230 - 1000	47	37

^{*} Detector Function: Quasi-Peak

LIMIT OF RADIATED EMISSION OF FCC PART 15, SUBPART B FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY	Class A (dBu	V/m) (at 3m)	Class B (dBuV/m) (at 31		
(MHz)	Peak	Average	Peak	Average	
Above 1000	80.0	60.0	74.0	54.0	

Note: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

LIMIT OF CONDUCTED EMISSION OF CISPR 22

FREQUENCY	Class A	(dBuV)	Class B (dBuV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: (1) The lower limit shall apply at the transition frequencies.

- (2) The limit decreases linearly with the logarithm of the frequency in the range 0.15 to $0.50\,\mathrm{MHz}$
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4. TEST RESULTS (EMISSION)

4.1 RADIO DISTURBANCE

Frequency Range : 0.15 - 30 MHz (Conducted Emission)

30 - 1000 MHz (Radiated Emission)

Input Voltage : 120 Vac, 60 Hz

Temperature : 25 degree C

Humidity : 76 %

Atmospheric Pressure : 995 mbar

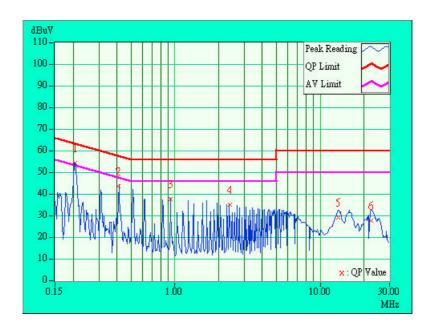
TEST RESULT Remarks				
	Minimum passing margin of conducted emission: -3.25 dB at 0.20724 MHz			
PASS	Minimum passing margin of radiated emission: -3.9 dB at 60.68 MHz			

4.2 EUT OPERATION CONDITION

- 1. Turn on the power of all equipment.
- 2. PC runs a test program to enable all functions.
- 3. PC reads and writes messages from FDD and HDD.
- 4. EUT sends "H" characters to PC.
- 5. PC sends "H" messages to monitor and monitor displays "H" patterns on screen.
- 6. PC sends "H" messages to modem.
- 7. PC sends "H" messages to printer, then printer printed them on paper.
- 8. Repeat steps 3-8.

ADVANCE DATA TECHNOLOGY CORPORATION

4.3 TEST DATA OF CONDUCTED EMISSION


EUT: <u>USB KEYBOARD</u> MODEL: <u>SK-2315</u>

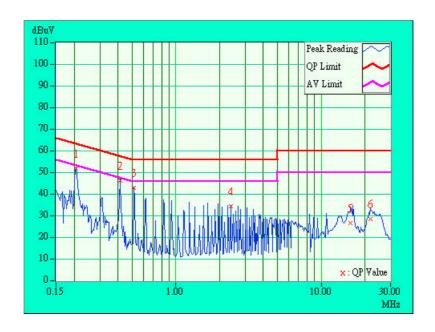
6 dB Bandwidth: 10 kHz PHASE: LINE (L)

Freq.		Meter F	Reading [dB (uV)]	Liı	nit	Mai	rgin	
[MHz]	Corr.	Readin	g Data	Total		[dB (uV)]		[dB (uV)]	
	Factor	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.20724	0.20	54.29	49.87	54.49	50.07	63.32	53.32	-8.83	-3.25
0.41165	0.20	43.76	-	43.96	ı	57.61	47.61	-13.65	ı
0.92928	0.20	37.70	-	37.90	ı	56.00	46.00	-18.10	ı
2.37853	0.24	35.06	-	35.30	ı	56.00	46.00	-20.70	ı
13.34471	0.90	29.30	-	30.20	i	60.00	50.00	-29.80	ı
22.45334	1.25	27.85	-	29.10	-	60.00	50.00	-30.90	-

Remarks: 1. "*": Undetectable

- 2. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 3. "-": The OQuasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 4. The emission levels of other frequencies were very low against the limit.
- 5. Margin value = Emission level Limit value
- 6. Emission Level = Correction Factor + Reading Value.

TEST DATA OF CONDUCTED EMISSION


EUT: <u>USB KEYBOARD</u> MODEL: <u>SK-2315</u>

6 dB Bandwidth: 10 kHz PHASE: NEUTRAL (N)

Freq.		Meter Reading [dB (uV)] Limit		nit	Margin				
[MHz]	Corr.	Readin	g Data	Total		[dB (uV)]		[dB (uV)]	
	Factor	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.20559	0.20	51.76	ı	51.96	-	63.38	53.38	-11.42	ı
0.41458	0.20	46.27	ı	46.47	-	57.56	47.56	-11.09	-
0.51717	0.20	43.04	-	43.24	-	56.00	46.00	-12.76	1
2.38124	0.24	34.49	ı	34.73	-	56.00	46.00	-21.27	-
15.79968	0.92	26.84	ı	27.76	-	60.00	50.00	-32.24	ı
21.74971	1.10	28.56	1	29.66	-	60.00	50.00	-30.34	ı

Remarks: 1. "*": Undetectable

- 2. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 3. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 4. The emission levels of other frequencies were very low against the limit.
- 5. Margin value = Emission level Limit value
- 6. Emission Level = Correction Factor + Reading Value.

4.4 TEST DATA OF RADIATED EMISSION

EUT: <u>USB KEYBOARD</u> MODEL: <u>SK-2315</u>

ANT. POLARITY: Horizontal

DETECTOR FUNCTION: Quasi-peak 6 dB BANDWIDTH: 120 kHz

FREQUENCY RANGE: <u>30-1000</u> MHz MEASURED DISTANCE: <u>10</u> M

Eraguanav	G .:	Danding Value	Emission Level	Limit	Morain	Antenna	Table
Frequency (MHz)	Correction	(dBuV)	(dBuV/m)	(dBuV/m)	Margin (dB)	Height	Angle
(IVIHZ)	Factor (dB)	(ubuv)	(ubu v/III)	(ubu V/III)	(ub)	(cm)	(Degree)
60.70	6.9	10.6	17.5	30.0	-12.5	400	129
132.03	13.0	3.5	16.5	30.0	-13.5	400	177
143.89	12.9	6.9	19.8	30.0	-10.2	400	298
168.00	11.3	5.4	16.7	30.0	-13.3	400	304
191.98	10.2	7.1	17.3	30.0	-12.7	400	258
216.01	11.1	6.6	17.7	30.0	-12.3	400	217

REMARKS:

- 1. Emission level (dBuV/m) = Correction Factor (dB)
 - + Reading value (dBuV).
- 2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

ADVANCE DATA TECHNOLOGY CORPORATION

TEST DATA OF RADIATED EMISSION

EUT: <u>USB KEYBOARD</u> MODEL: <u>SK-2315</u>

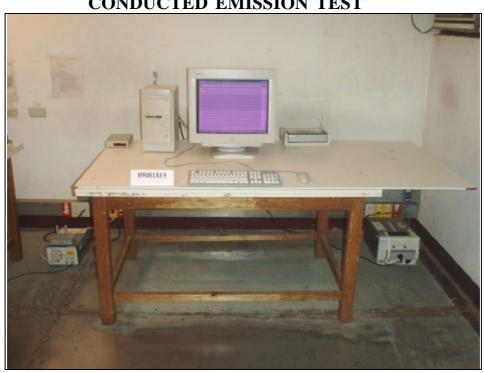
ANT. POLARITY: Vertical

DETECTOR FUNCTION: Quasi-peak 6 dB BANDWIDTH: 120 kHz

FREQUENCY RANGE: <u>30-1000</u> MHz MEASURED DISTANCE: <u>10</u> M

Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)
47.99	9.9	10.2	20.1	30.0	-9.9	100	130
60.68	6.9	19.2	26.1	30.0	-3.9	100	134
72.40	6.8	15.7	22.5	30.0	-7.5	100	75
108.59	12.5	7.1	19.6	30.0	-10.4	100	90
120.00	12.7	5.8	18.5	30.0	-11.5	100	338
132.27	13.0	7.7	20.7	30.0	-9.3	100	145
144.11	12.9	6.2	19.1	30.0	-10.9	100	227
168.02	11.3	6.2	17.5	30.0	-12.5	100	9
180.60	10.6	7.1	17.7	30.0	-12.3	100	129
216.01	11.1	10.2	21.3	30.0	-8.7	100	43

REMARKS: 1. Emission level (dBuV/m) = Correction Factor (dB)


+ Reading value (dBuV).

- 2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

5. PHOTOGRAPHS OF THE TEST CONFIGURATION WITH

MINIMUM MARGIN

RADIATED EMISSION TEST

6. APPENDIX - INFORMATION OF THE TESTING LABORATORY

Information of the testing laboratory

We, ADT Corp., are founded in 1988, to provide our best service in EMC and Safety consultation. Our laboratory is accredited by the following approval agencies according to ISO/IEC Guide 25 or EN 45001:

• USA FCC, UL, NVLAP

• Germany TUV Rheinland

TUV Product Service

REPORT NO.: F89081815

JapanVCCI

New Zealand RFS

Norway
 NEMKO, DNV

• U.K. INCHCAPE

• R.O.C. BSMI

Enclosed please find some certificates of our laboratory obtained from approval agencies. If you have any comments, please feel free to contact us with the following:

 Lin Kou EMC Lab.:
 Hsin Chu EMC Lab:

 Tel: 886-2-26032180
 Tel: 886-35-935343

 Fax: 886-2-26022943
 Fax: 886-35-935342

Lin Kou Safety Lab.: Design Center:

Tel: 886-2-26093195 Tel: 886-2-26093195 Fax: 886-2-26093184 Fax: 886-2-26093184

E-mail: service@mail.adt.com.tw

http://www.adt.com.tw